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THE FUNDAMENTAL LEMMA OF BRUNS SIEVE 
IN A NEW SETTING 

A. SCHINZEL 

This paper has emerged from the need experienced in [5] to estimate 
from above the number of lattice points in a four dimensional cube that 
remain after a sieving process. A new variant of Brun's upper sieve has 
been devised for this purpose, however, as was pointed out to the author 
by Dr M. Ram Murty the same upper bound could be obtained by the 
large sieve and this approach has been finally adopted in [5]. Pursuing 
further the small sieve approach one obtains a new variant of the funda
mental lemma of Halberstam and Richert embodied in the following 
theorem. 

THEOREM 1. Let srf be a finite set and {&~p} a family of sets indexed by 
primes from a certain set gP. Assume that for a certain multiplicative func
tion co(d) defined on all squarefree positive integers d and suitable real num
bers X > 0, Al ^ 1, A2 è 1, A3, k ^ 1, K we have 

(1) 0 g 2&L £\ -jj- for all primes p, 

( 2) £ ^P^ZP S A: log— + A2for all w, z with 2 ^ w < z, 
w^p<z P W 

(3) I k n f l ^ l - ^ - X \ ^ A3 *i-a/»rffr-i a>(d). 
p\d 

Then for all z g X the number 

S{st\&,z)= \sf\\Jrp\ 
p(E0> 
P<Z 

satisfies the relation 
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P<z\ P J 

(4) x j l + 0(exp - (j-2 (log u - log log 3« - log K - 2) 

+ 0(exp(-k(logX)^) 

where 

(5) 
l o g ^ 
logz 

and the constants in the O symbol depend only on Ax, A2, A3, k and K. 

Theorem 1 contains as a special case theorem 2.5 of the book [2] of 
Halberstam and Richert, which is slightly obscured by the fact that they 
consider a sequence sé rather than a set and define S(sé ; &>, z) accordingly. 
In order to obtain their result one has to take for our sé the set of sub
scripts of all elements of their sé and for &~p the set of subscripts of all 
elements divisible by p. Our theorem will not become more general if sets 
are replaces by sequences. 

In the case k = & — 1 the error term in the formula (4) can be improved 
to 

0(exp(-w(log u + log log 3u + 6>(l))) + 0(exp - (log x)1/2) 

by using Rosser's sieve (see Iwaniec [3], p. 29). According to Prof. Iwaniec 
a similar improvement probably can be made in the general case (cf. 
Iwaniec [4], p. 177). 

COROLLARY. For any d > 0 under the assumption of Theorem 1 

S(^; », z)<BX\\(\- i â ) 
p<z\ P J 

provided z ^ Xe and B — B(d, AÌ9 A2, A& k, K) 

This corollary inserted at the suggestion of the referee generalizes Theorem 
2.2 of [2]. However in the most interesting case, where sé <= Zk, ZTp a Zk 

and each ZTp is a union of residue classes mod /?, the Corollary follows 
from the large sieve result of Gallagher [1] and from Lemma 4.1 of [2]. 

As an application of Theorem 1 which cannot be obtained from the 
quoted Theorem 2.5 we give the following 

THEOREM 2. Let Fx{xx, . . . , xk), . . . , Fr(x\,..., xk)be distinct irreducible 
polynomials with integer coefficients and let 

F(xx, . . . , * * ) = Fifo, . . . , xk). . . Fr(xl9. . . , xk). 
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Let p(d) denote the number of solutions of the congruence F(xi, . . . , xk) 
= 0 mod d, and assume that p(p) < pk for all primes p. Let c, u and x be 
real numbers such that c > 0, u ^ 1 and xVu ^ 2 and let £>(x, u, c) be the 
set of all integers q having no prime divisors less thab xVu and satisfying 
(log q)l(\og x) ^ c. Then 

| {n = < nÌ9 « 2 , . . . , nk > : 1 ^ nt <= x; F{ (n) e£>{x, u, deg F( + 1) for / 

- i . 2 , . . . , n - ^ n 0-4?-) 
p<xl/u \ Pk J 

1 + 0FUxp( - ^ ( log u - log log 3u - log g - 2) 

+ 0F(exp(-k</\ogx)) 

where g is the total degree of F and the constants in the O symbol depend 
only on the coefficients and degrees of Fh .. . , Fr. 

For k = 1 Theorem 2 gives a slightly weaker version of Theorem 2.6 
of [2]; log r has been replaced by log g. If one tries to apply Theorem 2.5 
of [2] for k > 1 one can consider the sequence of all values F (nu n2i. . . , 
nk) for n{ g x(l ^ / ^ k) and the conditions Ql9 Q2(K) are fulfilled with 
o)(d) = p(d), K = g but the condition (R) is not satisfied. 

Proofs of Theorems 1 and 2 follow closely the proofs of Theorems 2.5 
and 2.6 of [2]. 

PROOF OF THEOREM 1. Let 

w{z) = n (i - ^ \ 
P<z\ P I 

Following the proof of (3.14) in Chapter 2 of [2] we find that 

S(j*; », z) = XW(z) + ^3^1"(1/A?)exp(^z*-i(2/zz + 3)); |0| ^ 1 

A = max(A;, A2) > 0 

hence we may assume that z is large enough, i.e. 

(6) z^Bx = Bx(k9 K, A2\ 

Assume first that 

(7) log z ^ (log xyz. 

Following the proof of (3.16) in Chapter 2 of [2] we find that 

S(tf; », z) = XW(z) {1 + 0(;iei+A)(*iogiog^o)/A} 

x d'Azx
i-a/» zH*iogiog*+,0)/̂  \e\ ^ i, |0'| ^ i 
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provided 

(8) 0 ^ i f « < 1 

and 

1 ^ . A2_Si < A(,,_A2 c° -K l o g l T o i r J + isii {' + A\K + loir;/-
If we choose 

JL = J logX 
/I 2/:2 log Z(K log log z + CQ) 

we have by virtue of (6) and (7) 

5( j^ ; &, z) = ÄW(z) {1 + 0 exp(-(log x)1/2)} 

+ O'AZXI-™*\\O\ s i,\d'\ ^ l 
and (4) follows. 
Assume now that 

(9) log z > (log Z)1 / 2 

and u given by (5) is large enough, that is 

(10) u^B2 = B2(k, K, Al9 A2). 

Following line by line the proof of Theorem 2.1 of [2] we get for every 
positive integer b and every real X satisfying (8) the inequalities 

( i i ) S&;*,z) ±XW(2){l + 2 7 ^ ^ r „ p ( ( 2 * + 3 ) r ^ _ ) } 

_|_ (^/J^l-d/Ä) z2WH-2.01*/(«"/*-!) \ 

S(tf;&,z) ^ XW(z)\\-2 { _ ^ g + 2 , exp((26 + 2). ^i 
(12) ~ v ~ ' " ' ~' = v ̂  - ! _ ^ 2 + 2 * ~ " ^ v ~ -JX l o g z 

+ O(Arl~a/*)z(2ô~1)*+2-0U/(^2/lA~1)) 

where 

ex = ^-2(l + A ( * + 
log 2 

On the other hand by formula (3.5) of Chapter 2 of [2] which has been 
deduced from (1) and (2) only we have 

v } W(z) \ \ogKw Iv - - J 

and in particular 
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(14) -j^j = OOog'z). 

By virtue of (10) the number 

L 2k2 2 log u 

is positive and X = {en log u)\u satisfies (8). 
In view of (11), (12) and (14) we get 

S(j*;0>,z) = XW(z)i\ + o (exp( -2ò logJL + 2b £ ^ 

+ o(exp{-log z ( | - - 2bk - e i ^ ) + K log log z 

and the error terms are 

+ o(exp{ - log z 2"ogu + ft log log z 

= of exp j - pKlog w - log log u - log K - 2) 

+ 0(exp(-Ä:(logX)1/2)) 

by virtue of (9). 
It remains to consider the case u < B2, By the definition of S(s/; &>, z) 

we have since z = Xl/u 

S(j*;0>,z) ^ S(jtf;0>,X1/B*) 

we now apply the preceding result (with u = B2) to the expression on the 
right, and obtain 

S(j*;0>,z) S XW(XyB*) {0(1) + 0(exp(-logx)1 / 2)}. 

Hence by (13) 

S{sé\ 0>, z) ^ XW(z) {0(1) + 0(exp(-log x)1/2)} 

and since S(jtf; 0>, z) ^ 0, (4) follows. 

PROOF OF COROLLARY. For z ^ A'the theorem applies directly. If z > X 
we have by (13) 

S(A ;P9z) ^ S(A ; />, X) « XW(X) « XW(z)(^-^J <, dK XW(z). 

PROOF OF THEOREM 2. Let srf be the set of all lattice points <«l9 . . . , nk} 
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in the cube 1 ^ n{ ^ x, 3~p the set of all lattice points </2l5. . . , nk} 
satisfying F(ni, • • • > nk) = 0 mod/?. We take in Theorem 1 

By lemma 3,4 of [6] o(/?) ^ gpk~l, hence (1) is satisfied with 4̂ = g + 1 
and (2) with K = g and A2 = 3g (cf. [2], Chapter 2, formula (3.2)). As 
to condition (3) let us observe that the number of elements of $0 fi Ç\p\d 
&~p in any /:-dimensional cube of size dis p(d). Hence 

+ i)V) 
and since X = xk we have 

\\<*t fi H ̂ 1 - ^ - ^ 1 ^ (2* - l ) ! 1 - ^ ^ - 1 ^ ) ; 

thus the condition (3) is fulfilled with A$ = 2k — 1. 
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1 p(d) è w n C\fp\ ^ 
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