CYCLOTOMY OF ORDER TWICE A PRIME

EMMA LEHMER

Dedicated to the memory of E. G. Straus

Gauss defined f-nomial periods for a prime p = ef + 1 as

(1)
$$\eta_j = \sum_{r_i \in C_j} \zeta_p^{r_i} \text{ where } \zeta_p = \exp(2 \pi_{\delta} i/p)$$

and C_j is the residue class with index j with respect to some primitive root g. These periods satisfy an irreducible monic period equation of degree e with integer coefficients

(2)
$$f_e(x) = \prod_{i=0}^{e-1} (x - \eta_i) = 0.$$

Kummer proved that if p is replaced by a general n then all the prime factors of the integers represented by $f_e(N)$, where N is any integer, are e-th power residues of p, except possibly when they divide P_k with $(e, k) = r \neq 1$, where

$$P_k = \prod_{i=0}^{e-1} (\eta_i - \eta_{i+k})$$

in which case they may be only r-th power residues of p. Kummer [3] called such primes exceptional.

Recently Evans [2, p.13] proved Kummer's theorem for a generalized cyclotomy in which

(4)
$$\eta_j = \sum_{r \in C_i} \alpha_i \zeta_r^r \text{ with } \alpha_i \in \mathbf{Z}(\zeta_s), (s, n) = 1.$$

He also defined semiexceptional divisors as those divisors of the discriminant $D_e = \prod_{k=1}^{e-1} P_k$ that are not e-th powers residues and found for e = 8 some semiexceptional divisors which are not exceptional [2, p.22-24].

In a recent paper [5] we considered in great detail the special case of e = 6 and p a prime and found that all semiexceptional divisors are exceptional in this case. In doing this it became necessary to use a lemma derived from Theorem 5.2 of our paper [4] on Kloosterman sums

Received by the editors August 1, 1983.

$$S(h) = \sum_{x=1}^{p-1} \zeta_p^{x+h\bar{x}} \ (x\bar{x} \equiv 1 \pmod{p}).$$

If we define the generalized periods by $\theta_j = \sum_{h \in C_j} S(h)$ then it turned out that for e even

(5)
$$e \theta_j = \sum_{i=0}^{e-1} \psi_e(-4g^{j-2i}) \eta_i + (-1)^{j+(p-1)/2} (p-1),$$

where

$$\phi_e(\kappa) = \sum_{x=1}^{p-1} \left(\frac{x^e + \kappa}{p} \right)$$

are the Jacobsthal sums, and therefore rational integers.

Theorem 5.2 showed that for e a prime all the odd prime factors $q \neq p$ of the numbers represented by $G_e(N)$, where

(6)
$$G_{e}(X) = \prod_{j=0}^{e-1} (x - \theta_{j})$$

are e-th power residues of p. The only property of the θ 's used in the proof was that the θ 's are distinct modulo q. This can be ensured by requiring in (5) that $\delta = (a_0, a_1, \ldots, a_{e-1}) = 1$ and that not all the a_i are equal. Therefore we can restate our Theorem 5.2 as follows:

LEMMA 1. Let p = ef + 1, where p and e are primes and let

$$H_e(x) = \prod_{i=0}^{e-1} (x - \pi_i), \, \pi_i = \sum_{\nu=0}^{e-1} a_i \eta_{i+\nu}$$

Let $\delta = (a_0, a_1, \ldots, a_{e-1})$ and suppose that not all the a_i are equal, then for any integer N all the odd prime factors $q \neq p$ are e-th power residues of p with the possible exception of the divisors of δ .

In what follows we will make use of this lemma in order to relate the ordinary Gaussian cyclotomy for p = 2ef + 1 with e and p both prime to the generalized cyclotomy of order e in which the periods are linear combinations of Gaussian periods.

Let p = 2ef + 1 and let

(7)
$$\eta'_{j} = \sum_{r \in C_{j}} \zeta_{r}^{r} (j = 0, 1, \dots, 2e - 1),$$

satisfy the period equation

(8)
$$f_{2e}(x) = \prod_{j=0}^{2e-1} (x - \eta'_j) = 0.$$

Then obviously

(9)
$$\eta'_j + \eta'_{j+e} = \eta_j$$

where η_j is an η of order e in (1).

Let $(i,j) = (i,j)_{2e}$ be the cyclotomic numbers of order 2e, i.e., the number of times that an element of class C_i is followed by an element of class C_j . It is well known that [8]

(10)
$$\eta'_{j}\eta'_{j+k} = \sum_{i=0}^{e-1} (k,i) \eta'_{i+j} + f\varepsilon$$

where $\varepsilon = 0$, except when k = 0 and f is even, or when k = e and f is odd, when $\varepsilon = 1$.

$$P_k = \prod_{i=0}^{2e-1} (\eta'_i - \eta'_{i+k}) = N(\pi_k)$$

where

$$\pi_k = (\eta_0' - \eta_k')(\eta_e' - \eta_{e+k}') = \eta_0'\eta_e' - \eta_0'\eta_{k+e}' - \eta_k'\eta_e' + \eta_k'\eta_{e+k}'.$$

By (10) we have

(11)
$$\pi_{k} = \sum_{\nu=0}^{2e-1} [(e, \nu) - (k+e, \nu) - (e-k, \nu-k) + (e, \nu-k)] \eta'_{\nu}$$

$$+ \begin{cases} 2f(-1)^{f-1}, & k=e \\ 2f, & f \text{ odd} \\ 0 & \text{otherwise.} \end{cases}$$

Using the well known relation [8]

$$(12) (i,j) = (2e-i,j-i)$$

we see that the coefficient of $\eta'_{\nu+e}$ in (11) is the same as the coefficient of η'_{ν} so that by (9) we can write

(13)
$$\pi_k = \sum_{\nu=0}^{e-1} a_{\nu} \eta_{\kappa+\nu}$$

where, since $\sum_{\nu=0}^{e-1} \eta_{\nu} = -1$, the coefficients a_{ν} by (11) are given by

(14)
$$a_{\nu} = (e, \nu) - (k + e, \nu) - (e - k, \nu - k) + (e, \nu - k) + \begin{cases} 2f(-1)^{f}, & \text{if } k = e \\ -2f, & \text{if } f \text{ odd} \\ 0 & \text{otherwise.} \end{cases}$$

We will now examine when the conditions on the a_i in Lemma 1 are satisfied.

Using the well known sum [8]

(15)
$$\sum_{j=0}^{2e-1} (i,j) = \begin{cases} f-1 & \text{if } i=0 \text{ and } f \text{ is even} \\ f-1 & \text{if } i=e \text{ and } f \text{ is odd} \\ f & \text{otherwise} \end{cases}$$

we find from (14), using the fact that $a_{e+\nu} = a_{\nu}$, that

(16)
$$\sum_{\nu=0}^{e^{-1}} a_{\nu} = \begin{cases} [f - (f-1) - (f-1) + f + 4ef]/2 = 2ef + 1 = p, \\ [f - 1 - f - f + (f-1) - 4ef]/2 = -2ef - 1 = -p, \\ [f - f - f + f]/2 = 0 \end{cases}$$
 if $k = e$ and f even if f odd otherwise.

Therefore conditions on the a's in Lemma 1 are satisfied if f is odd. For f even they are satisfied if k = e. For $k \neq e$ the a's cannot all be equal, but divisors of δ_k may not be e-th power residues. Therefore, Lemma 1 leads to the following.

THEOREM 1. Let p = 2ef + 1 and let q be an odd prime $\neq p$ dividing $H_e(x)$ for some integer N, then q is an e-th power residue if f is odd. Let f be even; q is an e-th power residue if $q \mid P_e$, but if $q \mid P_k$ for $k \neq e$, then it is an e-th power residue provided that $q \nmid \delta_k$.

A part of Evans' general theorem about exceptional primes for the case of p = 2ef + 1, e a prime, can be stated as follows:

Theorem 2. Evans [2]. The odd prime $q \neq p$ is exceptional if and only if either

 $q|P_{2k}$ and is a quadratic, but not an e-th power residue of p. or $q|P_e$ and is e-th power, but not a quadratic residue of p. Moreover if the exceptional prime $q|P_e$ then $q^2|P_e$, and if $q|P_{2k}$ then $q^e|P_{2k}$.

We can now sharpen. Evans' theorem for the case of p = 2ef + 1 as follows:

THEOREM 3. Let p = 2ef + 1, e and $q \neq p$ be odd primes, then q is exceptional for f odd if and only if

(17)
$$q \mid P_e \text{ and } \left(\frac{q}{p}\right) = -1.$$

If f is even, then q is exceptional if and only if either (17) holds or

(18)
$$q|P_{2\nu}, q|\delta_{2\nu}$$
 and q is not an e-th power residue.

PROOF. This is an immediate consequence of Theorems 1 and 2.

In [5] we introduced a notion of a special prime. Such a prime q is not exceptional, but it divides the discriminant and is not an e-th power residue.

Using the previous theorems we can state the following theorem.

THEOREM 4. Let q be special, then q must satisfy the following conditions

(19)
$$q \nmid P_e; \text{ if } q \mid P_k \text{ for } k \neq e \text{ then } \left(\frac{q}{p}\right) = -1.$$

If f is even then there is another condition, namely, q is not a 2e-th power,

(20)
$$k \text{ odd}, q | P_k \text{ for } k \neq e, q | \delta_k,$$

Conversely if q satisfies these conditions then it is special.

PROOF. By Theorem 1 all the divisors of P_e are e-th power residues. If (q/p) = 1, they are 2e-th power residues and if (q/p) = -1 then they are exceptional by Theorem 3, therefore in either case they are not special. Similarly if f is odd or if f is even and $q \nmid \delta_k$, then q is an e-th power residue and hence (q/p) = -1. If $q \mid \delta_k$, then q need not be an e-th power residue in general and therefore (20) is necessary if k is odd. If k were even then such a prime would be exceptional and not special.

We will now illustrate the use of these theorems in case 2e = 10. We make use of Dickson's quadratic form [1]

(21)
$$16p = x^2 + 50u^2 + 50v^2 + 125w^2$$

with the side conditions

(22)
$$xw = v^2 - u^2 - 4uv, \quad x \equiv 1 \pmod{5}$$

which has four solutions

(23)
$$(x, u, v, w), (x, -u, -v, w), (x, v, -u, -w), (x, -v, u-w)$$

together with a table of cyclotomic numbers $(i, j)_{10}$ found in Whiteman [9] and a computer printout of Muskat's table of (x, u, v, w) for p < 50000. There also exists a table for p < 10000 by K. S. Williams [10].

For f even and 2 a quintic residue of p one finds by (11) using Whiteman's table that

$$4\pi_2 = (-w - 2u + v)\eta_0 + 4w\eta_1 + (-w + 2u + v)\eta_2 - w\eta_3 - w\eta_4$$

$$4\pi_4 = (w + u + 2v)\eta_0 + w\eta_1 - 4w\eta_2 + w\eta_3 + (w - u - 2v)\eta_4$$

so that if $q|\delta_2$, then q must divide u, v and w, but that implies that $q|D_5$ given in [7], namely

(24)
$$256 D_5 = p^4[w^2(4v - 3u) - u(u - v)^2]^2[w^2(3v + 4u) + v(v + u)^2]^2$$

and so q is a quintic residue in this case. Moreover by (21) we have $16p \equiv x^2 \pmod{q}$ so that since f is even (q/p) = 1 and hence q is a 10-th power residue and therefore is neither exceptional nor special, if it divides P_2 . The same conclusion will be reached for divisors of P_6 and P_8 . In fact $P_2 = P_8$ and $P_4 = P_6$.

In case 2 is not a quintic residue we find from Whiteman's table that

$$16\pi_2 = (x - 4u - 2v + w)\eta_0 + 2(v - u + 3w)\eta_1 + 4(u + v - w)\eta_2$$

+ 2(v - u + 3w)\eta_3 + (-x + 4u - 6v - 9w)\eta_4,

This implies that if $q|\delta_2$, then the following conditions hold:

(25)
$$u \equiv 2w, v \equiv -w, x \equiv 5w \text{ and } p \equiv 25w^2 \pmod{q},$$

or else $u \equiv v \equiv w \equiv 0 \pmod{q}$, but in the latter case $q|D_5$ as before and is a tenth power residue, so we are left with (25). Similarly

$$16\pi_4 = (x + 2u + 8v - w)\eta_0 - (x + 2u - 9w)\eta_1 + (-x + 4u + 2v - w)\eta_2$$
$$-4(u + v - w)\eta_3 + (x - v - 11w)\eta_4.$$

If $q|\delta_4$, then argueing as before we find that condition (25) must hold. Hence for cyclotomy with 2e = 10 Theorem 3 becomes:

Theorem 5. The odd prime $q \neq p$ is exceptional if and only if

$$p = 10n + 1$$
, $q \mid P_5$ and $\left(\frac{q}{p}\right) = -1$.
 $p = 20n + 1$, $q \nmid P_5$, but $q \mid P_{2k}$, $\chi_5(q) \neq 1$ and (25) holds.

Our table for p < 500 provides many examples of exceptional primes, marked with an asterisk, which divide P_5 and appear to the second power, but none that divide P_{2k} . To show that such primes exist we point to the following examples:

$$p = 1801$$
, $x = -29$, $u = 16$, $v = 1$, $w = 11$ and $q = 3$
 $p = 7001$, $x = -29$, $u = -5$, $v = -36$, $w = -19$ and $q = 11$.

There is no example for q = 5 because (25) cannot hold or for q = 7 because (25) implies $u \equiv -2v \pmod{q}$ which in turn implies that 7 is a quintic residue and therefore not exceptional. K. S. Williams [11] gives conditions for quintic residuacity for q < 20 which show that q = 11, 13, 17, and 19 are quintic non-residues if $u \equiv -2v \pmod{q}$. This can also be checked by substituting the conditions (25) into the reduced quintic period polynomial given in [6]

(26)
$$F_5(z) = z^5 - 10pz^3 - 5pxz^2 - 5p[(x^2 - 125w^2)/4 - p]z + p^2x - p[x^3 + 625(u^2 - v^2)w]/8.$$

Letting $z \equiv 5wt$ we obtain

$$F_5(5wt)/(5w)^5 \equiv t^5 - 10t^3 - 5t^2 + 10t - 1 \pmod{q}$$

which is irreducible modulo q for $11 \le q \le 41$, so that all these primes

are quintic non-residues of p. To find other examples the following special case may be of interest:

THEOREM 6. Let p = 20n + 11 and let $u \equiv v \equiv w \pmod{q}$. Then q is exceptional if and only if $q \equiv -1 \pmod{4}$.

PROOF. Since $u \equiv v \pmod{q}$ it follows that q is a quintic residue of p. By (21) we have $16p \equiv x^2 \pmod{q}$, so that (p/q) = 1. By Theorem 5 we must have (q/p) = -1 so that $p \equiv q \equiv -1 \pmod{4}$ and f is odd. It remains to show that in this case q divides P_5 . Letting $x \equiv 4a \pmod{q}$ we find that under the above conditions

$$\pi_5 = \begin{cases} a(\eta_0 + (a+1)/5) \pmod{q} & \text{if } \chi_5(2) = 1\\ a(\eta_2 + (a+1)/5) \pmod{q} & \text{if } \chi_5(2) \neq 1. \end{cases}$$

Therefore in either case

$$P_5 = a^5 f_5(-(a+1)/5)) = F_5(-a) \equiv 0 \pmod{q},$$

since with $u \equiv v \equiv w \equiv 0 \pmod{q}$ and $x \equiv 4a \pmod{q}$ we have by (26)

$$F_5(z) \equiv (z + a)^4(z - 4a) \pmod{q}$$
.

This proves the theorem.

It is interesting to note that if $\chi_5(2) \neq 1$, then q also divides P_1 since $16\pi_1 = (4a-1)/5 - \eta_4$ and hence $2^{20}P_1 \equiv F_5(4a) \equiv 0 \pmod{q}$. Examples of Theorem 6 are given below:

\boldsymbol{q}	p	X	и	v	w
3	1051	-29	9	6	9
3	1471	-19	6	15	9
3	2131	11	6	21	-9
3	2791	41	-24	9	9
7	38791	-209	-56	49	– 49
7	44851	- 229	– 49	- 70	49

No example for q = 11 has been found for p < 100000.

Finally we have to look at π_1 and π_3 to see if condition (25) of Theorem 5 can hold for the case 2e = 10. Again there are two cases. If $\chi_5(2) = 1$, then

$$4\pi_1 = (u - w)\eta_0 - (u + w)\eta_1 + w\eta_2 + w\eta_4$$

$$4\pi_3 = (v + w)\eta_0 - w\eta_1 - w\eta_2 + (w - v)\eta_3$$

and hence if $q|\delta$, then q divides w and u or v and hence by (22) it divides u, v, and w in both cases and is a quintic residue of p. But by (21) we have

488 E. LEHMER

 $16p \equiv x^2 \pmod{q}$ so that q is a 10-th power residue of p since f is even. Hence q is not special.

If $\chi_5(2) \neq 1$, then

$$16\pi_{1} = (x - 6v + 5w)\eta_{0} + (x + 2u + 8v - w)\eta_{1} + (-x + 6u + 8v + w)\eta_{2}$$
$$-(x + 4u + 6v + 9w)\eta_{3} + 4(-u - v + w)\eta_{4}.$$
$$16\pi_{3} = 4(3u - v + w)\eta_{0} + 2(-u + v - 5w)\eta_{1} + (-x - 4u + 2v - w)\eta_{2}$$
$$+(x - 4u - 2v + w)\eta_{3} + 2(-u + v + 3w)\eta_{4}.$$

In both cases $\delta = 1$ so that condition (25) of Theorem 5 does not hold. Since $P_7 = P_3$ and $P_9 = P_1$ we can now restate Theorem 4 in the case of 2e = 10 as follows:

THEOREM 7. If p = 10f + 1 then a prime $q \neq p$ is special if and only if $q \nmid P_5$, but $q \mid P_k$ for $k \neq 5$, and (q/p) = -1.

It is an open question whether special primes exist in this case or in general for cyclotomy of order twice a prime. We have shown in [5] that there are none for cyclotomy of order 6 by giving explicit formulas for all P_k . Theoretically it could be done in the present case but it would involve a prodigious amount of algebra and should be automated.

p	P_1/p	P_2/p	P_3/p	P_4/p	P_5/p
31	67	5^{3}	52	5^{2}	1
41	83	-3^{2}	— 1	1	-32*
61	1	47	13	-13	112*
71	971	4079	372	1663	1
101	3637	17	-17	701	-1
131	70061	10957	307	28297	712*
151	$2^2 \cdot 19 \cdot 491$	2^{13}	2^{15}	$2^8 \cdot 227$	2^{16}
181	3571	3917	73	773	$-7^{2*} \cdot 17^{2*}$
191	5.37633	5^{4}	5.383	$5^2 \cdot 4423$	1
211	152081	1933	3591069	116657	6012
241	-2^{10}	$-27 \cdot 181$	-2^{8}	$-2^{7} \cdot 211$	$-28 \cdot 192*$
251	75017	$2^4 \cdot 5^3 \cdot 27$	$71 2^4 \cdot 5 \cdot 61$	73 58	2^{16}
271	$5^2 \cdot 41621$	$5^5 \cdot 83$	7013	$5^2 \cdot 83 \cdot 211$	2392*
281	-1607	53 79	21859	-59727	6612*
311	$7^2 \cdot 13 \cdot 57$	13.6532	$3 7^3 \cdot 13 \cdot 89$	$9 7^2 \cdot 89^2$	$11^{2*} \cdot 13^{2}$
331	79.7883	31 · 1607	68879	89 · 10009	232*
401	9203	$-2^{5*} \cdot 29^2$	24439	$-2^{5*} \cdot 2971$	-503^{2}
421	-64013	149	-185291	$-401 \cdot 457$	-541 ^{2*}
431	$2^{13} \cdot 3^4$	$2^4 \cdot 3^6 \cdot 50$	$03 2^2 \cdot 3^6 \cdot 4$	$33 2^{11} \cdot 3^5$	$2^{14} \cdot 3^2$
461	445157	-1811	69379	113 5531	$-13^{2*}37^{2*}$
491	$36 \cdot 37 \cdot 57$	$1 3^6 \cdot 43^2$	$37 \cdot 37$	3.37.97.6	43 32.3732*

REFERENCES

- 1. L. E. Dickson, Cyclotomy, higher congruences and Waring's problem, Amer. Jn. Math. 57 (1935) 408-410.
- 2. Ronald J. Evans, Period polynomials for generalized cyclotomic periods, Manuscripta Math. 40 (1982) 217-243.
- 3. E. E. Kummer, *Uber die Divisoren gewisser Formen der Zahlen, welche aus der Theorie der Kreistheilung enstehen*, Jn. für Math. 30 (1846), 107-116, Collected Papers. v.1, 193-202. Springer-Verlag, N.Y. 1975.
- 4. D. H. and Emma Lehmer, The cyclotomy of hyper-Kloosterman sums, Acta Arith. 14 (1968) 89-111.
- 5. D. H. and Emma Lehmer, *The sextic period polynomial*, Pacific Jn. of Math. 111 (1984) 341-355.
- 6. Emma Lehmer, *The quintic character of 2 and 3*, Duke Math. Jn. 18 (1951)11–18. [The factor p is omitted before the last square bracket in (10) on p. 16.]
- 7. Emma Lehmer, On the divisors of the discriminant of the period equation, Amer. Jn. of Math. 90 (1968) 375-379.
- 8. Thomas Storer, Cyclotomy and Difference Sets, Lectures in Advanced Math. v.2, Markham Publ. Co., Chicago, 1967.
- 9. A. L. Whiteman, Cyclotomic Numbers of order 10, Proc. Tenth Symp. Applied Math. A.M.S. 1958, v. 10. (1960) 95-111.
- 10. K. S. Williams, Table of Solutions (x, u, v, w) of the Diophantine System $16p = x^2 + 50u^2 + 50v^2 + 125w^2$, $xw = v^2 u^2 4uv$, $x \equiv 1 \pmod{5}$ for primes p < 10000, $p \equiv 1 \pmod{5}$, Carleton Univ. Ottawa, Manuscript of 13 pages deposited in the UMT file of Math. Comp.
- 11. K. S. Williams, Explicit criteria for quintic residuacity, Math. Comp. 30 (1976) 847-853.

1180 MILLER AVE BERKELY, CA 94708

