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WELL HEIGHTS, NÉRON PAIRINGS AND V-METRICS 
ON CURVES 

ERNST KANI 

ABSTRACT. In this paper we supplement Néron's theory of height 
pairings on curves by attaching to each non-constant rational func
tion fon a curve C defined over a field K, endowed with an absolute 
value| I», a "height pairing" Af,v on Div(C) x Div(C). It is shown 
that the stipulation that these height pairings be "as functorial as 
possible" forces them to be unique (up to a constant); in particular, 
their restrictions to Div°(C) x Div°(C) reduce to Néron's height 
pairing. We also show that Àf.v may be computed explicitly in the 
non-archimedean (discrete) case, via the Lichtenbaum-Shafarevich 
intersection theory on a suitable two-dimensional scheme over 0„. 
and in the archimedean case via Arakelov's theory of Green's func
tions on Riemann surfaces attached to a suitable (1, l)-form. 

0. Introduction. The theory of height pairings, which was created in 
1965 by A. Néron [19] as a refinement of A. Weil's theory of distributions 
(Weil [23]-[25]), is important not only as a practical tool in proving 
diophantine statements (e.g. theorems of Mordell-Weil, Mumford, Manin 
etc.), but also as an intrinsic concept reflecting the finer quantitative na
ture of the diophantine problem in question (e.g., Conjecture of Birch and 
Swinnerton-Dyer and the recent Theorem of Gross and Zagier). Although 
Néron's theory mainly concerns abelian varieties (in fact, it is only in 
this case that Néron's theory completely refines Weil's theory), he does 
obtain (by appealing to the theory of Picard varieties) a similar (but 
weaker) theory of height pairings in the case of an arbitrary (smooth, 
complete) variety. 

The purpose of this paper is to reconsider Weil's and Néron's theory of 
(local) heights and height pairings in the special case of curves. I^doing 
so, we have two principal aims in mind. 

The first aim is to demonstrate that it is possible to give a direct treat
ment of Néron's theory for curves without recourse to the theory of 
abelian varieties (or Jacobians). The main idea here is the observation 
that t;-metrics on curves (as defined below in §3) yield "crude Néron 
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pairings" and that, hence, by sharpening Tate's averaging process (cf. 
Manin [15], Néron [19] and §4), it is possible to refine any ^-metric on the 
curve C to the Néron pairing Xc>v on (Div°(C) x Div°(C))'; here, Div°(C) 
denotes the group of divisors of degree 0 on C and ' denotes the subset 
of the product set consisting of all disjoint divisors. 

The second aim is to extend Néron's pairing to a pairing on (Div(C) x 
Div(C))' and thus obtain a "refined" theory of Weil heights. Such exten
sions (to (Div(C) x Div°(C))\ at least) were already considered by Néron 
[19] who showed that these are unique once one imposes the condition 
that they be functorial with respect to morphisms between curves, and 
Parshin [20], [21] subsequently used these to derive interesting diophantine 
statements about modular curves. Unfortunately, as Manin [16] pointed 
out, no such functorial extensions can exist on the category of curves of 
genus g ^ 2; as he shows, the "obstruction to functoriality" is tied up 
with the existence of non-trivial endomorphisms on the Jacobian Jc of 
the curve C. 

Now, while a completely functorial theory of heights (or height pair
ings) cannot exist, it is possible to advance a theory of heights "with 
limited functoriality". To this end we consider on each curve C not only 
one but a whole family of extensions of Néron's height pairing to 
(Div(C) x Div(C))/. To be precise, we attach to each non-constant rational 
function/e K{C) on C an extension lftV of Àc,v

 t 0 (Div(C) x Div(C))' 
and stipulate that these be "as functorial as possible", by which we mean 
the following. First, if ^ : C" -> C is any finite covering of curves and 
fe K(C)\K, then we require (as does Néron) that the projection formula 
holds for %pfjV, lftV and <j>. Secondly, we require that we have Àa(f)fV = %ftV 

for a l l / 6 K(C)\K and all a e Aut(fl), where Autfa) c= PGl2{K) is a certain 
group of fractional linear transformations associated to v, namely Aut 
(v) = PGl2(Dv), if v is non-archimedean and Dv its valuation ring, and 
Aut(#) = PU(2), if v is archimedean (wlog K = C) and PU(2) denotes 
the image of the unitary group U(2) a Gl2(C) in PGl2(C). It then turns 
out that these properties of "limited functoriality", together with the usual 
properties of height pairings, uniquely characterize the functions X/tV up 
to an arbitrary additive constant (which may be fixed by the normalization 
condition l/,y((/)o, (/)«>) = 0) and therefore give rise to a "canonical" 
theory of Weil heights. 

Finally, we show that these height pairings lftV have natural interpreta
tions in terms of "intersection numbers" on a (suitable) arithmetic surface; 
i.e., they can be computed via the Lichtenbaum [14]-Shafarevich [22] 
intersection theory on two-dimensional schemes in the non-archimedean 
(discrete) case (cf. §9) and via Arakelov's [2] theory of Green's functions 
on compact Riemann surfaces in the archimedean case (cf. §10). 

This paper was written while I was a visitor at the Department of 
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Mathematics at Harvard University, whose hospitality I greatly appre
ciated. I would like to thank B. Mazur for the interest which he took in 
this work and for his stimulating comments. Also, I have greatly profited 
from conversations with B. Gross and, above all, from his extremely inter
esting manuscript [4], for which I am very grateful. Finally, I would like to 
thank P. Roquette, R. Rumely and E. Viehweg for helpful conversations. 

1. Weil heights (local distributions). Let K be a field, | \v an absolute value 
of K (archimedean or not), and v = —log | \v its associated "valuation". 
Moreover, let V be a complete, smooth, irreducible variety defined over 
K. We denote by : 

F = K(V) its field of rational functions, 
X\V) its set of prime divisors (= set of irreducible subvarietes of 

codim 1), 
Div(K) its divisor group (= free abelian group generated by Xl(V)), 
Div/K) the subgroup of Div(K) of principal divisors, 
V(K) its set of /^-rational points, 
Z\V) its group of 0-cycles, all of whose components are ^-rational 

(= free abelian group generated by V(K))9 

ZQ(V) the subgroup of Z\V) consisting of cycles of degree 0. 
By the approximation theorem for valuations, any divisor D or V has a 
representation as a minimum-maximum of principal divisors, i.e., 

(1) D = min max(/;7), 

where f = {f{j} c Fx is some suitable finite set. To each such representa
tion (1) of D we can attach a function, hîiV\ V(K)\supp(D) -* R, called a 
Weil height (or, more correctly, a local distribution) by the formula 

(2) hft0(P) = min mux v(MP)). 
* j 

The major drawback of Weil's theory is that the Weil height hiiV depends 
not only on the divisor D but in fact also on the particular choice of the 
representation (1) of the divisor. Thus, to each divisor we have associated 
not just a single function but rather a whole family of Weil heights. The 
crucial fact, therefore, in Weil's theory is that under suitable hypotheses 
these Weil heights do not substantially differ from each other, i.e., that 
they are equivalent in the following sense. 

DEFINITION. TWO real-valued functions / and g defined on a set S are 
said to be equivalent (notation:/ ~ g) if their difference is bounded on S. 

One then has the following fundamental fact which we state for simplicity 
only in the case that V is a curve. (It is also true for dim V> 1 provided 
that we impose a further condition on the sets f attached to a divisor D; 
cf. Weil [25]). 
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PROPOSITION 1. If dim V = 1, then any two Weil heights hhv and hgfV 

attached to the same divisor D on V are equivalent on V(K)\supp(D). 

Notation. We denote by J^DtV the set of all (real-valued) functions on 
V(K)\supp(D) which are equivalent to some (and hence all) Weil heights 
hf<v attached to the divisor D on V. 

2. Néron pairings and Néron heights. One of the principal aims of 
Néron's theory is to single out in each equivalence class tfDtV of height 
functions attached to a divisor D o n a variety V a "canonical" representa
tive hDtV (now called a Néron height) which is unique up to an additive 
constant. In order to achieve this aim, Néron was guided by the following 
observation. 

Let D = (f) be the divisor of the rational function fe Fx (i.e., D is a 
principal divisor) and let P0 e V(K) be a "base point". Then, while the 
height function hftV on V(K)\supp(D) defined by hftV(P) = v(f(P)) de
pends on the choice of/ the function hD)PQ>v defined by 

does not. More generally, if a = £ ni?i e Zo(V) ls anY 0-cycle of V of 
degree 0 with supp(Z>) f| supp(a) = 0 , then the element 

(3) f(a) = Y\f(Pdn*zK 
p 

does not depend on the choice of/but only on the divisor D — (/), so that 
we may define the symbol ÀV,V(D, a) E R by 

(4) XVtV(D, a) = v{f(a% 

when D = (/). This suggests, therefore, that the proper context for viewing 
height functions on V is via pairings 

(5) XVt0:(Diw(V) x Z Ä K ) ) ' - R 

which extend the basic pairing on (Div^J7) x ZQ(V))' defined by (4) 
above; here, the 'denotes the subset of the product set consisting of all 
pairs (D, a) such that supp (D) fi supp(a) = 0 . One can then recover 
Weil's theory by fixing a base point PQ e V(K) and putting 

(6) hDtP^v{P) = XvJD, P - PQy 

In general, there exist many pairings (5) which extend the basic pairing 
(4). In order to pin down a preferred choice, Néron imposes on the pairing 
the condition that it is functorial with respect to morphisms between 
varieties and also satisfies a certain "topological property". However, as 
already mentioned in the introduction, such functorial pairings can only 
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exist on the category of abelian varieties; in the case of an arbitrary 
variety, one has to replace Div(K) by its subgroup Divß(K) consisting 
of all divisors algebraically equivalent to 0 in order to preserve the 
functoriality property. 

Suppose from now on that V = C is a curve. In that case Diva(C) = 
Div°(C) is the group of divisors of degree 0 which, in the case of an al
gebraically closed ground field, may be identified with ZQ(C). Because of 
this identification, it is possible to restate Néron's principal theorem 
(specialized to the case of curves) in the following, possibly more natural, 
way. 

Theorem 1. (Néron) Suppose K is an algebraically closed field. Then on 
each curve C defined over K there exists a unique real-valued function Xc,v 

on (Div°(C) x Div°(C))' satisfying: 
(i) Ac v is bi-additive (when defined); 

(ii) Ac,'„((/), D) = v(f(D)), if (f) e DivXO and D e Div°(C) are dis
joint', 

(iii) For any D e Div°(C), and P0e C(K)\supp(D), the function hDtPQfV 

defined on C(K)\supp (D) by 

(7) /*D,PO,V(P) = IcÀP - A>, D) 

is a height function associated to D; i.e., hDyPQjVe j^fDv. 
Moreover, XCiV also satisfies: 
(iv) XCtV(E, D) = XC,V(D, E), if D, E e Div°(C) are disjoint; 
(v) If (f>: C -* C is any finite covering of curves, then the "projection 

formula' holds, i.e., 

(8) *c>,v(<f>*D, E') = ACi„(A <j>*(E')), 

where D e Div°(C) and E' G Div°(C) are divisors which are "(^-disjoint", 
i.e., §*D and E' are disjoint. 

REMARK. Note that in the statement of property (iii) above we have 
made use of the identification Div°(C) = ZQ(C); in particular, property 
(iii) cannot be generalized to higher dimensional varieties. On the other 
hand, if we use the "correct" definition of hDfPotV as given by (6), then 
that property does generalize to arbitrary varieties. (Observe that because 
of (iv), the two definitions coincide for curves.) In fact, it it a weakening 
of this property (namely, that XCtV

 De "^-bounded") together with pro
perties (i), (ii) and (v) which Néron uses to characterize his pairing. 

In the above formulation of Néron's theorem, we had for convenience 
assumed that the ground field K is algebraically closed. It is, however, 
possible to give a similar characterization of Néron's pairing over an 
arbitrary ground field if one considers Weil heights not only on C(K) 
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but also on the sets C(n)(K), n = 1, 2, . . ., consisting of all positive 
divisors D on C of degree n. 

To define these Weil heights, we shall first extend the definition of the 
symbol f(D) (cf. (3)) to all divisors D e Div(C). For this, let P e Xl(C) 
be an arbitrary prime divisor of C (not necessarily of degree 1), which 
we view as an equivalence class of places of F/K. If Pis any representative 
of this class, and FP => K denotes its residue field, then for any / e F 
with/P ^ oc, we put 

(9) f(P) = ^FPMH 

where Jfpp/K denotes the field norm of the finite extension FPjK. Clearly, 
the right hand side of (9) does not depend on the choice of the place P 
in its equivalence class P; this therefore justifies the notation /(P). By 
multiplicativity, we thus have the symbol f(D) defined for every/ e Fx 

and D e Div(C) with supp((/)) fl supp(£>) = 0 . 
We can now define the Weil heights on C(n)(K) in a similar manner as 

before. If f = {fij} is a finite set representing the divisor D by an equation 
(1), then putting 

(10) hj%E) = min max v(fij(E)) 
i i 

defines a function on C(n)(K)\supp{n)(D), where suppin)(D) denotes the 
set of positive divisors of degree n which are not disjoint from D. As be
fore, any two Weil heights on C(n)(K)\supp{n)(D) belonging to the same 
divisor D are equivalent; we denote the set of functions on C(n)(K)\ 
supp(w)(Z)) which are equivalent to some (hence all) hfy by #?$v. 

We then have 

THEOREM 1'. On each curve C defined over K exists a unique real-valued 
function XCtV on (Div°(C) x Div°(C))' satisfying: 

(i) X is bi-additive (when defined) ; 
(ii) A((/), D) = v(f(D)), if (J) e Div(C) and D e Div°(C) are disjoint; 

(ni) for any divisor F on C of degree n > 0 and any D e Div°(C) disjoint 
from E, the real-valued function h^EtV defined on C^n)(K)\suppin)(D) by 

(11) h$EtV{E') = 1C,V(E' - E, D) 

is a height function on C(n)(K) associated to D, i.e., h$EtVe J4?$v. 
Moreover, Xc>v also satisfies properties (iv) and (v) of Theorem 1 as well 

as: 
(vi) If K' is an algebraic extension of K, v' an extension of v to K',C = 

C xSpeciK) Spec(A^) the curve C lifted to K\ and b:C -• C the "base— 
change" morphism, then for every pair D, E e Div°(C) of disjoint divisors 
we have 

(12) XC,V(D, E) = kc,,Ab*D, b*E). 
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REMARKS. 1) In the above characterization of Xc,v, it is possible to 
weaken property (iii) by requiring that the condition "h^^e jtf*$v" 
holds only for n = 1,. . . , g = genus(C). 

2) Although Theorem 1' appears to be more general than Theorem 1, 
it is actually quite easy to deduce the former from the latter. (Use equation 
(12) as the definition of ACft,!) 

3. v-metrics on curves. As before, let C be a curve defined over a field 
K endowed with an absolute value | \v. In this section we shall consider 
certain metrics on the point-set C(K) (assumed tacitly to be non-empty 
to avoid trivialities) which may be used to define the ^-topology on C(K). 

For any metric d on C(K), we define the function ld on C(K) x C(K)\ 
diagonal by 

(13) UP,Q)= - l og </(/>, 0 . 

In what follows, we shall be interested in the following class of metrics 
on C(K). 

DEFINITION. A metric d on C(K) is called a ^-metric if Xd is a Weil height 
associated to the diagonal divisor j c on C x C with respect to v\ i.e., 
11 Ad e ffiûciV 

REMARK. Clearly (by Proposition 1), any two ^-metrics induce the 
same uniformity on C(K); this uniformity will be called the ^-uniformity 
on C(K). 

EXAMPLE. C = P1. Fix an identification Kœ = K [j {oo} <-• Pl{K) by 
choosing a generator t e F = K(Pl) of F/K and putting t(Pa) = a, a e K^. 
We then define the function %v on Y\K) x pi(^) by 

(14a) Xv(Px, Py) = 1̂  - Z L 
max(l, \x\v) -max(l , \y\v) ' 

if x, y e K, and by 

(Hb) XÄP,PJ-X^PX)=max(\AXviy 

if x e K. We also put 

(14c) Xv(P«„PJ=0. 

It is then easy to see that %v is a metric on P^AT), and, hence, a ^-metric 
because we have the formula 

(15) A = (t ® 1 - 1 ® t) - min(0, (1 ® /)) - min (0, (t ® 1)) 

(Note that K(Pi x pi) = Quot(^(0 ® K(t)).) 

In order to construct ^-metrics on an arbitary curve C, we proceed as 
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follows. Choose a finite open affine covering % = {U^^^ of C, and, 
for each U{, fix a closed immersion ^-rt/,- -> Aw, for some ra. Then, if 
Xi, . . . , Xm denote the coordinate functions on Am, put fj = fa ° I ;- e F 
and set 

( 16) jfr, „(P, Ô) = max Z„(/;7(P), / 7 ( 0 ) , if P, ß G C ( A 

where we now view each f{j as a function ftJ:C(K) -» A^ <-> P1(A'). We 
shall call each such function iw,vtne ^-metric associated to the covering. 
%. The term "^-metric" is justified by the following fact. 

PROPOSITION 2. Each %%tV
 as defined above is a v-metric on C(K). 

PROOF. (SKETCH). Clearly, ^ ) t > is pesudo-metric on C(K) since %v is one 
on P1(AT). Next, observe that we have the formula (cf. Kani [7]) 

Ac = min ((fij ® 1 - 1 ® fij) 
(17) l&&n 

- min(0, (fi}® 1)) - min(0,(l ®/.,.)) 

which generalizes (15). From (17) we can conclude on the one hand that 
%wfV is a metric and on the other hand that hUiV = ÀXutv £ ^jc,v-

COROLLARY. The v-uniformity on C(K) is the weakest uniformity such 
that all ft F = K(C), viewed as maps f : C(K) -> P^K), are uniformly 
continuous when we endow PX(A )̂ with its v-uniformity (given by %y above). 

PROOF. For a fixed choice of a covering %, the %<%tV—uniformity (i.e., 
the ^-uniformity) is by construction the weakest uniformity on C(K) such 
that all fij are uniformly continuous. Since every fe F appears as a co
ordinate function of some suitable open cover fy, the assertion follows. 

REMARKS. 1) Recall (cf. Lang [10]) that the z;-topology on C(K) is by 
definition the weakest topology on C(K)such that a l l / e .Fare continuous. 
From the above corollary we therefore see that the topology on C(K) 
induced by the z;-uniformity is the ^-topology. 

2) In the non-archimedean case, Néron [18] constructed, on any variety 
V, a metric (which he called the /?-adic metric). It is easy to see that in the 
case of a curve V — C, Néron's metric is a ^-metric in the above sense. 
The advantage of the metric constructed above is, however, that it does 
not depend on a choice of a model over Dv and hence is applicable also 
in the archimedean case (and also "globalizes" nicely). 

If d is any metric on C(K), then the function Xd extends by bilineaiity 
uniquely to a bilinear map (also denoted by Xd) on (Z'(C) x Z'(C))'. As 
we shall see in §5, it is possible to obtain Néron's pairing on (Div°(C) 
x Div°(C))/ from any ^-metric dby applying a simple "averaging process" 
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to Xd. In order to be able to apply this process, however, we need to know 
the following crucial fact. 

THEOREM 2. Let d be any v-metric on C(K), where (for simplicity) K is 
algebraically closed. Then : 

a) For each n ^ 1 there exists a constant cn ^ 0 such that the inequality 

(18) \U(f\ D) - v{f(D))\ ^cn 

holds for all f e Fx and D e Div°(C) disjoint from (f) with max (dQg(f)00, 
deg DJ ^ n. 

b) For each D e Div(C), the function hD d defined on C(K)\supp(D) 
by 

(19) hDtd(P) = W A P) 

is a height function associated to D, i.e., hDìd e J^D)V. 

PROOF. Easy by "nonstandard methods" (cf. Kani [8]). 

4. The averaging process. In this section we present a general "averaging 
process" which will be used in the next section to refine a given ^-metric 
to Néron's pairing. More precisely, we shall show that, given real-valued 
homomorphisms a and ß defined on an abelian group A and on a sub
group B a A, respectively, such that the restriction of a to B "almost 
coincides" with /3, it is possible (under suitable hypotheses) to refine a 
to a homomorphism à on A which "almost coincides" with a and whose 
restriction to B does coincide with ß. 

In order to explain the term "almost coincides" which was used above, 
we shall consider the abelian group A to be endowed with a filtration 
y ; by this we mean a sequence y = {<Sw}ŵ i of increasing subsets of A 
(i.e., Si c S2 <= • • • c A) with the property that [jnSn = A and Sn -f 
Sm cz 5„+w, for all n, m ^ 1. In that case we shall refer to the pair (A, 
y) as a filtered abelian group. 

DEFINITION. A real-valued function/defined on a filtered abelian group 
(A, y) is said to be weakly bounded (or ^-bounded) i f / i s bounded on 
each subset 5„, n ^ 1. 

Two real-valued functions/and g on A are said to be weakly equivalent 
(or to "almost coincide") if their difference/ — g is weakly bounded on 
A. (No ta t ion : /* g orf*yg.) 

REMARK. Note that if we give A the trivial filtration (Sn = A, for all 
«), then the notions of weak boundedness and weak equivalence reduce 
to the usual notions of boundedness and equivalence (the latter as defined 
in §1 above). 

PROPOSITION 3. ("Averaging Lemma") Let B a A be a subgroup of 
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a filtered abelian group (A, Sf) satisfying the following "co-compactness 
property" : 

(20) B + SN = A, for some N ^ \. 

If a and ß are real-valued homomorphisms on A and B respectively such 
that a is a "weak extension" of ß in the sense that we have 

(21) a\B*ß 

then there exists a unique homomorphism à — aß on A in the weak equiva
lence class of a which extends ß: i.e., we have 

(22a) & « a 

(22b) &\B = ß . 

PROOF (Sketch.) Uniqueness is clear, for if à\ and a2 are two such homo
morphisms, then à\ — à2 is a bounded homomorphism on A/B (and 
hence is 0). 

To prove existence, observe first that by (20) we have a retraction map 
s : A -+ B with the property that (s — id^) (A) c SN. Thus, if for a e A, 
n e N we put 

(23) an(a) = a(a) + ^ ( ^ ( 2 ^ ) ) - a{s(2»a))\ 

then one easily sees that 

(24) a(a) = lim an(a) 
W-»oo 

converges and that â satisfies the required properties. 

REMARK. A more careful analysis of the proof shows that if (for each 
n Z 1) a and ß "differ by" cn on Sn f] B, i.e., if \a(b) - ß(b)\ ^ cn9 for 
b e Sn fi B, then à and a differ by cN+n + c3N on Sn. (This fact will be 
important later on.) 

COROLLARY. If a{ and ß{ (i = 1, 2) are real-valued homomorphisms 
on A andB respectively such that a-\B « /3t-, / = 1,2, then 

(25) (oci±a2)%±ß2 = (tfi)ft ± (a2)%. 

5. The Néron pairing via v-metrics. We shall now show how the Néron 
pairing on (Div°(C) x Div°(C))/ may be constructed by applying the 
averaging process of the previous section to the function Xd, where d is 
any v-metric on C(K). Here, K is (without loss of generality) an algebrai
cally closed field. 

To do this, fix a divisor E e Div°(C) and let Diw°(C)E (resp. Div/C)^) 
denote the group of all divisors D e Div°(C) (resp. of all divisors D e 
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Div/C)) which are disjoint from E. On Div°(C) (and hence on any sub
group) we have the "natural filtration" given by 

(26) Sn={De Div°(C): deg D„ g n}. 

We observe then that by Riemann—Roch we have 

(27) DWXOE + S2g = Div°(C)E, 

where g denotes the genus of C, so that the "co-compactness property" 
(20) is satisfied for A = Div°(C)E and B = DiwXQE-

Next, define the real-valued homomorphisms aE and ßE on A and B 
respectively by : 

(28a) aE(D) = Xd(D, E); 

(28b) ßE((f)) = v(f(E)). 

Now Theorem 2a) states precisely that aE is a "weak extension" of ßE 

(i.e., condition (21) of the Averaging Lemma is satisfied) so that we can 
conclude that there exists a unique homomorphism aE on Div°(C)^ such 
that property (22) holds. Thus, if we put 

(29) XC,V(D, E) = aE(D\ 

then Àc,v is the desired Néron pairing since it clearly satisfies properties 
(i) and (ii) of Theorem 1 and also satisfies property (iii) by Theorem 2b). 
We also observe that the uniqueness assertion of Theorem 1 is obvious 
since for any X satisfying (i)-(iii) we must have /{(•, E) « aE. 

Finally, let us prove properties (iv) and (v) of Theorem 1. For this, we 
first note that if <f>: C -• C is any finite covering of curves, then we have 
the following "projection formulae": 

(30a) fifaD') = (<ß*f) (£>'), i f / e F, D' e Div(C'), 

(30b) f'(<f>*D) = ( 0 , / ' ) (£>), if/' e F' = K(C), D e Div(C). 

From these we obtain on the one hand Weil's reciprocity formula: 

(3D A(g)) = g((f)), 

iff, g e Fx are such that (/) and (g) are disjoint (for by (30), we can reduce 
the problem to C = P1, where it is easily verified), from which property 
(iv) is immediate since Xd is symmetric. On the other hand, combining 
(30b) with the trivial fact 

(32) Jtr^E9v => tfE.vof 

yields property (v). 

REMARK. The above (sketched) proof of Weil's reciprocity formula is 
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much simpler than other proofs of the formula found in the literature 
(cf. e.g. Igusa [5]; Lang [11, p. 172]; Griffiths—Harris [3, p. 242]). 

6. Height pairings on Div(C) x Div(C). We now turn to the problem 
of extending Néron's pairing Xc,v defined on (Div°(C) x Div°(C))' to 
(Div(C) x Div(C))'. Among the many such possible extensions we shall be 
interested only in those satisfying the conditions of the following de
finition. 

DEFINITION. A z;-height pairing on the curve C is any real-valued map 
X defined on (Div(C) x Div(C))' satisfying: 

(i) X is bi-additive (when defined); 
(ii) X((fl D) = v(f(D)l if CO e DivXC) and D e Div°(C) are disjoint; 

(iii) for each D e Div(C) and n ^ 1, the function h$x defined on 
Cin) \suppin)(D) by 

(33) h%\(E) = X(D, E) 

is a height function attached to D\ i.e., hft\ e j ^ ^ v ; 
(iv) X(D, E) = X(E, D\ if A E e Div(C) are disjoint. 

REMARKS. 1) Clearly (by Theorem 1), any such height pairing is an 
extension of Néron's pairing Xc,v. 

2) If K is algebraically closed, then property (iii) has to be verified only 
for n = 1. 

We shall now show that such height pairings actually exist. For this, we 
first observe that we can reduce to the case of an algebracially closed 
field K. 

LEMMA 1. Let K' and v' be an extension of K and v, respectively, and let 
b: C = C 

x Spec(iC) Spec(A^) -> C be the base change morphism. If X' 
is any v'-height pairing on C , then the function X defined on (Div(C) x 

Div(C))' by 

(34) X(D, E) = X'(b*D, b*E) 

is a v-height pairing on C. 
PROOF. This is immediate from the formula 

(35) (b*f) (b*D) = f{D\ feE= K{C\ D e Div(C). 

Next, we verify the existence of ^-height pairings in the case C = 
P1, where we can exhibit such a pairing explicitly. 

LEMMA 2. Let K be algebraically closed, and let %v be the v-metric on 
P1 defined by (14). Then the bilinear extension ofXv = — log %v to (Div(C) x 
Div(C)y is a v-height pairing on P1. 
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REMARK. Recall that Xv = XtiV depends on an identification P 1 ^ ) «-* 
K^ (given by a rational function t e Ä^P1)) ! 

Finally, to prove the existence of height functions for a general curve 
C, we shall fix a finite morphism (f>: C -» P1 and pull the height pairing 
back to a height pairing X$tV on C. Such a pullabck exists and is unique 
in the following sense. 

LEMMA 3. If <j>\ C -* C is a finite covering of curves and X is any height 
pairing on C, then there exists a unique height pairing X' = X^j on C 
such that the following (<projection formula" holds: 

(36) XWD, E') = X(D9 4>*E'\ 

for all D 6 Div(C) and E' e Div(C') which are ^-disjoint. 

PROOF. (Sketch.) Suppose X' is a height pairing on C satisfying (36), 
If D\ E' e Div(C') are two disjoint divisors on C , choose two disjoint 
divisors D, E e Div(C) of positive degrees such that (j>*D and E' (respec
tively, §*E and D') are disjoint. Then, if n — deg X, d = deg D, e = 
deg £, d' = deg D\ and e' = deg E', we have 

X'(D\ E') = -4j-XcUndDf - d'6*D, neE' - e'è*E') 
(37) nde 

+ - ^ W > \ E) + -^X(D, <f>*E>) ~ - % m E). 

which proves uniqueness. 
To prove existence, define X' by (37) and check that the definition is 

independent of the choice of D, E and that it satisfies Mie required prop
erties. (Use the fact that </>*<j>*D = nD.) 

This, therefore, settles the existence of height pairings on curves. For 
later applications, however, we observe that in Lemma 3 we can "weaken" 
the hypothesis that X^j be a heght pairing in the following way. 

LEMMA 4. Let C be a curve defined over afield K endowed with an absolute 
value | \v, and fix a v-height pairing Xo on P1. Then for each non-constant 
morphism (f>: C -+ P 1 there exists a unique function X^ — X^fxQ

 on (Div(C) x 
Div(C))' such that we have'. 

(i) X$ is bi-additive (when defined); 
(ii) ^ ( ( / ) , D) = v(f(D)\ if {f) e DiV/(C) and D e Div°(C) are disjoint; 
(ni) for any two morphisms <j>, <j>': C -> P1 we have X$ « X^ with respect 

to the filtration © = {Sn}n^i on Div(C) x Div(C) given by 

(38) Sn = {(Dx, D2): deg(A)o è n, deg (A-)«, è nj = 1, 2}: 

(iv) X^E, D) = X^D, £"), if D, E are disjoint; 
(v) for any two ^-disjoint divisors D e Div(Px), E e Div(C) we have the 

"projection formula" 
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(39) Xf(<f>*D9 E) = Ao(A <f>*E). 

Moreover, each Ä^ is a v-height pairing on C and also satisfies 
(vi) If '(f)'': C -> C is a covering of curves and <f>: C -> P1 is a finite mor-

phism, then we have for ^'-disjoint divisors D G Div(C) and E' G Div(C') 
the ''projection formula '' : 

(40) V ? # ' * A E') = ^ ( A <f>'*E'). 

PROOF. Existence is assured by Lemma 3. To prove uniqueness, it is 
enough to show that properties (i) — (v) above imply that each 1$ is a 
^-height pairing of C, i.e., that for each prime divisor P e Xl(C)oï C and 
each n ^ 1 we have hP

n^ G 3tf$v. Now by property (iii) we see that (for 
P fixed) it is enough to verify this for one morphism (f>: C -> P1. Thus, 
if (by Riemann-Roch) we choose <f> such that ^*P0 — mP> f° r some P0 G 
PX(K) and m > 0, and observe that by property (v) we have A^»,^ = 
hp0,h ° ^(M)> then, s m c e ô is a f-height pairing on P1, it follows by (32) 
that hj$>t^

 E ^mp,v and hence also that A ^ G jf$>v, as claimed. 

We may summarize the above construction of ^-height pairings as fol
lows. 

THEOREM 3. Let K be an algebraically closed field endowed with an absol
ute value | \v, and let C be a curve defined over K. Then for each f G F \ K 
there exists a unique map X/>v on (Div(C) x Div(C))' such that: 

(i) XftV is bi-additive {when defined)] 
00 à/Agi D) = v(g(D)\ if(g) e DivXC) and D G Div°(C) are disjoint] 
(iii) for any pair fi f e F\K we have X/>v « lf>jV (with respect to the 

filtration defined by (38)); 
(iv) AftV(E, D) = XftV(D, E), if D, E e Div(C) are disjoint; 
(v) We have 

(41a) XfAf)^ P) = K(f(P)\ ifP e C(K)\supp ((f) J 

(41b) Xf,v((f)o, P) = K(f(PYl\ ifPe C(K)\supp((f)0X 

where hv denotes the "basic height function" on K defined by 

(42) hv(x) = - min(0, v(x)\ for x G K. 

Moreover, each XftV is a height pairing on C and satisfies the following pro
jection formula. 

(vi) If (f>:C -> C is a covering of curves andfe F\ K, then for (^-disjoint 
divisors D G Div(C) and E' G Div(C') we have 

(43) fofJ<f>*D> E') = h.JL*>, <f>*E'). 

REMARKS. 1) When one is dealing with a "concrete" curve (e.g., modular 
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curves, Fermât curves etc.), there is usually a distinguished morphism 
^: C -> P1. Thus, "concrete" curves carry a preferred height pairing A/>t>. 

2) As was already indicated in the introduction, we therefore obtain for 
each /e F \ K a system of "canonical heights" on C which are defined by 

(44) hDJiV(P) = A/,,(A n if ^ e C(K) \ supp(Z)). 

These satisfy the following "rule of functoriality" 

(45) h<t>*D,<ß*f,v = nDJ,v° <!>> 

if (j) : C -» C is a covering of curves, Z) e Di v(C), and feF\K. 
Note, however, that in the case of an elliptic curve, none of these coin

cides with Néron's canonical height on (Div(C) x Div°(C))' since Néron's 
is functorial with respect to morphisms between elliptic curves but not with 
respect to morphisms to P1. 

7. Properties of height pairings. In this section we shall derive some 
(elementary) properties of height pairings. We begin by classifying the set 
of height pairings on a curve C. 

PROPOSITION 4. If X is any height pairing on C and b : Xl(C) -• R is any 
weakly bounded function on the set Xl(C) of prime divisors on C (i.e., for 
each n ^ 1, the restriction ofb to Sn = {P e Xl(C) : deg P g n} is bounded), 
then the function Xb defined by 

(46) Xb(P, Q) = A(P, Q) + deg(ß) • b(P) + deg(P) • b(Q\ 

on Xl(C) x XX(C) \ diagonal, and extended by bilinearity to (Div(C) x 
Div(C)X is also a height pairing on C. Conversely, every height pairing 
X on C is of the form X = Xb for a suitable (unique) weakly bounded 
function b on Xl(C). 

This follows easily from the following general fact. 

LEMMA. Let C be a curve defined over K and let a be a symmetric, bilinear, 
real-valued function on (Div(C) x Div(C))' satisfying 

(47) a(D, E) = 0 , if D, E e Div°(C) are disjoint. 

Then there exists a unique real-valued function b on Xl(C)such that we have 

(48) a(P, Q) = deg(Ô) • b(P) + deg(P) . b(Q), 

for all P,Qe X\C), P * Q. 

PROOF. (Sketch.) Choose three distinct prime divisors Px, P2, P3 e Xl(C), 
and let n{ = deg(P^), for / = 1, 2, 3. If we put 
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±(a(P, A ) + deg(P) - c ifP*P1 

-e if P = Pu 

where c = (ì/(2n2))(a(P3, P2 - Pi) - (ì/n3)a(P1, P2)\ then it is easy to 
check that (48) holds. 

PROPOSITION 5. If X is any v-height pairing and d any v-metric on C, then 
X — Xd is bounded on (C(K) x C(K)) \ diagonal. 

PROOF. It is enough to prove this for X = XftV. Pick P0> Ôo G p l ( ^ ) -
Then by (32) and Theorem 2b) we see that X(-, 0*ßo) ~~ ^( '» ^*ôo) 
is bounded on C(K) \ supp(^*ß0) (and similarly for X((j>*P& • ) — 
Ad(<ßfPo> •)), so it is enough to show that 0(P, 0 = Xc,v(nP - $fP0, nQ -
tfQo) - UnP - <ßfP0, nQ - </>JQ0) is bounded on (C(K) x C(K)) \ 
diagonal. This, however, is immediate from the construction of Xc,v and 
the Remark of §4, since N = 2g is independent of E. 

COROLLARY 1. If X is any height pairing on C then there exists a constant 
ci = ci(Ä) such that we have 

(49) X(P9 R) ^ min tf (P, Q\ X(Q, R)) - cu 

forallP,Q, ReC(K). 

PROOF. If d is a z;-metric, then (49) holds for Xd in place of X with c1 = 
log 2. Applying Proposition 5 therefore yields the result. 

COROLLARY 2. If X is any height pairing on C, then there exist a constant 
£2 = c2(%) sucn that we have 

(50) X(P, Q) ^ - c2, 

for all P,Qe C(K) with P # Q. 

PROOF. First observe that if C = P1 and X = Xv, then (50) holds with 
c2 = 0 (resp. c2 = — v(2)) if v is non-archimedean (resp. archimedean). 
Thus, on an arbitrary curve C, (50) holds for X%iV with the same c2, and 
hence also (with a different c2) for any X by Proposition 5. 

REMARK. The last corollary is useful in the proof of Mumford's theorem 
(Mumford [17]) on the sparseness of rational points on curves of genus 
g ^ 2 (cf. Kani [6]). 

8. Canonical height pairings on curves. In §6 we had established the 
existence of height pairings by exhibiting for each /e F\Ka height pairing 
Xf>v which is functorial with respect to the morphism <f>f: V -» P1. Al
though these height pairings appear at a first glance to be quite "natural" 
(cf. Theorem 3) and certainly suffice for a precise theory of Weil heights, 

b(p) = 
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there actually exist "more refined" height pairings X/tV which (at least in 
the archimedean case) are more functorial than the A/> (In the non-
archimedean case we shall see that lUv = X/yV.) We shall now construct 
these refined height pairings and characterize them by their properties. 

In order to state the main theorem, it will be convenient to introduce a 
certain subgroup Aut(#) c PGI2(K) which is naturally associated to the 
absolute value || ̂  on K. To define Aut(v), consider the "standard norm" 
nv defined on the affine plane A2 (K) by 

f maxflxjly/ \x2\v), if v is non-archimedean 
(51) nv(x) = \ 

i VVil2, 4- \x2\l, if v is archimedean 

and let 

(52) Aut(ny) = {ae Gl2(K): n„(a(x)) = nv(x) Vx e A2(*)} 

denote the automorphism group of ny. Then the image of the group 
Aut(nv) under the projection map Gl2(K) -> PGl2(K) is the desired group 
Aut(fl). 

REMARK. It is easy to verify that 

(Gl2(Dv)9 if v is non-archimedean 
1 U(2), if v is archimedean and K = C. 

In what follows, we shall always view PGl2(K)as acting on K^ via frac
tional linear transformations; i.e., if a = (cd) e Gl2(K\ then a(oo) = 
a/c and a(x) = (ax 4- b)/(cx 4- d), if x e K. If C is any curve defined over 
K, and F = K(C) denotes the function field of C, then this action clearly 
extends to an action of F^ such that we have a(f) (P) = a(f(P)), for P 
e C(K). We observe that under this action, F\K\s mapped into itself. 

We are now ready to state the main theorem of this section. 

THEOREM 4. Let K be an algebraically closed field endowed with an 
absolute value \ \v. (In the archimedean case, assume that K = C and that \ \v 

is the usual absolute value.) Then on the category of curves defined over K, 
there is a unique way of assigning to each non-constant rational function 

/ e K(C)\K on a curve C a real-valued map X/tV defined on (Div(C) x 
Div(C))' such that the following properties hold: 

(i) XftV is bi-additive (when defined)', 
(ii) Xf,v((g), D) = v(g(D)\ if (g) e DivXC) and D e Div°(C) are dis

joint; 
(in) for any pair fi f e K(C)\K we have lf>v « %f,iV with respect to the 

filtration defined by (38) ; 
(iv) XffV(E, D) = XftV(D, E), ifD, EeDiw(C) are disjoint; 

(v) Xa(f),v = h,™ for M a e A u t ( * 0 ; 
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(vi)l/,,((/)o,(/)J = 0; 
(vii) for each covering (j>\ C -> C of curves and each fe K(C)\K we 

have the projection formula 

(54) W ^ * A E') = */.*(A 4>*E'\ 
if D € Div(C) tf«d £" e Div(C') are ^-disjoint divisors. 

Moreover, each Xfv is a height pairing on C and hence satisfies in addition 
(viii) For any divisor D e Div(C) and any n > 0, the real-valued function 

h$f,v defined on 0 > (K) - supp(w) (D) by 

(55) fyf.vW = */.,(A 20 

w fl height function on Cin)(K) associated to D, i.e., h$ftV e ^{S]V. 

In order to prove this theorem, we shall first consider the case C = P1. 
For this, we shall prove the following proposition which is of some interest 
in itself: 

PROPOSITION 6. There exists a unique real-valued function %v on K^ x 
Kœ satisfying: 

a) %v(
x, y) = 0,/or all x, y e Ä^, with equality if and only ifx = y. 

b) For any four distinct points x, y, z, w e K^ we have 

(56) U*^)'Uy^) = |cr(x? z? w)i 
Xv(x, w) • %y(.y, z) 

where cr (x, j ; , z, w) denotes the cross-ratio ofx, y, z, w (/.e., cr (x, y, z, w) = 
((x — z) (y — w))/((x — w) (^ — z)), z/ x, y, z, w e K, with the usual con
ventions if one ofx, y, z,orw = oo.) 

c) Xv(a(x\ a(y)) = £v(x, >^),/or a / / x j 6 ^ M Ö/M/a e Aut(t>). 
d) %y(j, x) = ^(x , JO,/«"" a// x, y e K^. 
e)x,(0, oo) = 1. 

REMARK. If Â  is a local, non-archimedean field, then it is possible to 
prove a similar theorem for any quasi-character (p in place of the un-
ramified quasi-character ^ = | \v. In that case one has to replace Gl2(£>v) 
by a suitable congruence subgroup attached to 0 (and the function n̂  
in formula (57) below by the new form of Gl2(K) attached to an induced 
representation associated with ^ ) ; cf. Kani [9]. 

PROOF. (Uniqueness.) Let %l9 %2 be two functions satisfying properties 
a) - e) and define the function a on K^ x K00\ diagonal by a(x, y) = 
%i(x, y)IX2Ì.x, y). Then by properties b) and d) we see (as in the proof of 
Proposition 4) that there is a non-negative function b on Ä^such that we 
have a(x, y) = b(x) • b(y), for all x, y e K^ with x ^ y. We want to show 
that b{x) = 1, for all x e K^; for this we distinguish two cases. 

Case 1. (v non-archimedean). If x e D„, then a = (Jf) e Gl2(£)v). 
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So, by c) we have (since a(oo) = oo, a(0) = x) that b(x)b(co) = 6(0)6(oo), 
i.e., that b(x) = 6(0). Similarly, if x"1 6 Qv9 then a = (? i/ì) e Gl2(Dv) 
and so 6(x)6(0) = 6(0)6(oo) or 6(x) = 6(00). Putting x = 1 yields 6(0) = 
6(oo) and so by e) we have b(0) = 1. Thus, in all cases we obtain b(x) = 
1, as claimed. 

Case 2. (v archimedean (i.e., K = C)). Let ze C\ Then a = (o/,zl ?) 
e (7(2) so that, by c), we have b(z)b(co) = 6(|z|)6(oo), i.e., 

(*) b(z) = 6(|z|), fo ra l l zGC x . 

Next, if r e R+„ then puttings = (1 + r2)-1 /2 , we see that ßr = (r
5/f) e 

U(2) and so by applying c) with a = /3r, * = oo, 7 = 0 we have 6(l/n) 
• 6(n) = 6(oo)6(0). From (*) and e) we therefore obtain 

(**) b(\/z)b(z) = 1, for all z e C«,. 

On the other hand, applying c) with a = ßr, x = 00, y = — ri yields b(\/ri) 
b(0) = 6(oo)6(-ri) or 6(l/z)6(0) = 6(oo)6(z) by (*). Combining this with 
(**) and e), we can conclude b(z)2 = 6(0)2, i.e., 

(***) 6(z) = 6(0), for all z e C. 

Finally, applying (**) with z = 1 gives 6(1) = 1 and so we obtain that 
6(0) = 1 (by (***)) and 6(00) = 1 (by e)). Thus, in all cases we have 
b(z) = 1, for z e C^, as claimed. 

(Existence.) Define the function %v on (A2(#)\{0}) x (A2(/0\{0}) by 
the rule 

<57) ****)- n^nlyV * *.^A«(A)\{0}, 

where x \ y denotes the 2 x 2 matrix 

(58) x\y = 
\*2 y2 

Then clearly %„{c x, y) = %v(x, cy) = %v(x,y% if e e # x , and so ;£„ defines 
a function on K^ x /LTO (also denoted by Xv) v*a t r i e identification 
(A2(*)\{0})/*x - tfTO given by (xl9 x2) -* x2\xv 

It is immediate that %v satisfies properties a), d) and e). Moreover, we 
see that property c) holds since we have for a e Gl2(K) that 

(59) a(x)\a(y) = cc-(x\y), 

and that |det(a)|„ = 1 when a e Aut(ny). Finally, to prove b), we first 
observe that since both sides of (56) are Gl2(K)—invariant (the right hand 
side by well-known properties of the cross-ratio, and the left hand side 
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by construction and (59)), we may assume that x, y, w, z e K. In that case 
we have 

Ux> z) ' Uy> "0 _ 1* - z\, • \y - w\v _ 

u*> * o . %iy;z) - \x - w\v. iy - z\, -|cr(x' *z' w>'» 
as claimed. 

REMARK. From the above proof we see that in the non-archimedean 
case, Xv is Ju s t t n e ^-metric defined earlier in §3 (cf. (14)); i.e., we have 

(60a) Xv = lv> rfv iS non-archimedean. 

On the other hand, if v is archimedean (and hence K = C and | \v is the 
usual absolute value by our conventions), then %v is just the chordal 
metric on the Riemann sphere CTO. Note that the chordal metric does not 
differ substantially from %v; more precisely, we have 

(60b) 1 ^ 4 ^ - 4 - S 2, for all x j e C r a with x * y. 
%v\xi y) 

COROLLARY. Let ft K(C) be a rational function with degif)^ = 1 (and 
so in particular C ^ P1). Then there exists a unique real-valued function 
XfiV on (Div(C) x Div(C))' satisfying properties (i), (ii), (iv), (vi) of The
orem 4 and the property 

(v') If v(a*D, E) = !/>î;(A a*E), for all a e Aut(#) and all a-disjoint 
divisors D, E e Div(C), where we view PGL2(K) =) Aut(#) as acting on C 
via the rulef(a(P)) = a(f)(P),for P e C(K). Moreover, the function XftV is 
a height pairing on C and hence also satisfies property (viii) of Theorem 4. 

PROOF. Define XftV on C(K) x C(K) \ diagonal by 

(61) XftV(P9 Q)= - log Ufin/iQ)) 

and extend to (Div(C) x Div(C))' by bilinearity. Then clearly lfiV satisfies 
property (i) and also properties (iv), (v') and (vi), since %v satisfies pro
perties c), d) and e) of Proposition 6, respectively. Moreover, XfjV also 
satisfies property (ii), since %v satisfies property b) and we have 

(62a) (Ç^)(Pa-Pb) = cr(a, c, b, d), if a, b e K^ c,deK; and 

(62b) ( / - c) (Pa - Pb) = cria, b, c, oo), if a9b,ce K. 

Finally, ÀftV satisfies property (viii) since X/tV does and we have XftV » lUv 

by (60). 
Uniqueness is immediate from Proposition 6. 

PROOF OF THEOREM 4. (Existence.) Let C and fs K(C)\K be given. 
Then there exists a unique morphism 
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(63a) 0 / : C - P i = PTO}(K[XO, Xiì) 

such that 

def 

(63) f=flX( = Xo^\ 

where X e À^P1) denotes the rational function defined by X = XJXQ. 

Let lx,x
 De t n e unique height pairing on P1 defined by the above corol

lary (associated to X). Then by Lemma 3 of §6 there exists a unique 
height pairing 

( 6 4) h,V = ^f,lx,v 

on C such that the projection formula (34) holds for XfiV, Xx,v
 a n d <f>f-

Then, since XftV is height pairing on C, properties (i), (ii), (iii), (iv) and 
(viii) are immediate. Moreover, since Àa(f)fV = ^ffxXoa,v

 anc* ^x°a,v = 
XXrV, if a G Aut(v), we conclude the validity of (v). Finally, property (vi) 
follows from the projection formula and the fact that <j>J(X\ = (f)0, 
^(X)^ = (/)TO, and property (vii) follows since we have X^*ftV =def 

lw>ix>v = h'>h*v b e c a u s e V.i/.*' *x,v a n d 0/° 0' satisfy the projection 
formula. 

(Uniqueness.) By Lemma 4 of §6 it is enough to show that lf>v is 
uniquely determined in the case C = P1 and deg (/)«,= 1. This, however, 
follows from the uniqueness assertion of the above corollary, since pro
perties (v) and (vii) together imply property (v'). (Use the fact that Àa(X)tV 

= *x,v°(<x x a).) 

9. Explicit construction of XftV: non-archimedean (discrete) case. In this 
section we shall consider the special case that the field K is endowed with 
a discrete absolute value | \v which, for convenience, we assume to be 
normalized; i.e., we assume that we have v(t) = 1 for any uniformizing 
element t. We shall denote the valuation ring and residue field of v by 
0 and k, respectively. 

As before, let C be a curve defined over K and \etfe K(C)\K be a 
nonconstant rational function on C. Our aim here is to show that the 
^-height pairing X/tV = A/|f, on C, which was constructed "axiomatically" 
in the previous sections, may be explicitely calculated in terms of intersec
tion numbers on a suitable model of C/D. In order to explain this more 
precisely, let us first make the following definition. 

DEFINITION. If C is a curve defined over K, then a (regular, resp. normal) 
model of C/D is a pair (C,j) where C is a (regular resp. normal) two-di
mensional scheme which is proper over D and y : C -• C is an immersion 
such that the following diagram commutes: 

file:///etfe
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c L >c 
(65) *j k 

Spec(/0—-Spec(C) 

Here, iz\ C -> Spec(AT) and %\ C -> Spec(D) denote the structure mor-
phisms and / : Spec(AT) -> Spec(O) the map induced by the inclusion 
D ci K. 

On any regular two-dimensional scheme C over C> we have an intersec
tion pairing ( • )c = ( • )c/c which is defined as follows (cf. Lichtenbaum 
[14], Shafarevich [22]): 

1. If 3), © e Div(C) are effective divisors which intersect properly in 
the sense that suppÇS) f) supp(S) is finite, i.e., 3) and G£ have no common 
components, then 

(66a) (3)-(£)c = E ($•<£),. 

where the sum extends over all points x e supplì)) f| supp(S) and 

(66b) (3)-®)x = dimÄOx/(/,g), 

where Ox denotes the local ring of the (closed) point xeC a n d / e Dx 

and g e 0* denote the local equations at x of the (Cartier) divisors 3) and 
K\ respectively. 

2. If $v is a component of the special fibre 7r-1(s) = ^i^i + • • • + 
er%r = %•> t n e n t n e self-intersection number (3v'3v)c ^s defined uniquely 
by the rule 

(67) (5,-5) = 0. 

Extending the above definition by bilinearity, we therefore obtain a 
symmetric, bilinear map 

( . ) c / c : (Div(C) x Div(C))" - Z, 

where the " denotes the subset of Div(C) x Div(C) consisting of all pairs 
of divisors 3), S e Div(C) which intersect suitably, i.e., whose common 
components lie entirely in the special fibre 7t~l{s). 

REMARK. From the above discussion it is by no means evident that the 
intersection pairing ( • )c assumes only integral values, since (67) merely 
gives (5v3v)G Q One way to see that in fact (3y • 3v)c e Z is to make use 
of the rule (cf. Shafarevich [22]): 

(68) ((/)c-3v) = 0, for a l l / e F = K(C) = K(C). 

(Here, (f)c e Div(C) denotes the principal divisor on C defined b y / e F.) 



WEIL HEIGHTS 439 

Another, possibly more direct way, to see this is to use Lichtenbaum's 
definition of intersection numbers (cf. Lichtenbaum [14]). 

In order to be able to compare the intersection pairing with the v-height 
pairing X/tV on (Div(C) x Div(C))', we need a homomorphism h: Div(C) 
-• Div(C) which transports divisors on C to divisors on C. Now if (C9j) 
is a model of C/D, then such a homomorphism is induced by / by the 
rule 

(69) MP)=m, 

where P e Xl(C) denotes a prime divisor on C and the denotes the 
closure of the subschemey(^) of C in C. 

It is tempting to hope that the formula 

(70) lLv{D,E) = (j*DJ*E)c 

holds for a suitable choice of a model (C, /) (depending o n / ) . This hope 
seems to be supported by the following well-known fact. 

LEMMA. Let (C,j) be model of C/D. Then : 
(i) For any fe F = K(C) and any prime divisor P e Xl(C) on C we have 

(71) i(f)c • J*P)c = v(f(P)). 

(ii) For any D e Div(C), the function h$çfJ- defined by 

(72) hh%j(E) = (J.D • hE)c 

on C{n) = supp<M)(Z>) is a height function associated to D, i.e., h^c,j e 

JT D,v 

As we shall see below, however, the above formula (70) cannot hold 
except in special cases (viz., when C has good reduction at v) since XftV 

will not be integral-valued in general. Nevertheless, the above formula 
turns out to be "almost correct" since, by slightly modifying the homo
morphism y* it is possible to arrive at a correct formula. Our aim, there
fore, is two-fold ; firstly, to identify the correct model of C/£) for our pur
poses and secondly, to explain how to redefine j * such that formula (70) 
holds. 

Let us first consider the special case C = P1. In order to single out 
among the many D-isomorphism classes of models of P^D a preferred 
choice, let us fix a rational function xeF = A^P1) with d e g ^ ) ^ = 1. 
Then there exists a unique morphism 

def def 

(73a) ./ = j x : P1* = Proj(#pT0, X{\) - P^ = Proj(D[X0, X,]) 

such that diagram (65) commutes and such that we have 
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(73b) 
def 

•j*x = x°j, 

where X e K(T*1) denotes the rational function X = X^XQ on P£. We call 
the pair (P^jx) the *-model of P£/D. 

PROPOSITION 7. Iffe ^(P1) is a rational function on P1 with deg (/")«,= 
1, fltfd (C,y) denotes its f-model, then formula (70) /zo/öfc. 

PROOF. First observe that both sides coincide on (P^K) x P^AT)^ 
diagonal, since both satisfy (the additive versions of) properties a) - e) 
of Proposition 6 when we identify PK^O <-* ^oo via/. Thus, by bi-additivity, 
they coincide on (Z'(PX) x Z'ÇP1))'. Finally, since the notion of an /-
model of P1 is compatible with base change, both sides of (70) "commute 
with base-change", and hence we see that both sides agree on(Div(C) x 
Div(C))', as claimed. 

We now pass to the case of a general curve C defined over K and a non-
constant rational function fe F\K. As in the proof of Theorem 4, we let 
<f)f\ C -> P^ = Proj (K[XQ, XI]) denote the unique morphism such that 
/ = <f>fX. Then there exists a unique normal model (Cf, jf) of C/D and 
finite morphism 

(74a) 

such that 

(74b) 

(j)f\ Cf n = Proj(D[^o, * J ) 

(f>f °jf = Jx ° 0/-

(In fact, Cf is just the normalization of PQ in F.) We shall call (Cf, jf) the 
/-model of C/D. (Note that this generalizes the previous use of the term 
"/-model".) 

(75) 

C 

h 1 

Spec(A-) 



WEIL HEIGHTS 441 

Since Cf need not be a regular scheme, we let <fi : C -> Cf be a desingu-
larization of C/ which always exists by Abhyankar [1], at least if the 
residue field k of D is perfect. (This will be tacitly assumed henceforth.) 
We thus have the following situation: 

We shall now show how to express X/tV in terms of intersection num
bers on the model (C,j). In order to do this, we shall construct a homo-
morphism h = hçj^\ Div(C) -» Div(C) ® Q such that the formula 

(76) A,,,(A E) = (h(D) . h(E))c 

holds. Here, the symbol ( • )c denotes the unique bilinear extension of the 
intersection pairing to ((Div(C) ® Q) x (Div(C) ® Q))". 

In order to define /z, we shall make use of the direct image map çS*: 
Div(C) -> Div(P£) induced by $ = fa o $' (cf. Shafarevich [22], p. 97) 
which, for a prime divisor $ on C is defined by 

ni) è m = <fw^; A:(p^p' if ^ s ) = p is a prime divisor on pc 
i ; 0*1-W | 0 otherwise 

where /e(̂ >) (resp. /c(p)) denotes the residue field of $ (resp. of p). Note that 
since 0 is not necessarily finite, it is possible that we actually have faity) = 
0 for some prime divisors ty on C. 

For what follows, it will be convenient to decompose each divisor 2) e 
Div(C)into its fibre part and its non-fibre part according to the decomposi
tion 

(78) Div(C) = DiV/(C) 0 Divw/C), 

where Div/(C)(resp. Divw/(C)) denotes the subgroup of Div(C) generated 
by the prime divisors $ on C which are (resp., are not) contained in the 
special fibre n~l{s) of C. The projection maps of Div(C) onto Div/(C) 
and Divw/(C) are denoted by prf and prnf, respectively. 

PROPOSITION 8. There exists a unique homomorphism h — hc,j^: Div(C) 
-> Div(C) ® Q satisfying: 

(i)prnfoh = prnfoj\; 
(ii)faoh = (y>r)* ° (^/)*; 
(iii) For any D e Div(C) and any 21 e Div/(C) we have 

(79) (h(D) - «)e = \(fah(D) - ^ « ) p i 

where n = deg fa. 

REMARK. Not that formula (79) represents a partial "sharpening" of the 
usual projection formula for (f> (cf, Shafarevich [22, p. 97]) since we have 
^ * S r = /i9t, for SI e Div(Pè). 
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PROOF. Let D e Div(C) be of degree d. Then, by property (i), we must 
have 

(80) h{D)=j+D + %D, 

for some divisor 2(D e Div/(C) ® Q which by property (ii) satisfies the 
condition 

(81) $*VLD = 0. 

Finally, let us analyse property (iii). For this let (as before) g^, . . ., 
gy denote the components of the special fibre 

(82) 3r = eifo + ••• + er%r = 7t~Ks)\ 

note that if f = p~l(s) denotes the special fibre of p on P^, then f is re
duced and irreducible and we have 

(83) g = 0*f. 

If we now define the integers f{ ^ 0, 1 ^ / g r, by the rule 

(84) &.&=. /& 

then (in view of property (ii)) property (iii) is equivalent to the conditions 

(85) (h(D)-&)ò = l£-, 1 £ / g r , 

since (Ux)*(fc)*D'ihl = d- T n u s> i f w e w r i t e AD = *\%i + • • • + x%„ 
with x{ e Q, and let d{ = (/*/> • fo)c and al7 = (&• • fjy)c, then (81) and 
(85) are equivalent to the following system of r + 1 linear equations in r 
unknowns. 

011*1 + * ' ' + ^rl*r = \ dX 

(86) 

alrxx + • • • + arrxr = A dr 

We therefore see that the proof of the proposition will be complete once 
we have shown that the system (86) has a unique solution. To see this, 
we first observe that, since the special fibre %~l(s) is connected, the in
tersection pairing ( • )ç is negative definite and non-degenerate on the 
quotient space W = def(Div,(C) ® Q)/Q3; (cf. Shafarevich [22], p. 92 or 
Gross [4]) and that, hence (by elementary linear algebra) the system 
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(87) Ax = y 

has a solution x if and only if we have 

(88) £ eiyi = 0. 

In that case the general solution of (87) has the form 

(89) x = x0 + se, 

where x0 is a particular solution of (87), s e Q, and <* = (eh . . . er)
f. Thus, 

since we have 

(90) 2 e{di = d, 

(91) Zeifi = n, 

we see that condition (88) holds for y{ = (fid)jn — dï and that, hence, 
(87) has a solution x'. Moreover, if we let s = CEfx^/n, then we see by 
(91) that x = x' + ^ is the unique solution of (86). 

REMARK. From the above proof we see that we have in fact h(D) e 
Divw/(C) + (Div/(C) ® Q) and that if we let a = a0- ^ 0 denote any 
(/, ;)-th cofactor of the matrix A = (atj) = (($,• • 3y)c)> then we have 

(92) noe • /*(/)) G Div(C). 

COROLLARY 1. If % = ^ w reduced and irreducible, then h = j * . In 
particular, if C has good reduction with respect to f (i.e., if p o $f is smooth), 
then hcf,jftff = 0'*)/. 

REMARK. It is possible to have g = g-i without C having good reduction 
at v. For example, this happens in the case of the "Fermât quotients" 

C: yP = xs(\ - x), 0 < s < p - 1, 

when K = Q, v = i^and $ * /3S (mod/?), where /3S = JVC* + l) ( s + 1 ) . 

PROOF (of Corollary 1). Clearly j * satisfies properties (i) and (ii) of 
Proposition 8. Moreover,^ also satisfies (iii), since fx = «(by hypothesis), 
and we have (j*D*$) = deg D. 

COROLLARY 2. For any g e F = K(C) we have 

(93) h((g)) = (g)c - s%, 

where s — sg G Q is defined by 

(94) sg = \vfUF/K{f)(g)). 

Here, Vf denotes the valuation on KQP1) defined by the prime divisor fon P^. 
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PROOF. Put 3) = (g)c - s$. By the uniqueness assertion of Proposition 
8, it is enough to verify the following three properties: 

(S)prnß> =j*(g). 
(ii) (ß*® = Ux)*(fa)*(g). 

(iii) ( $ • 80c = 0, i f a G Div/C). 
Of these, property (i) is trivial, and (iii) follows from (67) and (68). For 
(ii), we observe that $*<£ = (J>'F/K(f)(g))c - <£*C*S) = [Ox)*U >/*(/)(£)) 
+ /Wf] - AWf = (jx)*(<f>f)*(g)' 

COROLLARY 3. We have 

(95) h o $ = $* o (jx)^ 

PROOF. Let Z) e Div(P^). Then: 
0 prnf<i>*Ux)*D = prnM<l>*fD) = j*<j>JD. 

«) (/>*((f>V*D) = n(Jx)*D = Ux)*(<ßfifo
ni) By the projection formula (cf. Shafarevich [22], p. 97]) we have 

(0*O*)*/>-3v)e = ( O x ) * £ - t o = deg D .fi = / r d e g {<j>JD)/n. 
From the uniqueness assertion of Proposition 8, we therefore obtain 
h{<f)*fD) = $*(jx)*&> as claimed. 

We are now ready to state and prove the main result of this section. 

THEOREM 5. Let C be a curve defined over K and let fe F\K. If(C, j) 
is a desingularization of the f-model (C/, jf) of C over D and h = hcj,f 
Div(C) -> Div(C) ® Q is as defined in proposition 8, then we have 

(96) XfiV(D,E) = (h(D).h(E))c, 

for any two disjoint divisors D, E e Div(C). 

PROOF. We first observe that if Z>, E e Div(C) are disjoint, then h(D) 
and h(E) intersect suitably (by the construction of h) and, hence, X(D, 
E) = M{h(D) - h(E))c is defined. 

Next, we check that X is a ^-height pairing on C. For this we note that 
properties (i) and (iv) of the defintion of a height pairing (cf. §6) are 
trivial, since A is a homomorphism and ( • ) c is symmetric. Property (ii) 
is a special case of the following more general formula 

(97) A«*), D) = v ( g ( Z > ) ) - v d e g A 

where sg is as defined by (94). To prove (97), we observe that by Lemma 
i) above, formulae (67) and (68) and Corollary 2 we have 

A(fe), D) = ([(g)c - s£]-[j*D + AD])C 

= ((g)C'J**>)c-sg-(d-J*D)c 
= v(g(D)) -sg-dcgD. 
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Finally, to prove property (iii), we observe that in view of Lemma ii), it 
is enough to verify 

(98) À * X, 

where X is defined by X(D, E) = (j*D-j*E)c. To prove (98), write h{D) = 
xii$i + • • • + XriSr, where the xt- satisfy (86) with dt- = (j*D • gv) and 
d= deg D. Similarly, write A(£)=j>i3ri + • • • + yr%r and e{ = (j*E • &•). 
Then 

(99) A(A E) - X(D, E) = £j (*,*,. + M ) + 2] a,-,**» 
i - i i, / 

Now if deg DQ ^ m, and deg D^ ^ m, then we have — m^dj^m, 
and hence only finitely many r-tuples (dl9 • • •, t/r) and (xl5 • • •, xr) can 
occur. Similarly, if also deg E0 ^ m and deg JETO g w, then we see that 
the right hand side of (99) assumes only finitely many values; in particular, 
we obtain X « X, as claimed. 

This therefore proves that À is a ^-height pairing. By definition of XftV 

(cf. (64) and (60a)), the proof of Theorem 5 will be complete once we 
have shown that the projection formula À(<f>f*D, E) ~ ÀV(D> ($/)*£) holds. 
To see this, we use Corollary 3, the projection formula for ( • )c (cf. 
Shafarevich [22, p. 97]), property (ii) of h, and Proposition 7 to obtain 

k(tfD,E) = (h(tfD)-h(E))c 

= ($*(Jx)**>-KE))c 

= (Ux)*D-$*KE)hà 

= (Ux)*D'Ux)*(fa)*E)pl 

= A,(A (<ßf)*E). 

REMARKS. 1) It is possible to simplify equation (99) slightly so that we 
obtain 

(99') hÂ^E)^{ùD^UE)c^(ùD^E)c^{^hE)c^ -(«/>•»*)* 

for any two disjoint divisors D, Ee Div(C). This is immediate from the 
observation that, by using property (iii) of Proposition 8 and (81), we 
have (h(D) . %E)c = 0, or U*D-%E)C = ~WD-%E)C-

2) If D = P and E = Q are effective divisors of degree 1 (i.e., P, Q e 
C(K), then (99') may be simplified still further; we have 

(99") XUP. Q) = (j*D-ûE)c + 4*°, 

wherex^1 = (x[J'\ • • -, x{
r
j)y denotes the solution of (86) with d{ = fjn 

- St-j (dtj denoting the Kronecker delta), and k and k' are defined by 
the conditions (j+P • &•) = 50-, (j*Q • &•) = Sik>, 1 ^ / ^ r , respectively. 



446 E. KANI 

3) From (99") we obtain an explicit version of Corollary 2 of Pro
position 5 in the case X = X/>v; viz., we see that (50) holds with c2 = 
-mmitjx^. Note also that, since x{

k
k) = (j*P-WP) = -(SlP-2lp) ^ 0, 

we have A/>y(P, Q) è 0 when(j*P'dt) = U*Q-îSi), for all /. (In fact, we 
even have in that case that X/tV(P, Q) > 0 unless C has good reduction 
with respect to / !) 

4) We also see from (99") that for a suitable choice of an intersection 
maxtrix A = (a{j) we have ÀfiV(P> Q) $ %> a s w a s claimed at the beginning 
of this section. 

10. Explicit construction of À/jV: archimedean case. In this section we 
shall consider the case that K is endowed with an archimedean absolute 
value | |y, so that without loss of generality we may assume that K = C 
and that | \v is the usual absolute value on C. If C is a curve defined over 
K, then we may view C as a compact Riemann surface, and so by the 
"potential theory" of compact Riemann surfaces (cf., e.g., Arakelov 
[2, §3}), one can associate to each positive (1, l)-form dp, on Ca Green's 
function G — GdfX defined on (C(K) x C(AT))\diagonal. We shall show 
here that the canonical ^-height pairing X/rV on C which was constructed 
"axiomatically" in §6 is (up to a constant term) the bilinear extension 
lG of the Green's function G = Gd(l to (Div(C) x Div(C))', for a suitable 
choice of a (1, l)-form dp (depending on / ) . 

Let us begin by recalling Arakelov's definition of a Green's function on 
a compact Riemann surface. 

PROPOSITION 9. (Arakelov [2]) Let dft be a (1, \)-form on C which is 
positive on C except for the presence of a finite number of zeros and which 
satisfies $cdjy = 1. Then there exists a unique function G = GdpL on (C(K) 
x C(K))\diagonal such that we have : 

1) The function & = exp G is smooth on (C(K) x C(K))\diagonal; 
2) <g has a first order zero on the diagonal', 
3) For each point P e C(K), we have 

(100) ~2KAG{P' *) = ^ ' 

where A denotes the Laplacian on C (i.e., if fis a function on C and z = x 
+ iy is a local parameter, then Jf= ((d2f)/(d2x) + (d2f)/(d2y))dxdy). 

4) G is symmetric in P and Q: G(Q, P) = G(P,Q),for all P # Q. 
5) For each P e C(K) we have Jc G(P, z)d/u(z) = 0. 

DEFINITION. The function G = Gdfi constructed in Proposition 9 above 
is called the Green's function on C associated to the (1, l)-form d/u. 

Warning. In Arakelov [2], a different sign convention was taken in (100); 
as a result, the Green's function which Arakelov associates to dp. is — Gdfi. 
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COROLLARY. Let D e Div(C) be a divisor on C. Then there exists a unique 
function hD = hDtdfl on C(#)\supp(Z>) such that: 

(i) exp hD is smooth on C(AT)\supp(Z>). 
(ii) In a neighbourhood of any point P e C(K) we have 

exp(-hD) = |z |^>.W(z), 

where z is a local parameter at P and u(z) a suitable smooth function with 
u(P) * 0. 

(iii) - 1/2TT AhD = (deg D)dp. 
(iv) Jc hDdp. = 0. 

Let us first consider the case C = P1. In that case C = Proj (K[X0, 
Xx]) is the Riemann sphere Cœ, on which we have a "canonical" positive 
(1, l)~form djux (namely, the Fubini-Study metric on P1) which is given 
in affine cordinates z = x + iy by 

(\c\w A i dxdy 
001) dfix = s ( 1 + | z | 2 ) 2 -

It is then easily checked that we have $Coo d[xx = 1 and that the function 
lv = — log j ^ , where %v denotes the chordal metric on Cœ (cf. Proposition 
6 and the remark following its proof), satisfies properties l)-4) of Pro
position 9. On the other hand, in place of property 5) we find, for P e C^, 
that 

(102) jcJv(P,z)^(z) = i-, 

and thus we obtain 

(103) Xv = GdMX + \ . 

If C is an arbitrary curve defined over K = C and if fe F\K, then we 
can pull the positive (1, l)-form djux on P1 = Pro}(K[X0, X$ back to the 
(1, l)-form 

(104) dpLf^^jfldtix 

on C; here, as before, <f>f: C -» P1 denotes the morphism attached to f 
and n = deg (j>f. Note that dfif is positive on C except for finitely many 
zeros located at the ramification points of 0/ and that we have | c dpf = 1. 

THEOREM 6. If Gf = Grf/I/ denotes the Green's function attached to dptj 
defined by (104), then we have for any two disjoint divisors D, 2s e Div(C) 
the formula 



448 E. KAM 

(105) Xft0(D, E) = XGf(D, E)+±deg Z).deg E. 

PROOF. By Arakelov [2] we know that XGf is a height pairing on C, so 
it is enough to verify that \G satisfies the projection formula, i.e., that 
we have 

(106) V f t % = hD,dMX ° fa for D G Div(Pi), 

in the notation of the above corollary. But this is immediate since hDtdfiX 

o (f>f satisfies the same properties (i)-(iv) of the corollary as does 

h<f>f*D,dfiX-
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