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ON THE NORMAL NUMBER OF PRIME FACTORS OF cp(n) 
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Dedicated to the memory of E. G. Straus and R. A. Smith 

1. Introduction. Denote by Q{n) the total number of prime factors of n, 
counting multiplicity, and by co(n) the number of distinct prime factors of 
n. One of the first results of probabilistic number theory is the theorem of 
Hardy and Ramanujan that the normal value of co{n) is loglog n. What 
this statement means is that for each e > 0, the set oîn for which 

(1.1) \a)(n) - loglog n\ < e loglog n 

has asymptotic density 1. The normal value of Q(n) is also loglog n. 
A paricularly simple proof of these results was later given by Turân. 

He showed that 

(1.2) E (o)(n) - loglog *)2 = x loglog x + 0(x) 
n^x 

from which (1.1) is an immediate corollary. The method of proof of 
the asymptotic formula (1.2) was later generalized independently by 
Turân and Kubilius to give an upper bound for the left hand side where 
o)(n) is replaced by an arbitrary additive function. The significance of the 
"loglog x" in (1.2) is that it is about Ttp^xco(p)p~1, where p runs over 
primes. Similarly the expected value of an arbitrary additive function 
g(n) should be about Tip<x g(p)p~1-

The finer distribution of Q(n) and œ(n) was studied by many people, 
culminating in the celebrated Erdös-Kac theorem: for each x ^ 3, w, let 

G(x, u) = — •#{« g x: Q(n) ^ loglog x + u (loglog x)1/2}. 

Then 

(1.3) lim G(JC, u) = G(u) = (2?r)-1/2 f" e~t2/2 dt, 
X-»•co J —oo 

the Gaussian normal distribution. The corresponding statement with 
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co(n) is also true. Later Kubilius and Shapiro (independently) generalized 
the Erdös-Kac theorem to more general additive functions. In particular, 
they gave a simple criterion for the Gaussian normal distribution to be 
achieved. 

The problem that we consider here is the corresponding problem for the 
additive function Q(<p(ri)), where cp is Euler's function. Using the machinery 
of the Kubilius-Shapiro work, the issue devolves upon the estimation of 
the sums 

2 Q{p - 1) and £ Q(p - l)2. 
p^x p^x 

Sums of this type were estimated already in 1951 by Haselgrove [4], but 
the proofs were complicated and not given. Our proofs are a simple ap­
plication of the Bombieri-Vinogradov theorem and Brun's method. Of 
course, in 1951, the Bombieri-Vinogradov theorem did not yet exist. 

What we prove is that 

lim i r . #{/i g x: Q(<p(n)) ^ i-(loglogx)2 + - ^ ( l o g l o g x)™} = G(u). 

Thus the normal number of prime factors of (p(n) is 1/2 (loglog ri)2 and the 
"standard deviation" is 3~1/2(loglog n)3/2. 

The situation with the function œ((p(n)) is the same, but the treatment is 
less routine, notably because œ((p(n)) is not additive. As one might expect, 
though, the difference Q((p(n)) — o)((p{ri)) is usually not large (compared 
with Q(cp(n)) ), so we can obtain the same result for a)(<p(n)). 

2. The number of prime factors of a shifted prime. For any y we define the 
completely additive function Qy(n), the total number of prime factors 
p ^ y of ri, counting multiplicity. Thus, for example, 03(100) = 2. The 
letters p, q, r always denote primes. Let P(ri) denote the largest prime 
factor of n. 

LEMMA 2.1. If 3 ^ y ^ x, then 

ZQy(p-l)= xi^ogy + Q ( * 
pÉx y log* \ l ogx 

where the implied constant is uniform. 

PROOF. We have (where %{x, k, I) = J] 1) 
p^x 

p=l(k) 

2 Qy(P " 0 = 2 I ! 1 = 2 7T(X, q<9 1) 
q<y q^y 

ar 
p^x p<x qa\p-i qa 

= 2 7c(x, q, 1) + 2 TT(X, qa, 1) = Sx + S2, say. 
q^y qa, a^2 

q^y 

file:///logx
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For Si we consider two ranges for the prime q: q g min{>>, x1/3} and 
min{^, x1/3} < q g y. Of course, depending on the size of y, the latter 
range may be vacuous. We estimate the sum in the first range by the 
Bombieri-Vinogradov theorem by 

2 ic(x9 q,l)= I ] li(x)l<p(q) + o f - i - V " 

= x loglog y + 0 

log x \ log x / ' 

It thus remains to show that the second range for q in Sx and all of S2 

contribute only 0(x/log x) to the sum. 
The second range in Sx can be estimated very simply (thanks are due to 

K. Murty for the suggestion) 

2 TT(X, <?, l) ^ 2 x(x, q9 l) 
min{y,*V3}<^y q>x1^ 

= L £ 1 ^ 2TT(X) = Of y ^ -

;fe* c " i \ log x 

We also break 5 2 into two ranges: #ö <; x1/3and x1/3 < qa ^ x. The 
first range is estimated by the Brun-Titchmarsh theorem to be 

E 7c(x,q°,l)«^—i; 1 
9^1/3,^2 ' ' logx ^ <p(qa) logx ' 

q<y 

The second part of S2 is bounded using the trivial estimate 

We thus have proved the lemma. 

LEMMA 2.2. If3^y^x, then 

£ fly(/? _ 1)2 = x (loglog j;)2 ö / x loglog y \ 
pÉx y log x V log x / 

where the implied constant is uniform. 

PROOF. Let u range over the integers with a)(u) = 2 and P(u) ^ y. Then 

£ fl,(/> - 1)2 = H S Ä2 + 2 S S 1 

= 5 3 4- Sh say. 

We have 
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s3 = L Qy(p - i) + E L («2 - a) 
p^x p^x qa\\p-\ 

q^y, cè2 

è E Oyip - 1) + E (a2- a)n(x,q", 1) + £ («2 - «M*, <7a> 0 
4:%, a^2 9^y, ûè2 

= Q( X loglog y \ 
\ log x / ' 

where we used Lemma 2.1 for the first sum, the Brun-Titchmarsh theorem 
for the middle sum, and a trival estimate for the last sum. 

For S4, we reverse the order of summation obtaining 

5 4 = 2 2 2 f*(d) 7r(x, & , l ) + 2 2 2 !^{d)n{x, du, l) 
H^xi/e </|tt «>*l/6 d\u 

= ^4,i + S 2, say. 

For S4>1, the main term, we use the Bombieri-Vinogradov theorem to 
estimate 

«ti/6 rfîi p(rfw) V log2* 

= 2//(x)2 ±+ 0(V4" 

= x (loglog y)2
 + 0/x loglog >-

log x \ log x 

Finally, for S4f2, we have the larger prime power factor of du exceeding 
x1/12, so that 

^4,2 ^ 2 2 7t(x, q«r\ 1) 
çc<rfr, çar6>^l/6 

^ 2 2 2 *(*. qar\ 1) + 2 2 2 n(x, q°r, 1) 
ça rb>xl/12 qa r>xl/12 

tf^;y 6^2 q^y 

^ 2 ^ 2 2 1 + 2 2 2 2 i 
qa rb>xl/12 a b p<x qa\p-l r\p-\ 

q^y b^2 H Y q^y r>*V12 

«X23/24 loglog y + 2 2 1 
p<x q°\p-l 

q^y 
= X23/24 loglog y+ £ Qy(p - 1) 

p<x 

< x loglog y 
logx 

by Lemma 2.1. 

LEMMA 2.3. If 3 ^ y ^ x, //ze« 

2 0y(/> - I)//7 = |loglog x loglog j> - -~-(loglog .y)2 + Ö(loglog x), 
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where the implied constant is uniform. 

PROOF. This result follows immediately from Lemma 2.1 and partial 
summation. We have 

s qiP^v, = jL s 0 _l) + c*x LQ(p _ D dt 
p^x P x p<x J 2 l pgt 

\ l o g X / j 2 * l o g f J y M o g f \ j 2 H o g ^ 

= loglog x loglog j ; - -y (loglog y)2 + 0(loglog x). 

LEMMA 2.4. //"3 ^ j> g x, fAe« 

2 Ûy(/7 - l)2//? = loglog x(loglog y)2 - -^(loglog y)3 

p<,x J 

+ 0(loglog x loglog JO, 

wAere /Ae implied constant is uniform. 

PROOF. This result is derived from Lemma 2.2 and partial summation. 

LEMMA 2.5. If '2 <; k g x, fAew 

2 1 _ loglog* , nflogk \ 

where the implied constant is uniform. 

This result can be found in Norton [5] and Pomerance [6]. 

3. The normal number of prime factors of <p(n). An additive function 
f(n) is called strongly additive if f(pa) = /(/?) for all a ^ 1. If/(«)is real-
valued and strongly additive, let 

A(x) = H /(/;)//>, 5(x) = ( S /(/>)2//>)1/2. 

Suppose for each e > 0, we have 

(3.1) lim 1 2 ^ = 0 . 
\f(p)\>eB(x) 

The theorem of Kubilius-Shapiro (see Elliott [1], Theorem 12.2) states 
that if (3.1) holds, then for each real number w, 

(3.2) lim J - • # {n ^ x: f(n) - A(x) ^ uB(x)} = G{u\ 
X—>oo X 

where G(u) is defined in (1.3). That is, if (3.1) holds, then the normal value 
for n ^ x off(n) is A(x) and the standard deviation is B(x). 

We would like to apply the Kubilius-Shapiro theorem to the additive 
function Q(<p(n)), but it is not strongly additive. Instead, we define 
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(3.3) f(n) = LO(p- 1). 
p\n 

Then/(«) is strongly additive and does not differ very much from Q((p(n)). 

THEOREM 3.1. For every real number u we have 

lim 1. • $\n ^ x: Q(<p(n)) - 4-(loglog x)2 

(3.4) 
g - ^ = ( l o g l o g x ) ^ = G(«), 

where G(u) = {2nYV2 fu«, e~m dt. 

PROOF. We apply the Kubilius-Shapiro theorem to the strongly addi­
tive function/(«) defined in (3.3). We have 

A(x) = E 0(p - \)lp = i-(loglog x)2 + 0(loglog x) 

by Lemma 2.3 (with y = x). Also 

B(x¥ = ZtKP - WIP = 4-Ooglog x)* + 0((loglog xn 

by Lemma 2.4 (with y = x). Thus to apply the Kubilius-Shapiro theorem 
to f(n) it remains to verify (3.1). Let e > 0 be fixed and let T = £ /v 'T • 
(loglog x)3/2. From Erdös and Sarközy [3], it follows that for any y ^ 2, 

£ 1 <2-TT*ylogy, 

so that 

2 Q(p-l)2/pè S Û(«)2/« = r i S £(«)2+fV2 2 Q(nydt 
p^x n^x n^x J 2 n^t 

0(p-l)^T Q(n)^T Q{n)^T Q(n)^T 

«x-i(iogx)2 2 i + fV2(iog02 L i A 

« 2~T r4(iog JC)3 + 2-71 r* f Vi(iog 03 A 
« 2-T 74(log x)4 = <,(]). 

Thus (3.1) is verified and, by the Kubilius-Shapiro theorem, we have 
(3.4) with f(n) in place of Q(<p(n)). But Q((p(n)) = f(n) 4- Q(n) - co(n) 
and Q{n) — co{n) is normally o(loglog n) by the Hardy-Ramanujan the­
orem. (In fact, for each e > 0 there is a ke such that the asymptotic density 
of the n with Q(n) — o)(n) ^ k£ is at most e. Thus, if /*(«) tends to infinity 
arbitrarily slowly, then the set of n with Q{n) — œ(n) ^ h(n) has asympto­
tic density 1.) We therefore may replace f(n) with 0((p(n)), obtaining (3.4). 
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THEOREM 3.2. For every real number u we have 

lim -1 - # {x ^ x: œ(<p(n)) - \ (loglog x)2 ^ " (loglog x)3/2} = G(i#). 
#—•00 • * -^ - y J 

PROOF. This result will follow immediately from Theorem 3.1 if we 
can show that, but for o(x) choices of n ^ x, 

Q(<p(n)) - o)(<p(n)) = *((loglog x)3/2). 

In fact, we shall show the stronger result, that but for o(x) choices of 
n ^ x 

(3.5) Q{(p(n)) - co(<p(n)) = 0(loglog x loglogloglog x). 

Let ù)y(n) denote the number of distinct prime factors of n which do not 
exceed y. From now on we always take 

(3.6) y = (loglog x)2. 

Our strategy is to show that but for o(x) choices of n ^ x 

(3.7) Q(<p(n)) - Qy(<p{n)) = œ(<p(n)) - a>y(<p{n)). 

We then will be able to restrict ourselves to bounding Qy{<p{n)) — o)y{<p(n)). 
We apply the Turân-Kubilius inequality (Elliott [1], Lemma 4.1) to the 

additive function Qy((p(n)). We have 

df ^ Oy(<p(pk)) / , _ 1 

p^x p \p*<x Pk 

k>l 

= loglog x loglog y - y (loglog y)2 + O(loglogx), 

by Lemma 2.3 and 

Z)(x)2= y; ßy(y>(/>*))2 _ 5 Q,(/> - I)2 , 0 ( r 0(<p(pk))2 

y p*£x Pk pÉx P \p^x Pk 

= loglog x (loglog y)2 - y (loglog y)3 + 0(loglog x loglog y) 

by Lemma 2.4. Therefore, by the Turân-Kubilius inequality, 

(3.8) S (ßy(p(")) - Ey(x))2 g 32* Z>y(jc)2. 
n<x 

By (3.6), we have 

Ey(x) = loglog x loglogloglog x + 0(loglog x), 
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Dy(x)2 = loglog x(loglogloglog x)2 + 0(loglog x loglogloglog x). 

Therefore, by (3.8), the number of n ^ x with Qy((p(n)) > 2 loglog x-
loglogloglog x is <9(x/loglog x) = o(x). We thus have but for o(x) choices 
of n ^ x 

(3.9) 0 ^ Qy(<p(n)) - ù)y((p(n)) <; 2 loglog x loglogloglog x. 

We now show that but for o{x) choices of n g x we have (3.7). Suppose 
p2\(p(n) wherep > y and n :g x. There are three possibilities: 

(i) p3\n, 
(ii) there is some q\n with q = 1 mod /?2, 
(iii) there are distinct ql9 q2 with qiq2\n and gx = g2 = 1 mod/?. 
The number of n ^ x in the first case is at most 

S *//?3 = ö(x/j2) = o(x). 
P>y 

The number of n ^ x in the second case is, by Lemma 2.5, at most 

2 S * S _ * loglog* + ö ( 2 i J o | £ 

The number of« ^ x in the third case is at most, by Lemma 2.5, 

L S ^ -L x 2 L — 
/»y qi=q?=\ (p) #1#2 ~~ 2 p>y \q=l (/» (Z . 

Q\<Q2<x q^x 

2 £ y \ (p(p) \ P 

= 0/x(loglogx)2\ + Q(x loglog x 
\ j>log>> / \ >' 

+ o(* l og log>;) = *(*). 

This estimate completes the proof that (3.7) holds for all but o(x) choices 
of n ^ x. Combined with (3.9), we have (3.5) and thus the theorem. 

4. Further comments. Let X(n) denote the least common multiple of the 
X(pa) for^c|« where X(pa) = <p(pa) for p > 2, pa = 2,4 and X{2a) = 2a~2 for 
a ^ 3. Then l{n), also called the Garmichael function, is the universal 
exponent for group of residues mod n coprirne to n. That is, if gcd (a, n) = 
1, then aUn) = 1 mod n, and no smaller positive exponent works for all 
such a. We evidently have 

n p i m , m i (piny 
p\<p(n) 
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Therefore, 

œ(<p(n)) = œ(X(n)) S 0(À(n)) ^ Q(<p(n)) 

for all n. Thus as a corollary to the theorems of §3, we have 

THEOREM 4.1. For each real number u, 

lim -L . # {/i ^ x: û(A(/i)) - -f (loglogx)2 g " (loglog x)3/2} = G{u) 

öwd //ze same holds for o)(X(n)) in place ofQ(X(n)). 

In Erdös [2], the following two theorems were stated without proof: 

THEOREM A. For each e > 0 and k we have for all x ^ x0(e, k), 

• (logiog * ) * £ - ! , 2 A(») ^ log x vv/felvy6 " ' = x ^ / ^ - (log x)1-̂  

THEOREM B. The normal value of log(n/X(n)) is loglog n logloglog n. 
Theorem B can be restated the following way. For each e > 0, the n for 
which 

n i , ^ n 
( l ü g n)a+£)logloglog« < X W < ( J o g w)d-e)logloglog » 

have asymptotic density 1. 
The proofs of these theorems are not easy. In a forthcoming paper we 

shall present the details. 
If gcd(tf, n) = 1, let la(n) denote the exponent to which a belongs 

mod n. Then la(n)\X(n). Almost certainly we have 

lim A • # in g x: gcd(a, n) = 1, £(/fl(«)) - —-(loglog x)2 

^ - ^ ( l o g l o g x ) 3 / 2 } = G ( W ) 

for any value of a # 0, ± 1. The same should be true for o)(sa(n)), but we 
have been unable to prove either statement. 
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