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CHAPTER 12 OF RAMANUJAN'S SECOND NOTEBOOK: 
CONTINUED FRACTIONS 

BRUCE C. BERNDT*, ROBERT L. LAMPHERE, AND B. M. WILSONf 

We take up something—we know it is finite; but as soon as we 
begin to analyze it, it leads us beyond our reason, and we never 
find an end to all its qualities, its possibilities, its powers, its 
relations. It has become infinite. 

Vivekananda 

Dedicated to the memory of R.A. Smith and E.G. Straus 

1. Introduction. In assessing the content of Ramanujan's first letter, 
dated January 16, 1913, to him, Hardy [34, p. 9] remarked ". . . but (1.10) -
(1.12) defeated me completely; I had never seen anything in the least like 
them before. A single look at them is enough to show that they could only 
be written down by a mathematician of the highest class. They must be 
true because, if they were not true, no one would have had the imagina
tion to invent them." These comments were directed at three continued 
fraction representations. Indeed, Ramanujan's contributions to the con
tinued fraction expansions of analytic functions are one of his most 
spectacular achievements. The three formulas which challenged Hardy's 
acumen are not found in Chapter 12, but this chapter, which is almost 
entirely devoted to the study of continued fractions, contains many other 
beautiful and penetrating formulas. Unfortunately, Ramanujan left us no 
clues as to how he discovered these elegant continued fraction formulas. 
Especially enigmatic are the several representations for products and quo
tients of gamma functions. Three of the principal formulas involving 
gamma functions are Entries 34, 39, and 40. Entries 20 and 22, giving 
Gauss's and Euler's continued fractions, respectively, for a quotient of 
two hypergeometric functions, also play prominent roles. Several other 
formulas are dependent upon these five entries, and it may be helpful to 
schematically indicate these connections among entries. 

The purpose of this paper is to prove each of the 113 theorems, corol-
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laries, and examples which are divided into 49 sections in Chapter 12. 
For those formulas which are found in the literature, we cite references 
wherein proofs may be found. Ramanujan never states conditions on the 
relevant parameters to insure that a formula holds. We have generally 
attached such hypotheses. Undoubtedly, in many instances, these condi
tions are more restrictive than necessary. 

The first two named authors have been aided by notes left by the third 
named author. After devoting six years to the editing of Ramanujan's 
notebooks, B. M. Wilson prematurely passed away on March 18, 1935 
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at the age of 38. Two weeks earlier, he had entered a hospital for a hernia 
operation. Unfortunately, a blood infection incurred as a consequence of 
the surgery. In 1935, antibiotics were not yet available, and so Wilson was 
not able to recover from this infection. When he died, Wilson had held the 
chair of mathematics in Dundee for less than two years. The other leading 
candidate in 1933 for the professorship was E. T. Copson. Rather than 
reopen the competition for the chair, it was decided to appoint Copson as 
Wilson's successor. It may very well be that Wilson was working on 
Chapter 12 prior to his hospitalization, for his contributions to Chapter 
12 abruptly end about the middle of the chapter. 

We now offer a few comments about notation. As is customary, we put 

(a) - f(<a + *> {a)k T(a)~9 

where k denotes a nonnegative integer. The hypergeometric series pFq is 
defined by 

pFM, <**..., ap9 ft, ft. .. -, A , *) - Zo(ßlUß2)k...(ßq)kkl> 

where p and q are nonnegative integers with p ^ q + 1 and ai, a2, • •., 
<*p, ßu A ' - - "> A a r e complex numbers. If p < q + 1, pFq converges 
for all complex numbers x, while if p = q 4- 1, pFq converges for \x\ < 
1. However, in the latter case, pFq can be analytically continued into the 
complex plane cut at [1, oo). 

In the sequel, cjj{z) always denotes F(z)/r(z). We shall employ the re
presentation [53, p. 39] 

oo / 

(o.i) #*) = - r + £ (• 
k=0 V 

1 1 
k=b\k + I k + z 

several times in this paper, usually without comment. Here y denotes 
Euler's constant. 

We shall adopt the notation 

(0 2) ~1 ~2- a3 
*i + b2 + b3 + . -• 

for the continued fraction 

<*\ 
bx + a2 

b2 4- a3 

b3 + . . . 

The notation (0.2) appears to be the most convenient and widely used 
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notation for continued fractions. We shall refer frequently to the well-
known texts of Perron [57], Wall [74], Khovanskii [38], and Jones and 
Thron [37]. Because Perron's book contains several formulas that we shall 
employ and that are not found in the other texts, we shall make many 
references to this classic work. 

2. Proofs. 

ENTRY 1. Let a^ a2, . . ., ar and èl5 b2, . . ., br be arbitrary complex 
numbers. Define N_i = 0, JV0 = 1, D-i = 0, DQ = 1, 

(1.1) TWi = bkNk_2 + akNk_3, k^2, 

and Dk = bkDk_x + akDk_2, k ^ 1. Then, for r ^ 1, 

( \ l \ *L <*! ar = n Nr-i - y ( - 0 * + 1 fli • ' • <*k 
^ * bl+-b2 + ... + br i Dr ^ Dk_lDk 

PROOF. The first equality in (1.2) is a somewhat unusual formulation 
of a basic elementary formula in the theory of continued fractions [74, 
p. 15]. For future reference, we restate the first equality of (1.2) in a more 
familiar fashion. Let A_x = 1, A0 = 0, B_x = 0, B0 = 1, 

(1.3) Ak = M * - i + M*-2 , * è 1, 

and 

(1.4) £* = M * - i + * A - 2 , * è 1. 

Then, for r ^ 1, 

(1.5) 

Thus, axNk = Ak+1 and Dk = Bh k ^ — 1. Note that if we define AL2 = 
1, then (1.1) is valid for k = 1 as well. Recall that Ak and #Ä are the 
A:th numerator and denominator of the continued fraction (0.2). 

The second equality in (1.2) is essentially another version of a well-
known fact [74, p. 18] due to Euler [22]. 

COROLLARY. If ax, a2, . . ., ar are arbitrary complex numbers and r ^ 
3, then 

Y a = ?L a2 g l g 3 a2a* ar-2ar 
jél k 1 - ax + a2 - a2 + a3 - Ö3 + a4 - • • • - flr_i + a / 

This corollary is due to Euler [22], and a proof may be found in [57, 
p. 17]. 

ENTRY 2. Let x, ax, a2, . . . denote nonzero complex numbers and define, 
for each nonnegative integer n, 
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(-*)* 
f.(x) = 

S> «la2 • • • «*+l 

If 

(2.1) lim/„(x) = ±00 , 

//te« 

(2.2) x = x - ö l 4- -J&*— ^ - ? £ - ^ 
x — a2 4- x — a3 + • • • 

PROOF. For each nonnegative integer n [14, p. 516, eq. (14)], 
& flifl2 • * ' (*kXk - Ai* M 2 * b2azx bnan+lx 
yx bxb2 •-• bk bx - b2 + a2x - b3 + a3x bn+1 4- an+1x' 

If we set ay = l and replace bj by — ctj, j ^ l, we find that /„(*) = 
I/fa - ^ ) , where 

x — a2 4- x — tf3 4- • • • + x — an+i ' 

Letting n tend to 00 and using (2.1), we deduce that ax — A = 0, which 
is equivalent to (2.2). 

Of course, we could impose several sets of conditions on x, aÌ9 a2, . . . 
in order to insure that (2.1) holds. For example, if lim^oo \an\ = p, then, 
by the ratio test, (2.1) is valid if |*| > p. 

It is easy to establish (2.2) formally, and this is probably how Ramanu
jan proceeded. Trivially, 

(2.3) ak = - a** , t è i -
x - ak+i + ak+i 

If we successively employ (2.3) for k = l, 2 , . . ., we find that 

= aix — aix azx 

1 x — a2 4- a2 x — a2 + x — a3 + a3 

— . . . — aix azx azx 

x — a2 4- x — a3 + x — a4 + • • • ' 

which is equivalent to (2.2). 
We shall interpret Entries 3 and 4 formally. There is a slight misprint 

in the formulation of Entry 3 [64, vol. 2, p. 143]. 

ENTRY 3. If x, ax, a2,. . . are arbitrary complex numbers, then 

x = al+ ^/{tf 4. ai(ax - 2a2) - 2al^/{x^ + a2(a2 - 2a3) - 2a2V• • •}}. 

PROOF. It is easy to verify that 
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(3.1) x - ak = (x2 + ak(ak - 2ak+1) - 2ak(z - a m ) ) 1 / 2 , k ^ 1. 

Using (3.1) successively, we find that 

x - ax = (x2 4- öi(fli - 2tf2) - 2ÛX(A: - a2))
1/2 

= (x2 + fll(fll - 2a2) - 2^(x2 + a2(a2-2a3)-2a2(x-as)y
/2y/2 

and so the desired result follows. 

ENTRY 4. Let a, «, a«J x denote arbitrary complex numbers. Then 

f(x) = x + n + a= V{ax + (n + a)2 + W M * + «) + (/! + a)2 

+ (x + /i) V{fl(x + 2«) + (/i + a)2 + (x + 2n) V- • •}}}. 

PROOF. By successively substituting, we find that 

f(x) = (ax + (* + a)2 + X/(JC + «))i/2 

= (ax + (n + a)2 + x(a(x + /!) + (* + a)2 + (x + >*)/(* + 2«))1/2)1/2 

* » 

and therefore we obtain the proposed formula. 

EXAMPLES. We have 

0) 3 = V{i + 2 V{1 + 3 V{1 + 4V{1 + • • •}}}} 

and 

(ii) 4 = ^{6 + 2A/{7 + 3 V{8 + 4V{9 + -..}}}}. 

Examples (i) and (ii) were submitted by Ramanujan [61], [63, p. 323] 
as a problem in the Journal of the Indian Mathematical Society and 
solutions were subsequently given by him. 

T. Vijayaraghavan [63, p. 348] has shown that 

V{ai + V{a2 + V{a3 + - •. + A,}}}, an è 0, 

tends to a limit as n tends to oo if and only if 

(4.1) ÏÏÏH i ^ k < oo. 

See also [58, pp. 37, 214]. Vijayaraghavan's theorem can be used to show 
that the infinite radicals in Examples (i) and (ii) are convergent [63, p. 
348]. 

The literature on infinite radicals is rather scant, and so Herschfeld's 
paper [35] is to be particularly recommended. He points out that Ramami-
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jan's proofs of (i) and (ii) are slightly incomplete, and he gives full rigorous 
solutions. This paper contains a good discussion on the convergence of 
infinite radicals. 

We state Entry 5 (i) as Ramanujan records it. But, as we shall see, Entry 
5 (i) is valid only for 0 = 0. We shall separate Entry 5 (ii) into two parts. 
The first part will be proved rigorously; the second will be regraded as a 
formal identity. However, we shall indicate some values of 0 for which 
the second part of Entry 5 (ii) is rigorously true. We suggest to readers 
that they attempt to develop more thoroughly the theory of infinite 
radicals, so that perhaps concrete conditions may be imposed on the 
formal identities in §3-5 to insure their validity. 

ENTRY 5(i). We have 

2 cos 0 = (2 + 2 cos 20)1/2 = (2 + (2 + 2 cos 40)1/2)1/2 

= (2 4- (2 + (2 + 2 cos 80)1/2)1/2)1/2 

PROOF. Repeatedly apply the identity 

2 cos (2*0) = ±(2 + 2 cos(2*+i0))i/2, k ^ 0, 

with the plus sign always chosen on the right side. However, unless 0 = 
0, there clearly will be values of k when cos(2*0) < 0, and so we must 
choose the minus sign in such instances. If 0 = 0, Entry 5 (i) implies that 
2 = (2 + (2 + (2 + • • .)i/2)i/2)i/2j which is meaningful since (4.1) is easily 
seen to be satisfied. Furthermore, a direct proof may easily be given. 

ENTRY 5 (ii) (first part). Suppose that either |0| ^ x/6 or 5%I6 ^ 0 ^ 
Ire Id. Then 

2 cos 0 = ^{2 cos 3 0 + 3 ^{2 cos 3 0 + 3 ^{2 cos 30 + . . .}}}. 

PROOF. For« ^ 1, let 

Rn = (2 cos 30 + 3(2 cos 30 + 3(2 cos 30 + . - .)1/s)1/3)1/3, 

where n cube roots are taken. Observe that Rn = (2 cos 30 + 37?w_!)1/3, 
for n ^ 2. 

First suppose that |0| ^ izj6. Clearly, Rn_x < Rn for each n ^ 2. Thus, 

(5.1) Rl = 2 cos 30 + 3/?„_! < 2 cos 30 + 3Rn. 

The polynomial *3 - 3x - 2 cos 30 has three real roots, 2 cos 0 and 
- c o s 0 + y T | s i n Q\. For|0| g TT/6, - c o s 0 + VT | s in 0| g 0. Therefore 
{Rn} is a nonnegative, increasing sequence bounded above by the root 
2 cos 0. Thus, {Rn} converges and, by (5.1), {Rn} converges to a root of 
x3 — 3* — 2 cos 30. As we have just seen, this root must be 2 cos 0. 
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For 57T/6 ^ 0 ^ 77r/6, consider a = 0 — 7c. Thus, |a| ^ TT/6. Using 
the foregoing analysis, we complete the proof. 

We remark that if TT/2 < 0 < 5TC/6 or 77r/6 < 0 < 37r/2, then {Rn} 
converges to — cos 0 + -v/~3~ |sin 0|, while if %j6 < 0 < TC/2 or 37r/2 < 0 
< 1 l7r/6, {/?„} converges to —cos 0 — V^T |sin 0|. 

ENTRY 5(ii) (second part). We have 

(5.2) 2 cos 0 = ^{6 cos 0 + ^{6 cos 30 + ^{6 cos 90 + • • •}}}. 

PROOF. Repeatedly employ the equality 

2 cos(3*0) = (6 cos(3*0) + 2 cos(3*+i0))1/3 

for k = 0, 1,2, 
We now indicate some special cases when the second part of Entry 

5(ii) may be established rigorously. 
If 0 = 0, then (5.2) becomes 

(5.3) 2 = (6 + (6 + (6 + - - .)i/3)i/3)i/3. 

To prove (5.3), define 

Rn = (6 + (6 + • • - 61/3 . . .)1/3)1/3, / l è i , 

where n cube roots are indicated. Observe that 

(5.4) Rl = 6 + Rn_x < 6 + Rn, n ^ 2. 

Now x = 2 is the only real root of the equation x3 - x - 6 = 0. It 
follows that ./?„_! < Rn < 2, « ^ 2. Thus, {ÄM} converges, and, by (5.4), 
the limit of {Rn} equals 2. 

If 0 = ic, then (5.2) yields 

- 2 = ( - 6 + ( - 6 + ( - 6 + • - .)1/3)1/3)1/3 

(5.5) 
= _ ( 6 + (6 + (6 + - . .)l/3)l/3)l/3f 

which is valid by (5.3). 
If 0 = TT/3, the right side of (5.2) becomes 

(3 + ( - 6 + ( - 6 + - - .)i/3)i/3)i/3 = (3 - 2)1/3 = 1, 

by (5.5). Hence, (5.2) is valid for 0 = n/3. In fact, by induction, it is easy 
to show that (5.2) holds for 0 = TT/3*, k ^ 1. 

It may also be easily checked that (5.2) is valid if 0 = %\2 or 27r/3, for 
example. If 0 = 7r/4, (5.2) holds, but the verification is more difficult. 

ENTRY 6. Let a > 0 but a # 1. Suppose that n is a nonnegative integer. 
In the field of formal power series, put 
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fn(y) = E aAn>j> 
J=l 

where a0(n) = 1, ax(n) = — a~n, and aj(n),j ^ 2, is defined recursively by 

1 j~l 

(6.1) ay(/i) = 2(a/-i „ i) S ak(n)aj-k(n)-

Then for each nonnegative integer n, 

M^D + (aj^D + ... + ( ^ + f /o (v )y-... y y 
(6.2) 

= f/„(v), 
where, on the left side, there are n iterated radicals. Furthermore, 

f(v) = 1 - via» + (vla")2 -W*V 

(6 3) (v/a")4(a + 5) (v/fl")5(2fl2 + 3a + 7) 
" ^ ( a - l X ^ - l K a 3 - ! ) 8 ( a - l ) ( a 2 - l K « 8 - l ) ( « * - l ) 

+ ••• . 

PROOF. If n = 0, (6.2) is trivial. Thus, assume that n > 0. Proceeding by 
induction and squaring both sides of (6.2), we find that we must show that 

4 ^ - + f /_i(v) = | / l (v), « S I , 

or, in other words, 

f + |> / (" - l)v> = f/2(v), »èl , 

Now, by (6.1) and induction, ÛT/AI - 1) = aJaj(n),j ^ 0, « ^ 1, and so it 
suffices to show that 

a%{n) = -f- 2 ak(n)aj-k (n), j ^ 2. 

But the latter equality is equivalent to (6.1), and so the proof of (6.2) is 
complete. 

The expansion (6.3) is easily determined by employing (6.1). 
Ramanujan's formulation of Entry 6 is slightly incorrect, for he claims 

that [64, vol. 2, p. 143] 

1 J~l 

aAn) = •2(g/-i _ !) E ak(n)aj-i-k(n), 

which should be compared with (6.1). 
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ENTRY l.lfx is not a negative integer, then 

(7.1) 1 = _ x + 1 x + 2 x + 3 
+ x + l + x + 2 + 

PROOF. We first derive a consequence of Entry 22 that we shall employ 
several times in the sequel. In Entry 22, replace x by x/a and let a tend 
to oo to deduce that 

nr\ î i(/3 + Ur+ * ; * ) - * (ff + 0* (jS + 2)x 

(An equivalent form of (7.2) was also found by Perron [57, p. 280, Satz 
6.2].) 

To prove (7.1), set x = 1 and ß = y = x in (7.2). The result now easily 
follows. 

It also should be remarked that Entry 7 follows from Entry 11 by 
setting a = 1 and n — x + 1. 

Ramanujan [64, vol. 2, p. 143] has written x instead of 1 on the left 
side of (7.1). 

COROLLARY. We have 

1 = T + T + T + T + ••• * 
PROOF. Set x = 1 in Entry 7. 

ENTRY 8. Let n denote a positive integer and suppose that x ^ —ka9 

1 ^ k ^ n. Then 

f (-0*+1 

jèl (x + a)(x + 2a) • • • (x + fco) 

1 x + a x + 2a x + («—l)a 
x + a 4- x + 2a — 1 + x + 3a — 1 + ••• + x + na—l 

FIRST PROOF. Denote the right side of (8.1) by AJBn in the notation of 
§1. Then by (1.3), 

An = (x + na - l)^„_i + (* + ( / ! - l)a)^„_2, « ^ 3, 

or, upon iteration, 

^w - ( x + na)An_l = - {̂ M_x - ( * + ( / ! - l)a)^w_2) 

(8.2) = . . . = ( _ i ) n { ^ 2 ^ ( x + 2a)^1} 

= ( - 1 ) ^ , /i è 3, 

since ^ = 1 and v42 = x + 2a — 1. 
Similarly, by (1.4), 
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Bn - (x + na)Bn_1 = -{Bn^ - (x + (n - l)a)£w_2} 

= . . . = (-1)»{£2 - (* + 2a)5x} = 0 , n ^ 3, 

since 2?! = x + a and B2 = (x + a) (x + 2d). Hence, 

(8.3) Bn = (x + a) (x + 2d) • • • (x + AZÖ), « ^ 1. 

On the other hand, let the left side of (8.1) be denoted by the rational 
function PjQn. Clearly, 

(8.4) Qn = (x + a) (x + 2d) . . - ( * + ««), « ^ 1. 

Now, for n ^ 2, 

A - / V i , ( - i ) * + 1 - (x + ^ ) p w _ ! + ( - i ) ^ 
Qn Qn-l Qn Qn 

i.e., 

(8.5) Pn = (x + /rc)/V-i + ( - 1)*+1, /i ^ 2. 

Hence, by (8.2) and (8.5), An and Pn satisfy the same recursion formula. 
Since Ax = Px = 1 and ^42 = P2

 ==: * + 2a - 1, we conclude that An = 
Pni n ^ 1. Also, by (8.3) and (8.4), Bn = Qn, n ^ L Thus, the equality 
(8.1) has been established. 

SECOND PROOF. We induct on n. For n = 1, (8.1) is trivially true. 
Suppose that we denote the left side of (8.1) by/w(x). Proceeding by 

induction, we thus find that 

(x + a)fn+1(x) = 1 -fn(x + a) 

1 x + 2a x + na 
= 1 -

x + 2a + x + 3a - 1 + •• • + x + (« + \)a - 1* 

Letting 

A = x + 3a - 1 + * + 3 a , A A * + ff r, 
x + 4Ö? - 1 + • • • + x + (/j + l ) a - l 

we then deduce that 

(x + a)fn+1(x) = 1 - x + 2a + \x + 2a)/A 

(x +2a - 1) + (x + 2a)/A 
(x + 2a - 1) + {x + 2a)/A + 1 

1 

i + ! " 
(x + 2a - 1) + (x + 2a)/A 
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Upon dividing both sides of the equality above by x + fl, we arrive at 
(8.1), but with n replaced by n + 1. This completes the induction. 

COROLLARY. We have 

1 _ 1 2_ _3_ 
e - 1 1 + 2 + 3 + ••• ' 

PROOF. Let x = 0 and a = 1 in Entry 8 to obtain the equality 

h (-i)*+1 _ l X A J. " - 1 

ki k\ 1 + 1 + 2 + 3 + --- + / I - 1 ' 

Letting A tend to oo yields 

; 1 + 1 + 2 + 3 + - - - " 

The desired formula now readily follows by inverting the equality above. 
The previous Corollary is due to Euler [23]. 

ENTRY 9. if x ^ —ka, 1 ^ k < oo, //ze/z 

x + tf-hl x + û x + 2a x + 3a 
(9.1) 

x + 1 j c - l + j t + a - l + x + 2 f l - l + 

PROOF. We first indicate a formal proof. Observe that for each positive 
integer n, 

x + na -f 1 x + raz 
* + ( » - 1 * 1 + 1 JC + ( „ _ 1 ) f l _ 1 + * + (»+Qfl+r 

x 4- fltf + 1 

By applying this identity successively for n = 1, 2, . . ., we formally derive 
(9.1). 

We now give a rigorous proof based upon (7.2). Putting x = \ja, 
ß = x/a, and 7- = (x — a)/a in (7.2), we find that 

{ iFi( 
« / x + a . x . 1 \ 

* — tf j? ( x . x — a 1 \ 
(9-2) l F lU'-^— ;TJ 

1 jc + a x + 2a * + 3a 
Jt - a - 1 + x - 1 + x + a - 1 + j c + 2 a - l + 

provided that x ^ —ka9 I ^ k < 00. But, 
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2L e1/a + — e1/a 

x — a a a 

>Va 

_ (x — a) (x + 1) 
"" x(x - a + 1) 

Substituting (9.3) into (9.2), taking the reciprocal of both sides, and 
simplifying, we arrive at (9.1). 

EXAMPLES. 

( Ì \ 

\l) 

and 

(»') 

We have 

4 
3 

5 
3 ~ 

3 
1 

4 
1 

+ 

+ 

4 
2 

6 
3 

+ 

+ 

5 
3 

8 
5 

6 
+ 4 

10 
+ 7 

+ 

+ 
PROOF. Set x = 2 and # = 1 in Entry 9 to deduce (i); similarly, set 

x = 2 and a = 2 to obtain (ii). 

ENTRY 10. /fn is a positive integer, then 

M _ 1 2 3 /? « + 1 « + 2 
l - r t + 2 - H + 3 - « + - . . + 0 + 1 + 2 + •-• * 

FIRST PROOF. Putting x = 1, /3 = 0, and 7- = 1 — « in (7.2), we find that 

Q - ( l - * ) i * ï ( 0 ; ! - * ; ! ) _ - , 1 2 3 

xFiO ; 2 - n; 1) ~ f " l - « + 2 - « + 3 - r t + . . . ' 

which completes the proof. 

SECOND PROOF. In (11.7), set n = 1 and replace a by n to deduce that 
1 2 /1 - 1 /i - 2 

1 - / I + 2 - / I + - . - ~ 1 T 3 - / I + 4 - / I + - " * 

We shall be finished if we can show that, for each positive integer n, 

/ ,A ,N n n — 1 
(10.1) -̂  -= = n. 

2 - « + 3 - « + " • 
We prove (10.1) by inducting on «. If n = 1, (10.1) is trivial. Assuming 
that (10.1) holds with « replaced by n — \,n > 1, we see that 

n n — 1 n 
= H. 2 — « 4 - 3 — /iH- — (2 - « ) + ( « - 1) 

The interpretation of Entry 11 was made difficult because Ramanujan 
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left most of his notation undefined. Furthermore, some of his notation is 
unnecessary and so will not be given. 

ENTRY 11. Suppose that a is a positive integer and that — n is not a 
nonnegative integer. Define Na and Da by 

(11.1) xFxO -a\n + 2 - a ; - 1 ) = N-
(« + 2 - a)(n + 3 — a) • • • n 

and 

Dn (11.2) ^ ( 1 - a;n + 1 - a;- 1) = 
(« + l-fl)(« + 2 - û ) . . . ( « - ! ) ' 

where if a = 1, the denominators on the right sides 0/(11.1) and (11.2)are 
understood to be equal to 1. Then 

(11 3) Mo_ =
 n /i + 1 « + 2 

Z>a n — a + n — a+\+n — a + 2 + 

and 

(11.4) -%tL = „ + 2 - a + * - 1 " ~ 2 

Na tt + 3 - t f + « + 4 - t f + .--* 

PROOF. Since a is a positive integer, both ^ ( 1 — a; n + 2 - a; — 1) 
and iFxO — a; n + 1 — a; — 1) terminate, and so Na and Z>a are simply 
the numerators of the rational functions respectively obtained. In fact, 
Na and Da are polynomials in n of degree a - 1. 

Setting ß = n,r = n+l-a, and x = 1 in (7.2), we find that 

nxFi(n + \;n + 2 - a; \) 
(115) fa + 1 - ö)iFi(«; « + 1 - a; 1) 

« « + 1 n + 2 
n — a + n — a + I + « - c + 2 4- • • • ' 

But by Kummer's theorem [401, (11.1), and (11.2), 

niFi(n + 1 ; M 4- 2 — a; 1) 
(116) (« + 1 - a)i^i(«; /i + 1 - a; 1) 

= M W - a\n + 2 - a\ - 1 ) JVC 

(/2 + 1 - A) xFi(l - a; n + 1 - A; - 1 ) £>fl * 

Thus, (11.3) follows from (11.5) and (11.6). (In fact, Kummer's theorem 
was rediscovered by Ramanujan [64, vol. 2, p. 125], [9, Entry 21].) 

From (11.1), 
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JvVf-1 - (n + 1 - aWii-am + 1 - g; - 1 ) 
AT, xFiO - a ; « + 2 - a; - 1 ) 

g — 1 a — 2 
= n + 2 - a + n + 3 — a + « + 4 - Û + 

where we have applied (7.2) with /3= — a, ? = n + 1 — a, and x = — 1. 
This proves (11.4). 

By generalizing the proof above, we can easily prove that 

n n + 1 n + 2 
n — a + n — a + \ + « — a + 2 -f ••• 

( 1 , - 7 ) - , , « - 1 C - 2 

/f + 2 — a -H /I + 3 — a H- — ' 

provided that not both a and —«are nonnegative integers. 

COROLLARY 1. Ifn is not a nonpositive integer, then 

n2 + n + 1 _ « M 4- 1 n + 2 

«2 - « + 1 / I - 3 + / I - 2 + / I - 1 + " -

PROOF. Let a = 3 in (11.3). 

COROLLARY l.Ifn is not a nonpositive integer, then 

rt3 + 2 / 7 + l n n + 1 AÏ + 2 (« - l)3 + 2(n - 1) + 1 / f - 4 + / ! - 3 + / ! - 2 + - - - ' 

PROOF. Let a = 4 in (11.3). 

ENTRY 12. Tfa ^ 0 a / ^ x ^ -Ara, 1 g * < OO, 

, _ x + a (x + fl)2 — a2 (x + 2a)2 — a2 (x + 3a)2 — a2 

a + a + a + a + • • • ' 

FIRST PROOF. In Entry 22, put x = 1, a: = 0, ß = (x - a)Ja9 and 
j = (x + a)/a. (To see that putting x = 1 in Entry 22 is justified, see an 
equivalent formulation of Entry 22 in [57, p. 299, eq. (21)].) After simpli
fication, we find that 

x — a x — a (x + a)2 — a2 (x + 2a)2 — a2 

x + a a + a + a + • • • " 

Multiplying both sides by (x + a)/(x — a), we complete the proof. 

SECOND PROOF. In Entry 27, let x = 1. Then set y = 1 + 2x/a and 
n = — 4. We then find that 
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j 2x _ . 4(x 4- d)2\a2 - 4 4(JC + 2a)2/a2 _ 4 4(s 4-3g)2/g2 - 4 
a + 2 + 2 + 2 

_ 1 + 2/(x4-fl)2-a2 (x + 2a) 2 -a 2 (x + 2a)2-a2 

a\ a 4- a 4- a 4- • 

= 1+4 A", 

say. Thus, x = X. Lastly, 

, _ a + x _ a + x 
a + x a + X ' 

which is the desired formula. 

ENTRY \3.Ifa<b, then 

ab (a + d)(b + d) (a 4- 2rf)(ft 4- 2</) 
A 4- ft 4- d - a + ft 4- 3d - a + ft + 5d - . . . • 

FIRST PROOF. Let pk = b 4- kd, k ^ 0. Then 

p. _ « + ft + (2|I + Qrf- (« + ("+ D ^ * + (" + W , a ^ o . 

Writing /?„ = xjxn+h n ^ 0, we may write the preceding formula in the 
form 

xn = (a 4- ft + {In 4- 1 )</)*„+! - ( A + ( / I + l)d)(ft + (n 4- l)rf) *w+2. 

Setting a + nd = yjyn+i, n ^ 0, we easily see that the same recurrence 
formula is satisfied by yn. 

Now if x0 = 1, 

•*» •*»-! 
. . ^ L = _ L 

*o A. 
1 

Pn-1 

1 

A) 
1 

(ft + nd) (ft 4- (/1 - l)rf) • • • ft ' 

Similarly, if j 0 = 1, yn+l = l/((a 4- «a7)^ 4- (fl - l)<f) • • • 0). Thus, if 
a < b9 then xw/j>w tends to 0 as n tends to 00. 

We now apply a theorem in Perron's text [57, p. 97, Satz 2.46, C] to 
deduce that 

*L = b = a + b + d 

(g 4- </)(ft 4- </) (a 4- 2J)(ft 4- 2rf) (a 4- 3<f)(6 + 3J) 
a + b + 3d - a + b + 5d - a 4- ft + 7*/ - . . . * 
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Now take the reciprocal of both sides above and then multiply both sides 
by ab to obtain the proposed continued fraction representation. 

SECOND PROOF. In Entry 20, let a = b/(2d), ß = a/(2d), and y = 
(a + b + d)/(2d). Each of the two hypergeometric series in Entry 20 
converges at x == — 1 since a < b. Thus, we may let x tend to — 1. After 
a slight amount of manipulation, we find that 

ab 2ri 
r ( a + d a + 2d a + b + 3d . A 
• l \ 2d ' 2d ' 2d 9jJ_ 

a + b + d r ( a + d a a + b + d , \ 

= ab (a + d^b + d) (a + 2d^b + 2rf) 
A + 6 + </ - tf + 6 + 3rf - a + 6 + 5</ - • • • * 

If we now apply Gauss's theorem [4, p. 2] to each of the hypergeometric 
series above, we find that the left side of (13.1) becomes, for a < b, 

a + b + d r(b + 2d\p(a±b_±d\ ~ a' 

which completes the proof. 

ENTRY \4.Ifai,a2,..., a2„ and x are arbitrary complex numbers, then 

(14.1) 

ax a2 a3 aA 
x + 1 + x + 1 + • 

__ #1 #2^3 

«2» 
... + I 

a4a5 
a2n-2a2n-l 

x + a2 - x + a3 + aA - x + a5 + a6 - • • • - x + a2n_x +a2n* 

PROOF. We shall induct on n. For n = 1, it is easy to verify that the pro
posed identity is valid. Now assume that (14.1) is true with n replaced by 
n — 1 for any fixed integer n > 1. Let 

A = £l £A ^5 £6 £*!L 
X + 1 + X + 1 + ••• + 1 

and 
B = a*a$ a^7 a2n-2^2n-l 

x + a5 + a6- x + a7 + as- • • • - x + tf2*-i + a2n' 

Then, by induction, 
ax a2 a3 aA 

x + 1 + x + 1 + • 
aA 02 
X + l + 3̂ 

a2n _ #1 <*2 

•• + 1 x + 1 + A 
*1 

x + a2 — • £-2 =-



252 B. C. BERNDT, R. L. LAMPHERE, AND B. M. WILSON 

which completes the proof. 
If we let n tend to oo in (14.1), we obtain an identity given by Preece 

[60] in somewhat more general form. Rogers [65] also derived a similar 
result. 

ENTRY 15. If we assume that the continued fraction on the left side below 
is convergent, then 

a\ + h ai a2 + h 02 
0 5 H * + x + 1 + * + • • • 

_ L , fli ai + h 02 <*2 4- h 
"•" 1 + x + 1 + x + • • • ' 

PROOF. Let 

Denoting the left side of (15.1) by F, we find that 

F - gl + * - *(*2 + Al) + fll(^2 - *) 
1 + ax\F2 F2 4- 0i 

= /, I fll(f 2 - A) - A , gl(^2 - *) 
(15.2) * + F2 4- fli + (F2 - A) + (fll 4- A) 

= /* + a 1 4- a l + A 

+ F2 - A 

Next, for jfc^2, 

<--£:) Fu-h = x-h+ a>> + h v. . V F * + i • 
+ 1 + «*/F*+1 - X +

 1 + a, 

(15.3) F*+1 

=x + 7
 x, x *y*

y
 y , = x 4- — ^ 

*+i / \ r*+i / ^*+i - h 

If we now use (15.3) successively in (15.2) beginning with k = 2, we 
complete the proof. 

ENTRY 16. If neither m nor n is a negative integer, then 

èi (m + k)(n 4- *) 
1 (m+l)2(« + l)2 (m + 2)2(/7 + 2)2 (m4-3)2(Az4-3)2 

(m + l)(« + l)4- ra + « + 3 4- m + n + 5 4- m + n + 1 + •• 
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PROOF. We shall employ the Corollary in §1. Letting a* = 
( —l)*+1/(w + k)(n + k), and letting r tend to oo, we find that 

& (m + k){n + k) 

_ (m + !)-!(« + I)"1 (m + 2)-i(« + 2)-i 
1 + (m + l)-i(« + I)"1 - (m + 2)-i(n + 2)~i 

(/w + l)-i(« + l)-Hm + 3)-Kn + 3)-1 

- - ( m + 2)-i(« + 2)-i + (/M + 3)-i(" + 3)-i - ••• 

1 (w +1)2(M + l)2 

(m + l)(n + 1) + (m + 2)(n + 2) - (m + 1)(« + 1) 

(m + 2)2(« + 2)2 

+ (m + 3)(« + 3 ) - (m + 2)-i(« + 2) + • • • ' 

from which the proposed identity readily follows. 

ENTRY 17. Write 

U ' 1 + 1 + 1 + 1 + ••• * H >' 

wAere A0 = 1. Le? 

P„ = «ia2 • • • a„_i(a! + a2 + • • • + <*»)> « ê 1-

P4 = ^ 4 - (a! 4- a2)A2, 

^5 = ^5 - (<*1 + #2 + #3^4 + Û1M3. 

P 6 = ^ 6 - (ÛX + tf2 + "fl'3.+ «4)^5 + (tfia3 + «2^4 + <*iaA)At. 

In general, for n J> 1, 

(17.2) ^ = 2 ("O*^")^-*, 
w/z r̂e ^)0(«) = 1 and <pr(n), r ^ 1, w defined recursively by 
(17.3) pr(/f + 1) - pr(/i) = an_wr_x(n - 1). 

FIRST PROOF. Let Cw = Cn(x) and £w = Bn(x) denote the numerator 
and denominator, respectively, of the nth convergent of the continued 
fraction (17.1). Then, from (1.3) and (1.4), 
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(M 4Ì i ^ 1 ~" ^ 2 ~~ ^ ^n — Cn-1 + an-\X Cn-2* 
(A! = t, J?2 = 1 + axx, Bn = Bn_x 4- a„_ix 5W_2, « è 3. 

By induction, it is easily seen that C2w-i, C2w, and B2n-\ are polynomials 
in x of degree « — 1, while B2n is of degree 2w, where n ^ 1. Thus, for 
« ^ 1, set 

[n/2] 

(17.5) Bn(x) = S &(* + 1)**. 

We make the convention that ßk(n + 1) = 0 if fc > [/i/2]. From (17.4), it 
is obvious that ßQ(n + 1) = 1 for each AÏ è 1. Using (17.5) in the recursion 
formula for i?„ given in (17.4) and equating coefficients of xr, we readily 
deduce that 

(17.6) ßr(n + 1) - 0r(/i) = «V-ijS^fa - 1), rZ 1. 

Thus, by (17.3) and (17.6), we see that <pr(
n) a n d /3r(A?) satisfy the same 

recursion formula. Since, furthermore, ^O(AZ) = 1 = /3o(tf), we conclude 
that <pr(n) = ßr(n), r ^ 0. Also note that tpr(n) = 0 if r ^ [AZ/2]. 

Put 

(17.7) £n = 
1 + 1 + " 1 + 

where n ^ 0 and Oo = 1 • We shall show, by induction, that (see also [65, 
p. 72, eq. (1)]) 

(17.8) E0B„ - C„ = ( - l)»£o^i • • • E„x", n 2; 1. 

Since, by (17.7), E0 = 1/(1 + xE{), (17.8) is easy to establish for n = 1. 
Assume now that (17.8) is valid for each nonnegative integer up to and 
including n. Then, by (17.4), 

£(A+i — C„+i = E0B„ — C„ + a„x(E0B„_1 - C„_j) 

= ( - l)»E0E1 • • • E„x» +(-iy-ianxE0Ei • • • E^x"-^ 

= (-l)«EQE1 • • • E„_lX»(E„ - a„) 

-i-lYEM.-.E^-^J^-a,) 

= (-l)»+i£0E1 • • • EnEn+1x»+\ 

and so the induction is complete. 
Write 

oo 

(17.9) E^ •••£„ = g^ (« )x* . 
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Setting x = 0, we find that 

(17.10) e0(n) = axa2 • • • an. 

Next rewrite (17.9) in the form 

Dividing both sides by x and then letting x tend to 0, we deduce that 

(17.11) ex(n) = -axa2 • •. an{ax + a2 + • • • + tfw+i) = -Pw+i, 

for each nonnegative integer n. 
In (17.8) replace n by « - 1. Then, by (17.1), (17.5), (17.9), (17.10), and 

(17.11), 

oc [ ( « - l ) / 2 ] 

= ( - i ) » - ^ • • • fl^x^-i + ( - \ypnx» + . . . . 

Equating coefficients of ;vw, w ^ 2, yields 

[(»-D/2] 

which is precisely (17.2). Since the case n = 1 of (17.2) is readily verified, 
the proof is complete. 

Essentially the same proof that we have given above was independently 
and almost simultaneously discovered by Goulden and Jackson [31]. They 
[31] have also found a beautiful combinatorial proof of (17.3) by enumerat
ing certain paths. 

Before proceeding further, we shall find an exact formula for #>#(fl), 
defined by (17.3). 

First, it is not difficult to show that 

<pi(n) = Ë aJ 

and 

Z^j^n-2 

We shall show by induction on k that 

<Pk(n) = S ahah - • • ah. 
(17.12) i g ^ p i 

l^Jkkn-2 
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We have already indicated that (17.12) is true for k = 1, 2. Proceeding 
by induction and employing (17.3), we find that 

<pÀn) - 9kin - 0 = tf*-2 2 ahah • •. ûy 

<Pk(n - 0 - <Pk(n - 2 ) = an-z H ahah • . . aj , 

1 ^ 1 ^ 2 - 2 

l ^ > r - l ^ » - 5 

Adding together all of the equalities above, we deduce (17.12). This 
completes the proof of the desired exact formula for (pk(n). 

Rogers [65] has expressed <pk(n) by a determinant. 
We are extremely grateful to G. E. Andrews for providing us with the 

following elegant, second proof of Entry 17. In fact, this proof was found 
prior to the proofs of Goulden and Jackson [31] and the authors. The 
first part of Andrews' argument was anticipated by De Morgan [18]. 

SECOND PROOF OF ENTRY 17. We first obtain a recursion formula for 
the coefficients Ak, k ^ 0. In order to do this, we introduce auxiliary 
coefficients Âk9 k ^ 0, which we now define. Of course, each coefficient Ak 

can be written in terms of a'i, a2,. . . . We define Äk by the same expression 
for Ak except that the subscript of each aj appearing in Ak is increased by 
1. For example, since A2 = al + ctia2, we define Ä2 = a\ + a2az. 

Now, by (17.1), 

oo 1 

S ( - l)M*x* = — ^ 

1 
oo _ 

1 +a i*2( - l )*4pr* 
k=0 

_ i -X 
— oo » 

where A_x = — l/^i- Multiply both sides of the extremal equation above 
by the denominator on the right side and equate coefficients of xn on both 
sides to deduce that, for « ^ 1, S?=-i ^k^n-k-i = 0» o r 

(17.13) ^M = 2 M ^ n - * - i , » è 1, 

which is the recurrence formula that we sought. 
We now show that 
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An is a homogeneous polynomial of degree n in the noncommut-
n 7 .. ative variables ah a2i..., an, where the subscripts j\J2,...Jn 

of the monomials comprising An are precisely those sequences 
of positive integers starting at 1 for which j k + 1 - j k g \9jk ^ 1. 

In order to make clearer the assertion above, we record the following 
examples : 

Ai = aì9 

A 2 = axa2 + axax, 

A3 = 0^202 + tf 102^3 + ^ l ^ l + ^1«1^2 + «l^l^l-

We now prove the assertion (17.14) by inducting on n. By using (17.13), 
we easily verify that (17.14) is true for n = 1,2, 3, as indicated above. 
Assume that (17.14) is true up to but not including a specific integer n. 
Let A* denote the polynomial described by (17.14). We shall show that 
A* is equal to the right side of (17.13). Thus, A* — An, which completes 
the induction. Let us divide the monomials comprising A* into n classes. 
The kth class, 0 ^ k S n — 1, consists of all monomials in A* wherein 
the second appearance of ax is the (k + 2)nd term in the monomial. 
(Recall that ax begins each monomial.) Thus, the entries of the &th class 
are produced in the following manner. Start with aÌ9 adjoin a string of 
k a/s, j ^ 2, that starts with a2 and follows the appropriate subscript 
rules, and lastly adjoin a string of n — k — 1 ay's that starts with ax and 
follows the prescribed subscript rules. But the entries for the string of k 
terms are generated by Âk and the entries for the remaining n — k — 1 
terms are generated by An_k_x, by induction. Hence, the monomials in 
the &th class are generated by axÀkAn_k_x. Summing on k, 0 ^ k ^ n — 1, 
we find that 

n-\ 

£=0 

which, by (17.13), completes the induction. 
We now have a combinatorial interpretation (17.14) for An. After 

finding combinatorial interpretations for Pn and <pk(n), we shall use a 
sieving process to establish (17.2). 

Let us say that a word of the type generated by An, i.e., anah. . . aJn, 
where j \ = 1 and yÄ+1 —jk^ 1, with j k ^ 1, has an "internal drop" if 
jk+i — Jk it 1 f° r some /:, 1 ^ k < n — 1. Then we see that Pn is the 
polynomial in ai9 a2,. . . , an composed of all words without internal 
drops. 

From (17.12), observe that <pk(n) is a homogeneous polynomial of degree 
k in the noncommuting variables aÌ9 a2ì . . . , an_2 wherein the subscripts 
of each monomial ahajtl. . . aJk satisfy the inequalities j i + i — j{ ^ 2 , 1 g 
i < k - 1. 
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We now begin the sieving procedure. We first examine An. Recall that 
an internal drop occurs whenyV+i -y,- ^ 1 and 1 ^ i < n - 1. Let us 
call ah the "top of the last internal drop" if k is maximal for internal 
drops, i.e., if j i + 1 - j{ * 1, 1 ^ / < n - 1, then j k + 1 - j k # 1, 1 g k < 
n — 1, and / ^ k. The top of the last internal drop must be one of the 
letters ai9 a2, . . . , tfw_2, since neither an_x nor an can be far enough to the 
left in a word to be at the top of an internal drop. 

In order to eliminate all words from An with internal drops, we take 
the words from An_l and insert aj9 1 g j ^ n — 2, in the last position 
where it forms the top of an internal drop. Thus, 

(17.15) An - (ax + a2 + . . • + an_2)An_x 

does not possess any internal drops. (Note that we have written (17.15) 
commutatively; the correct noncommutative expression would have aj9 

1 ^j^n — 2, inserted as described above.) Unfortunately, there are 
words in (17.15) that were not originally in An. These words arose when 
the insertion of an a}- produced a subscript increase greater than or equal 
to 2 from the a{ immediately to the left of the inserted aj. Of course, we 
must eliminate these undesirable words. We do this by taking the words 
of An_2 and inserting pairs a^aj with j — i ^ 2 so that aj is at the top 
of the last internal drop. Hence, 

(17.16) An- (pi(n)An_x + <p2(n)An_2 

does not possess internal drops. (Again, note that (17.16) is a commutative 
representation of what is really a noncommutative polynomial in aÎ9 a2y 

. . . , an.) Unfortunately, we have now introduced some new words which 
were not originally under consideration. These new words have triples 
a^j-üft with j — i ^ 2 and k — j ^ 2, and with ak at the top of the last 
internal drop. 

We continue the process described above by induction. At each stage 
we must introduce a term 

(-l)ty*(")^-* 
to compensate for unwanted terms introduced at the previous stage. 
Fortunately, (pk(n) = 0 for k ^ n/29 which is evident from (17.12). Thus, 
the sieving process terminates, and we reach the desired formula (17.2). 

Among others, Muir [49] and Rogers [65] have studied the problem of 
deriving a continued fraction expansion from the coefficients of a power 
series. Both De Morgan [18] and Rogers [65] have commented on the 
fact that it is extremely more difficult to determine the power series 
coefficients Ak, 0 ^ k < oo, from a continued fraction of the form (17.1). 
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Ramanujan's Entry 17 is a fascinating contribution to this more recondite 
converse problem. 

By a theorem of Euler [22], [37, p. 37] (see also (L2)), 

J_ a^ a^c_ = Ä (-1)^2 ••• ak ^ 
+ . . . - S -1 + 1 + 1 + . • • - £ * *,*, 

where Bk = 2?*(JC) is given by (1.4) and (17.5). Thus, ( - \)nAn is equal to 
the coefficient of xn in 

^ ( - 1 ) % ! ---f l* , 
É* Bk(x)Bk+1(x) ' ' 

Obtaining a general formula for An in this manner seems hopeless. 
However, a very complicated formula for An can be established com

binatorial^ by counting planted plane trees with respect to their heights 
in two different ways. For a nice exposition of this proof, see the book of 
Goulden and Jackson [30]. See also a paper of Flajolet [28]. 

COROLLARY (i). Write 

(17'17) iTìTx + r r f c + i + V + • • • = ä^(~x)*' 
where AQ — 1. Define 

Pn = axa2 • • • an^i(ai + bx + a2 + £2 + • • • + #« + £«X « ^ L 

77ze«, /or n ^ 1, 

w/zere )̂o(̂ ) = 1 and <pr(
n), r è 1» & defined recursively by 

<pr(n + 1) - pr(/i) = *„?>r_i(/i) + fl*_i0V_i(n - 1). 

As with Entry 17, Goulden and Jackson [31] independently and simul
taneously discovered the proof that the authors found and record below. 
Goulden and Jackson [31] have also derived a combinatorial proof. Since 
the proof below is very similar to the first proof of Entry 17, we give 
only a brief sketch. 

PROOF. Let Cn = Cn(x) and Bn = Bn(x) denote the numerator and 
denominator, respectively, of the nth convergent of the continued fraction 
(17.17). Then 

(Cx = 1, C2 = 1 4- b2x, Cn = (1 + Äwx)Cw_! + an^x Cw_2, 

(17.18) (B1=l + bxx, B2=\ +(al + bl + b2)x + bxb2x
2, 

[Bn = (1 + bnx)Bn^ + an_xxBn_2, 
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where n ^ 3. Observe that Cn{x) has degree n — 1 and Bn(x) has degree 
n, n ^ 1. Thus, put 

(17.19) Bn{x) = ±ßk(n + 1)**, n^ 1. 

By substituting (17.19) into the recursion formula for Bn(x) in (17.18) and 
equating coefficients of xr, we deduce that ßr(n) = #>r(«), r ^ 0, n ^ 2. 

The remainder of the proof is exactly parallel to that of the first proof 
of Entry 17. 

COROLLARY (ii). Let Bn(x) be defined as at the beginning of the proof of 
Entry 17. Then, for n ^ 1, 

[w/2] 
B»(x) = g <Pk(n + 1)**. 

PROOF. Corollary (ii) was established in the course of proving Entry 17. 
In particular, recall that ßk(n) = <pk(n) and consult (17.5). 

EXAMPLE. We have 

1395.x: 
128 * 

(17.22) 2F2(ll2,l/2;\;x) = ± _ f _ ^ _ ^ ^ ^ _ l - j 

PROOF. Ramanujan evidently intends this example to be an illustration 
for Entry 17. In the notation of Entry 17, ax = - 1/2, a2 = — 3/16, a3 = 
- 5/16, «4 = - 17/80, a5 = - 23/80, and ae = - 1395/6256. Squaring 
2^(1/2, 1/2; 1; x), we find, after some laborious computing, that Ax = 
-1 /2 , A2 = 11/32, Az = -17/64, A± = 1787/213, A5 = -3047/2*4, and 
A6 = 42631/218. Lastly, P1 = -1 /2 , P2 = 11/32, P3 = -3/32, i>4 = 
291/213, P5 = -153/214, and P6 = 32337/5-22i. All of these calculations 
are in agreement with Entry 17, and so (17.22) is, indeed, correct. 

ENTRY 18. Let x be any complex number outside the real interval [—1, 1] 
and let n be any real number. Then 

(]*n ( * + 0 n - ( * - l ) w _ n n2-\2 n2-22 n2-32 

U j (x+iy + (x-\y x + 3x + 5x + Ix +••• ' 

FIRST PROOF. If we replace x by l/x in [57, p. 153, eq. (9)], we obtain a 
continued fraction representation easily found to be equivalent to (18.1). 

Perron's derivation of Entry 18 arises from Entry 20. 

SECOND PROOF. Let 

, r(\j(mx + m - n + l))f(HN - m + n + \)) 
gym, n, x) - f ^ m x + m + n + l ) ) / 7 ( ^ ( m x - w _ „ + 1)) * 

Replacing x by mx in Entry 33, we find that 



CONTINUED FRACTIONS 261 

1 — g(m, n, x) __ mn (m2 — l2)(n2— l2) (m2 — 22){n2 — 22) 
HRT> l+g(/w,/t,x)~"w* + 3mx + 5mx + . . . 

= *. ( l - l / " * 2 ) ( / f 2 - l 2 ) ( l -22/m2)(/ |2-22) 
x 4- 3x 4- 5x 4- • • • ' 

Now let m tend to oo in (18.2). By using an asymptotic formula for the 
quotient of /^-functions [47, p. 33] or Stirling's formula, we find that 
lim^oo g(m, n, x) = (x 4- l)~n(x — 1)M. Formula (18.1) now easily follows. 

Entry 18 is due to Euler [27] and easily implies a continued fraction 
expansion for (x + \)n/(x — l)w due to Laguerre [42], [57, p. 153, eq. 
(10)]. 

If Vn denotes the left side of (18.1), then Ramanujan remarks that 
Vn 4- l/Vn = 2/V2m a fact that is easily verified. 

COROLLARY 1. Let x be any complex number outside the cuts( — ioo, — i] 
and [i, /oo). Then 

tan x - j + y + - g — + — ^ _ + . . . • 

For a proof see [57, p. 155]. Early proofs of Corollary 1 were given by 
Lambert [44], Lagrange [41], and Euler [27]. 

COROLLARY 2. Let x be any complex number outside the cuts (— oo, — 1] 
and[\9 oo). Then 

] n \ + x _ 2 x x2 (2x)2 (3x)2 

For a proof see [57, p. 154]. Corollary 2 is due to Euler [27]. For an 
application of Corollary 2 to product-weighted lead codes, see a paper 
of Jackson [36]. 

COROLLARY 3. For any complex number x, 

x x2 x2 x2 

t anx = T-T-T-T- •••• 
Corollary 3 was initially discovered by Lambert [43], [45]. A proof may 

be found in Perron's book [57, p. 157]. 

COROLLARY 4. For any complex number x, 

ex - 1 _ x_ x2 x2 x2 

ex + 1 2 + 6 + 1 0 + 1 4 + • • • ' 

Corollary 4 is due to Euler [25] and a proof may be found in Perron's 
text [57, p. 157]. 

ENTRY \9.Ifn and x are arbitrary complex numbers, then 

file:///9.Ifn
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xQFi(n+\;x) __ ^/~x~Jn{2i V"3c") _2L 
noF^n; x) iJ„-i(2i«Jx) n + / 7 + l + « + 2 + • • • ' 

where Jv denotes the ordinary Bessel function of order v. 

FIRST PROOF. By a theorem of Euler [25], [57, p. 281, Satz 6.3], 

(19 lì C.A--°— a a - r o^ijc/d; ajd2) 

y ' } ^ c + d + c + 2d+c + 3d + ••• oF^c/d+lia/dty 

where d # 0. Let c = n, a = x, and J = 1 to find that 

n » * * * = « _ o M ? i * L _ 
/i+ 1 + « + 2 + « + 3 + - • • QF^/I + 1 ; x)' 

Taking the reciprocal of both sides above and then multiplying both sides 
by x, we deduce the desired result. 

SECOND Proof. This proof is similar to the proof above, but employs 
a "finite" version of (19.1), namely Entry 24. Simply let r tend to oo in 
Entry 24. After multiplying both sides by x/n, we complete the proof. 

See also [74, p. 349]. 

ENTRY 20. If x is any complex number outside the interval (— oo, — 1], 
then 

ccßx2F1(r-g,ß+\;r+\; -x) = aßx {a-T)(ß-r)x (g + l)(fi + l)x 
r 2*i(r - a,ß;r; -x) r + r + \ + r + 2 

( a - r - l)(j9 - r - l)x (a + 2)(/3 + 2)x 
+ 7- + 3 + r + 4 + ••• * 

This result is very famous and is known as Gauss's continued fraction 
[29]. A proof may be found in any of the standard texts [37], [38], [57], 
[74]. It might be mentioned that Gauss's continued fraction may be found 
in Carr's book [14, p. 97], which was the most influential book in Ramanu-
jan's development. Recent work on Gauss's continued fraction may be 
found in [7]. 

ENTRY 21. We have 

r ^2Fi(ß+ U ; r + i; -* ) 

m n - £f r(ß+Vx Hr-ß)x (y+i)(/3+2)x 
K ' ~ r + r + i + r + 2 + r + 3 

2(7+i-ß)x 



(21.2) 

(21.3) 
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£? (ß+Vx {({+x) (ß + 2)* 2(1+x) 
r + i -f r + 1 + 7- 4- ••• ' 

/ / R e ( * ) > - - 1 , 

/3x l(/34- l)x(x+1) 2(/3 + 2)x(;c +1) 
r + x ( / 3 + l ) - r + l + ^ j 3 + 3 ) - 7- + 2 + x(iS + 5) 4-

i/Re(jc) > - - Ì - . 

PROOF. The proof that we give of (21.1) is indicated by Ramanujan 
in the first notebook [64, vol. 1, p. 217]. Let 

G~%Vi)2Fliß + 2' »;r + 2; -*). 
Then 

(21.4) ^ 2 F 1 ( i 3 + l , l ; r + l ; - ^ ) = ^ ( l - G ) = ^ 1 

r r r x + . 
1 - G 

Now in Entry 20, replace ß by ß 4- 1 and 7* by 7- 4- 1 and then set a = y. 
This yields 

G _ Q3 4- l)x 2*i(j3 + 2, l ; r + 2; - * ) 
1 - G 7 - + I 2Fj(/3 4- 1, l ; r + 1; - * ) 

m SÌ = (̂  + 0* Kr - ft* (r + i)(j8 + 2)x 
K }

 r+i 4- r + 2 4- r + 3 

2(r-ß + l)x (r + 2)(j3 + 3)* 
4- r + 4 4- 7-4-5 H- ••• • 

If we substitute (21.5) into (21.4), we complete the proof of (21.1). 
We next prove (21.3). If Re(x) < 1/2, a 4- 1 and 7- - a are not both 

nonpositive integers, and ß 4- 1 and y — ß are not both nonpositive 
integers, then by a result of Nörlund [52], [57, p. 286, eq. (10)], 

2Fl(a 4-1, j9 + \\r + i ;* ) 
r2^i(tf> /3; 7-; JC) 

Ol 6Ì 1 fa + 1)Q3 + 1)(* - *2) 
V T - 0 + ^ 4- ß)x + r + 1 - ( 3 4- a 4- ß)x 

{a + 2)(/3 + 2)(x - x2) 
4- 7- 4- 2 - (5 4- a 4- /3)x 4- • • • ' 

Setting a = 0, replacing JC by — x, and lastly multiplying both sides by 
ßx, we complete the proof of (21.3). 

Lastly, we prove that the continued fractions (21.2) and (21.3) are 
equal. To do this, simply apply Entry 14 and then let n tend to 00. 
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COROLLARY 1. For every complex number JC, we have 

- ^ 1 F 1 ( l ; « + l;x) 

x nx x 
n - » + 1 + « 4 - 2 -

X X 

(n 4- l)x 2x 
- Az + 3 + « + 4 -

2x 3x 
n — x 4- « 4- 1 — x 4- w 4- 2 — x 4- « 4 - 3 — x 4- • • • ' 

PROOF. TO prove the first equality, replace y by n and x by — ;t//3 in 
(21.1). Letting ß tend to oo, we easily deduce the desired result. 

To prove the second equality, employ (21.3) and proceed in precisely 
the same manner as above. 

COROLLARY l.Ifx is any complex number, then 

V"V «y 4/t" S Y 

1 F 1 ( l ; x + l ; x ) = l + T + T + T + T + . . . . 

PROOF. Let n = x in the second equality of Corollary 1. 

ENTRY 22. If\x\ < 1, then 

ßx 2Fl{-aiß + l ; r + 1; -x) 

r *Fi(-a,ßm,r> - * ) 

= ßx (ß + l)(q + r + \)x 
r - (a 4- ß 4- l)x 4- r 4- 1 - (a + j8 4- 2)x 

(/3 4- 2)(a 4- r 4- 2)x 
4- r + 2 - (a + ß + 3)* + ' ' ' ' 

PROOF. Since [47, p. 67, eq. (4)] 

2Fi(a, b; c; x) = (1 - * ) « " * 2 F j c - a, b; c; x
 X_ A 

we may write (21.6) in the form 

•c :fi(r-».H + Ur-'-';Tè-i-) 

= x (a + l)(ß + l)(x - xt) 
Y - (1 + a + ß)x + r + 1 - (3 + a + ß)x 

(a + 2)(ß + 2)(x - x2) 
+ r + 1 - (5 + a + ß)x + • • • ' 

provided that Rc(x) < 1/2. Letting u = x/(l - x), we find, after simpli
fication, that 



CONTINUED FRACTIONS 265 

u (a + l)(/3 + \)u 
r(u + 1) - (1 + a + j3)w + (r + l)(w + 1) - (3 + a + /3)w 

(a + 2)(/3 + 2)« 
+ (7- + 2)(w + 1) - (5 + a + ß)u + 

provided that |w| < 1. Replacing a by a 4- y in the foregoing equality, 
we readily complete the proof. 

Perron [57, p. 306] attributes Entry 22 to Andoyer [2], and, as we have 
seen, Entry 22 is equivalent to Nörlund's result (21.6). However, in the 
appendix to this paper, R. Askey points out that Entry 22 is really due to 
Euler. 

ENTRY 23. Write, for each nonnegative integer n, 

(23.1) ^ *!di_ «a±2_ =cn]£An(k)(-x)*9 bnx + bn+lx 4- bn+2x + ••• w^{) 

where An(0) = 1. Thencncn+i = a„, 

(23.2) An{\) + An+1(\) = - A _ = A ^ L , 
cn+l an 

A„(2) + A„+1(2) = AUX), 

(23.3) ^ ( 3 ) + ^ + 1 ( 3 ) = ^ ( l ) K , ( 2 ) - ^ + 1 ( 2 ) } , 

A„(4) + A„+1(4) = A„(l){An(3)-An+1(3)}-A„(2)A„+1(2), 

and, in general, for k ^ 3, 

^ ( * ) + A„+1(k) 
(23.4) *_2 

= ^ ( 1 ) K ( * - 1) - A„+1(k - 1)} - 2 An(j)A„+1(k - j). 

PROOF. From (23.1), 

3^ = c„ g ^„(*X-*)*, 
bnx + cn+1J^A„+l(k)(-x)" *=» 

or 

a. = cJb„x + c„+1£ An+1(k)(-x)*)jr A„(k)(-x)* 
\ *=o /*=o 

oo * 

*=1 *=0/=0 
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Now equate coefficients of xk, k ^ 0, on both sides. For k = 0, we find 
that c„c„+1 = a„, and, for A; ^ 1, we deduce that 

(23.5) An(k) + An+l{k) = A . ^ ( * - 1) - g An(j)An+1(k - 7). 
Cn+1 j=\ 

Letting k = 1, we immediately deduce (23.2). Using (23.2) in (23.5), we 
find that, for k ^ 2, 

^ ( * ) 4- ^ + 1 ( * ) = {^(1) + An+1(\)}An(k - 1) - £ \ 0 V , + i ( * - . / ) . 

Upon simplifying the equality above, we deduce both (23.3) and (23.4). 

EXAMPLE. We have 

y.m ) i^x •* ^A 3x 4x \ 2_ J ßx _x_ 2x _ _ 
, - o U V w 1 + 2 + 3 + 4 + •••/ 3TT' 

PROOF. From Entry 47, for x > 0, 

1 + **A* + 1) _ C"e-t({ j y d = l + 2 x 3x 4x 
i + x- Jo V x)at 1 + 2 + 3 + 4 + — * 

Taking the reciprocal of both sides, we find that 

H \ = * x 2x_ 2>x Ax 

It therefore remains to show that 

(23.6) L(x) = ^ - ^ + o(l), 

as étends to 00. 

Write 

L(x)=. 
-i- e*xr*r(x + 1) + 0X 

When x is a positive integer, Ramanujan [62], [63, p. 324] derived an 
asymptotic expansion for 0X as JC tends to 00. Watson [75] later established 
the expansion for general x > 0. See also the corollary to Entry 48 below 
and Entry 6 of Chapter 13 [64, p. 156], [11]. Using this asymptotic series 
(48.4) and Stirling's formula, we find that 
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j / \ x 

v
/ | 5 + 0(x-^) + i - + O ( l / x ) 

— ßx __ _2_ , 0^-1 /2^ 
""VIT 37r + U l X j ' 

as x tends to oo. Thus, (23.6) is established, and the proof is completed. 

ENTRY 24. Let n and x be any complex numbers, and let r be any positive 
integer. Let 

f(n, r, x) = J] \ . , fVr- • 

Then 

(24 n A x x x x = f(n + l> r " - 1 ^ ) 
K ' n H-/2 + 1 + / 2 + 2 + >z+3 4 ••< +n + r f(n, r, x) 

PROOF. We shall induct on r. For r = 1, 

« + « + 1 n 4 x/(« + 1 ) j 
w(« 4 1) 

and so (24.1) is established for r = 1. 
Now assume that (24.1) is true when r is replaced by r — 1 for some 

fixed integer r, r it 2. Then applying the induction hypothesis with n 
replaced by n 4 1, we find that 

n +/I + 1 + / ! + 2 + . . . + / ! + r * /fri+ 2, r - 2 , x ) 

y 2 4 2 ) ,z + i /fr* + U r - l , x ) 

_ q/fr? + 1, r - 1, x) 
nf(n + 1, r - l, *) + - ~ y / f r * 4 2, r - 2,'jc) 

We are thus led to examine, for A: ̂  1, 

n(-r + k)k (-r + k)^ 
(n 4 l W - n - r)**! + (n + l)^-#f - r)M(fc - 1)1 

= ( - r + /:),_! / n(-r + 2k-l) A 
(n 4 l)k(-n - r)k_x(k - 1)! \ ( - n - r 4- & - \)k "*" 7 

^ ( - r 4- fc)^ (n + k)(-r 4- fc - 1) 
(H 4 Dr f -n - r ) ^ * - 1)1 ( - n - r 4 A: - l)k 

(~r + k-\)k _ n{-r + k - l)è 

(n 4 1 ) M ( - » - r ) ,*! (*)*(-* - r ) ^ ! * 
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Hence, 

(24.3) nf(n + l9r-l9x) + -^yRn + 2, r - 2, x) = nf(n, r, x). 

Substituting (24.3) into (24.2), we complete the induction. 
Entry 24 is a rather remarkable result, for it gives a continued fraction 

expansion for the quotient of hypergeometric polynomials, 

2^3^ ~ 2 r , —j; -r - 1, n, -r - n; x) 

ENTRY 25. Suppose that either x > 0 and n2 < 1 or that \x\ > 1 and n2 

is real. Then 

I\H(x + n + l))r(M(x-*+ 0) _ 4 n2-\2 n2-32 n2-52 

r(K(x+n+ì))r(M(x-n+3)) x - 2x - 2x - 2x -•••' 
Entry 25 is originally due to Euler [26, §67]. Stieltjes [68], [70, pp. 329-

394] derived Entry 25 from Entry 22. Still another proof may be found 
in Perron's book [57, p. 35]. 

PROOF. We offer another proof which is based upon Entry 39 and 
so requires that |x| > 1. First, rewrite Entry 39 in the form 

-fr + ±(x2 + /2 _ „2 _ !) 

= X2 _ I + 1 2 - " 2 1 2 - / 2 3 2 - " 2 3 2 - / 2 

1 + x2-l + 1 + x2-\ + 

or 

1 
8/P 4- }{(x2 + /2 _ „2 _ i) 

1 12 - A?2 I2 - /2 32 - n2 32 - / 2 

~ x2 - 1 + 1 + x2 - 1 + 1 + x2 - 1 + • • • 

1 ( l 2 - f t 2 ) ( l 2 - / 2 ) (32 - n2)(32 - /2) 
x2-n2 - x2 - /2 - n2 + 9 - x2 - / 2 - n2 + 33 -

by Entry 14. Now take the reciprocal of both sides above and then solve 
for P, which again involves taking reciprocals. Hence, 

p = 8 (12 __ W2)(12 - / 2 ) 

M(*2 - / 2 - n2 + 1) - x2 - / 2 - «2 + 9 

(32 - M2)(32 - /2) 
- x2 - / 2 - n2 + 33 - • • • ' 
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Replacing x by x + / , we find that 

r(H(* + n + \))IXH(x -"+V) 
r(H(x + n + 3))/XK(* - « + 3)) 

, r(K(x + 2/ + n + \))f(H(x + 2 / - /i + 1)) 
X AK(* + 2/ + a + 3))AK(* + 2 / - » + 3)) 

8/ (l2 - «2)(12 - /2) 
>£(x2 + 2x/ - n2 + 1) - x2 + 2x/ - «2 + 9 

(32 - n2)(32 - /2) 
- x2 4- 2x/ - n2 + 33 -

( l 2 - ft2)(l//2 - 1) 

}i(2x + (x2 -n2 + 1)//) - 2x + (JC2 - w2 + 9// 
(32 - K2)(32//2 - 1) 

- 2x + (x2 - «2 + 33)// 

Now let / tend to — oo. By using the reflection formula for the ^-function 
and Stirling's formula, we deduce that 

lim / AKfr + 2/ + n + 1 ) ) /W* + 2/ - /i + 1)) s 2 
.il-oo AKCJC + 2/ + « + 3W(H(x + 2/ - /i + 3)) 

and so Entry 25 readily follows. 

COROLLARY 1. Ifx > 0, /Ae/i 

/^(Kfr + i ) ) _ 4 _!!_ ü _ ^ 

/^(KC* + 3)) x + 2x + 2x + 2x + • • • * 

PROOF. Set « = 0 in Entry 25. 
Corollary 1 was first proved by Bauer [6] in 1872 and was communicated 

by Ramanujan [63, p. xxvii] in his first letter to Hardy. 
If we put x = 1 in Corollary 1, we obtain Lord Brouncker's continued 

fraction for it, 

_ A if. 3^ &_ 
% 1 + 2 + 2 + 2 + ••• ' 

For a very interesting historical account of Brouncker's continued frac
tion, see Dutka's paper [19]. 

COROLLARY 2. ifx > 0, then 

r ( | ( , + 3))/(|(, + i ) ) _ 8 M 5 . 7 9 . n 

r ( | ( x + 7 ) ) / ( | ( x + 5)) ^ + 2x + 2x + 2x + . • • • 

PROOF. Replace x by x/2 and « by 1/2 in Entry 25. 
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ENTRY 26. If\x\>\ andn2 is real, then 

r\H{x + n + i))rHH(x -n + p) 
r\H{x + n + 3))r2(K(* - * + 3)) 

8 l2 - n2 l2 3 2 - K 2 32 

}{(x2 + "2 - 1) 4- 1 4- x2 - 1 + 1 + x2 - 1 + • • • 

= 8 J_ I2 - "2 3^ 32 - K2 

HC*2 - n2 - 1) + 1 + x2 - 1 + 1 + x2 - 1 + • • • * 

PROOF. TO obtain the first equality, set / = 0 in Entry 39. The second 
equality follows from Entry 39 by letting n = 0 and replacing / by n. 

Alternatively, the two continued fractions can be shown to be equal 
by an application of Entry 15. Let h = —n2 and ak = (2k — l)2, k ^ 1, 
and also replace x by x2 — 1 in Entry 15. The desired equality easily 
follows. 

COROLLARY. If\x\ > 1, then 

rHH(x + 0) = 8 J_ l2 3^ 32 

rHH(x + 3)) \i(x2 - 1) + 1 + x2 - 1 + 1 + x2 - 1 + • • - * 

PROOF. Set n = 0 in Entry 26. 

The next theorem is found in Ramanujan's [63, p. xxix] second letter 
to Hardy. The first proof in print was provided by Preece [59]. Entry 27 
can also be found in Perron's book [57, p. 37, eq. (31)]. 

ENTRY 27. Suppose that x, y > 0. Then 

(1 + y)2 + n (3 + y)2 4- n (5 + y)2 + n 
•A T 

= y + 

ENTRY 28 

(28.1) 

2x + 

(1 + x)2 + 
2y 

.Let x > 0. 

x + 
lim 
«->oo n + 

2x 

n (3 4-
4-

Then 

n2 + l2 

2x 
x2 - l2 

2n 

X)2 

2y 

4- " 

+ " 

4-

+ n 
+ 

n2 4- 32 

2x 
x2 - 32 

2« 

(A 

4-

+ 

2x 

+ x)2 

2y 

+ 
4- n 

= 1. 

• 

4-

PROOF. Apply Entry 25 with n replaced by in to find that, for x > 0, 

r(H(x + in 4- 1))/XK(* - ft» + 1)) 
r(H(x + ïn + 3))nK(x - in + 3)) 

= ± n2 4- l2 n2 + 32 

x 4- 2x 4- 2JC 4- • • • ' 

or 
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A IXH(x + in + 3))I\H(x - in + 3)) 
mi(x + in + l))I\H(x - in + 1)) 
_ «2 + 12 „2 + 3 2 
— A "t" 

2JC + 2JC + • • • * 

Secondly, apply Entry 25 with x and « interchanged to obtain, for 
« > 0, 

4 /XK(* + * + 3))AK(* - * + 3)) 
AK(" + * + i))AK(« - * + D) 

X2 _ 12 *2 _ 32 

2« - 2« -

Now, 

,. A H ( * + /« + 3))ny4(x - in + 3))r(H(n + x+ 1)) A K f r ~ * + D) - 1 
i™ AM(*+/» + i))AH(*-A»+i))/XK(«+* + 3))/XK(«-* + 3)) ' 
where we have applied Stirling's formula for the quotient of 2 /"-functions 
[47, p. 33]. Thus, we have shown that 

lim 
» - • c o 

lim 
n->oo 

A 

« 

« 

« 

+ 
— 

_ 

+ 

n2 + 12 
2* 

X2 - 12 

In 

X2 _ 12 

In 
x2 - l2 

2« 

+ 

-

+ 

«2 + 
2x 

x2 -
In 

x2 -
2x 

x2 -
In 

32 

3i 

i2 

32 

+ ••• 

_ . . . 

+ ••• 

(28.2) lim ^ / _ , 2 ^ „ / _ , 2
 T = 1. 

However, 

(28.3) lim 2 _ 12 -g Ï2 ~ *» 

because the numerator and denominator above are both of the form n -f 
0(1/«) as n tends to oo. Combining (28.2) and (28.3), we deduce (28.1). 

In his first notebook [64, vol. 1, p. 160], Ramanujan states a more precise 
version of Entry 28, 

*+ 

« + 

«2+12 

2x 
x2-l2 

In 

• «24-32 

' + 2x + • • • 
Jt2 -32 

+ 2n + - •. 

1 - e~™ 
1 _ 2e~*n/2 sin(7rx/2) + e~%n 

Ramanujan probably intends the right side to be an approximation to the 
left side for n large. However, the right side is 1 + 0{e~nn/2) as n tends 
to 00. A close analysis of our proof of Entry 28 shows that the left side of 
(28.1) is of the form 1 4- 0(1/«) as n tends to 00 and that the expression 
which is equal to 0(1/«) cannot be improved. Thus, Ramanujan's claim 
does not appear to have a valid interpretation. 
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ENTRY 29. Jfx > Oandn2 < 1, then 

yW (~0*+1 (-1)*+1 ) 
feilx + n + 2k - I + x - /i + 2* - 1 J 

1 l2 - «2 22 32 - «2 42 52 - n2 

x + x + x + x + x + x H * 

FIRST PROOF. Our first proof merely consists of a reformulation of a 
result found in Perron's book [57, p. 33, eq. (12)], 

A l2 - n2 22_ 32 - n2 42_ 52 - M2 

x + x + x + x + x + x H 
(29.1) 

- K ^ H ^ M ^ 
where * > 0 and n2 < Ì. Now employ (0.1) and simplify to complete the 
proof. 

In fact, Entry 29 was first proved in print in 1953 by Perron [56] who 
derived it from Entry 34 below. 

SECOND PROOF. Since 

we find that, for Re(x) > - 1 , 

(29.2) *W sJo l^*. a_J_^. 

Then for Re(x ± «) > - 1, 

(29.3) J ° l + f 

= p^cosh^)^ 
J 0 cosh w 

where we have made the change of variable t = e~u. But for x > 0 and 
«2 < 1, Rogers [66] has shown that 

(29.4) f V - ^ " " > A , l 1!=*! 
J 0 cosh w x + x + 

22 32 _ „ 2 42 

x 4- x + * + • • • ' 

Employing (29.2) and (29.4) in (29.3), we arrive at the desired formula. 

COROLLARY. Ifx>0, then 

" (_1)*+1 _ J j_2_ 22_ 32̂  4^ 
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PROOF. Set n = 0 in Entry 29. 

ENTRY 30. Suppose that x > 0 and n2 is real. Then 

1 1 OO f 

eoi* - « pb I * — « + 2Ä: + 1 jt 4- ft + 2/c + 1 j 

= A 1202 - "2) 22(22 - ft2) 32(32 - ft2) 
x + 3x + 5x 4- Ix + • 

FIRST PROOF. Letting 

* = A M ( * + m + ft + 1))AM(* -rn- ft 4- 1)) 
and 

T = A H ( * + ™ - n + 1)) AMC* - m + ft + 1)), 

we first write Entry 33 in the form 

R- T _ mn (m2 - l2)(ft2 - l2) (m2 - 22)(ft2 - 22) 
R + T x + 3x 4- 5x 4 

Thus, 

1 ^ - T _ « 12(12 - ft2) 22(22 - ft2) 
(30.2) lim 

m-* co m R + T x + 3x 4- 5x + 

On the other hand, a direct calculation with the use of L'Hospital's rule 
shows that 

lim 1 R 

(30.3) m ^ m 

= f J ! - ! I 
Ö U - f l + ä + l x 4- ft 4- 2k 4- 1J * 

Combining (30.2) and (30.3), we finish the proof. 

SECOND PROOF. This proof requires that ft2 < 1. Proceeding in some
what the same way as in the second proof of Entry 29, we find that, for 
Re(jc ± ft) > - 1 , 

flfx-n __ fx+n °° f 1 l ì 
(30,4) Jo 1 - f 2 * = S U - n 4- 2k + 1 """ x + ft 4- 2* + 1/' 
On the other hand, letting / = e~~* and using a theorem of Stieltjes [67], 
[70, pp. 378-391], which was also proved by Rogers [66], we find that, for 
x > 0 and ft2 < 1, 

r i ,r-„ __ fx+n dt _ r~c_xu s i n h (nu) ^ 

H0 5Ì 1 """ *2 S Ì n h W 

= J ^ l 2 ( l 2 - f t 2 ) 22(22 - ft2) 
x + 3x 4- 5x 4- • • • 

Combining (30.4) and (30.5), we complete the second proof. 
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COROLLARY. Ifx > 0, then 

2 V _ — 1 — — = J_ l 4 24 34 

èb (* + 2k + l)2 x + 3JC + 5* + Ix + • • • ' 

PROOF. Divide both sides of (30.1) by n and let n tend to 0. 
If we set x = 1 in the Corollary above, we deduce that 

-Lrm = * ! = !- Ü ?i ?i 
2 w J 12 1 + 3 + 5 + 7 + • • • * 

For a simple proof of this expansion, see a note by Madhava [48]. 

ENTRY 31. Suppose that \x\ > 1 a/id «2 is real, or suppose that x > 0 
and n2 < 1. JAe/î 

f f (-îy ( -D* 
jÈblx - /! + 2fc + 1 * + « + 2k + 1 

AI 22 - « 2 2 2 42-A22 42 
x2 - 1 + 1 + x2 - 1 + 1 4- x2 - 1 + 

FIRST PROOF. From Entry 36, if \x\ > 1 and n2 is real, 

1 1 - P n 22-n2 22 42-« 2 42 
(31.2) lim 

/ - o ' l + P JC 2 - l + 1 + ; c 2 _ l + 1 + X2 _ ! + . . . ' 

On the other hand, a direct calculation with the use of L'Hospital's rule 
gives 

/->0 / U P 

(31.3) 

- £ / - ! » + ! 
^ o l x + A2 H- 4Â: — 3 jc — /1 + 4ifc — 1 x-n+4k-3 

1 + x + n + 4 f c - 1J" 

Equalities (31.2) and (31.3) taken together yield (31.1). 

SECOND PROOF. AS in the second proofs of Entries 29 and 30, we easily 
find that, for Re(x ± n) > - 1, 

y f ( - 0 * _ (-»)* ) = fV« . sinh(nn) du 

^Q\x - n + 2k + I x + n + 2k + 1 / Jo cosh w 

But Stieltjes [69], [70, pp. 402-566] and later Rogers [66] have shown that, 
for x > 0 and n2 < 1 ? 

j. 
_xu sinhjnu) , n 22-n2 22 42-n2 42 

oe coshw *2-l+ 1 +x2~l+ 1 + x2- l + 
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The foregoing two equalities imply (31.1). 

COROLLARY. Ifx>09 then 

(-1)* 1 22 22 42 42 
2 §,(*"+ 2k + 1)2 JC2- 1 + 1 + JC 2 - 1 4- 1 + x2 - 1 + 

PROOF. Divide both sides of (31.1) by « and then let n tend to 0. 

If we put x = 2 in the foregoing Corollary, we obtain the following 
elegant continued fraction for Catalan's constant G. 

ir = ? V _ Ì Z L D ^ _ - ? - - 1 _ 22_ 22_ 4̂  42_ 
JB> (2* + l)2 3 + 1 + 3 + 1 + 3 + • • • * 

Of course, similar continued fraction expansions for G can be obtained 
by setting x = 2n, where n is any positive integer, in the Corollary above. 
This same infinite set of continued fractions for G was independently 
found by H. Cohen (personal communication) who obtained them from 
a different formula. 

ENTRY 32(i). Ifx>09 then 

(32 1) 1 + lvf (-1)* - * 1 1 H 1 1 
(MA) i + *XLx + 2k X+ X + X + X + • • • • 

PROOF. Let 

= ^ n) _ r ( | ( ^ n + 3))r(|(, - « + 3)) 

/(.!_(* + „ + l ) ) / ^ * - „ + !)) 

Then by Entry 25, for x > 0 and « ^ 1, 

or 

(32.2) 

4P = 

4/>-
1 -

x + 

- x 
n 

12 « „2 
2x 

1 +/! 
2x 

+ 

+ 

3 2 - « 2 
2x 

32 - n2 

2x 

+ 

+ 

Ü 

52 

- « 2 
2x 

- « 2 

2x 

+ 

+ 
Note that P(x, 1) = x/4. We now let n tend to 1 in (32.2) and apply 
L'Hospital's rule on the left side. We then find that 

T M ^ M T + 'MT)} 
2 - 4 4 - 6 6 

2x + 2x + 2x + 2x + 

Simplifying each side above, we arrive at (32.1). 
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ENTRY 32(ii). Ifx>0, then 

i + 2 ^ (-*>* - 1 li i-iA ?i Ail 1 
jèi (* + *)2 * + * + x + x + jc + * + • • • ' 

PROOF. Let 

- < ^ ^ ) -

Then from (29.1), we find that, for x > 0 and n2 < 1, 

(32 3) 4 / p - * = 1 + n &_ 32 - n2 4*_ 52 - /i2 

Observe that P(x, 1) = 4/x. Letting n tend to 1 in (32.3) and employing 
L'Hospital's rule, we find that 

4g 5 P(* ,n )U 2 ^ / 1 _ 2 1 
/>2(x, 1 ) j ^ \(x + 4Â:)2 (JC + 4 * - 2)2 ' (JC + 4Jk - 4)2. 

= _2_ 2^ 2 » 4 4^ 4 » 6 
* + ; < + x + x + x + • • • * 

Replacing x by 2x, we deduce that 

1 + 9*2 V ( - 1 ) * - - 1 -?!_ ^ ^ ^ 4 . 6 
•*• è l (^ + A:)2 " 2x + 2x + 2x + 2x + 2x + • • • -

Simplifying the right side, we complete the proof. 
If we set x = 1 in Entry 32(ii), we deduce that 

m\ = u i ll 1 -2 2^ 2 > 3 3^ 
W j " M + 1 + 1 + 1 + 1 + ! + • • • • 

Putting x = 1/2 in Entry 32(H) yields another continued fraction for (7, 

1 l2 1 • 2 22 2 - 3 32 

2G = 1 + TJÏ + TÌ2 + T/2~ + T/I + ~T/2~ + T72" + 
ENTRY 32(iii). Ifx>0, then 

1 13 13 23 23 
2x(x+l) + 1 + 6 x ( x + l ) + 1 + 10x(x+i) + -

( 3 2 - 4 ) i _ _ _ . * 2« 
~2x 2 + 2 x + l -3(2x2 + 2x + 3 ) -5 (2x 2 + 2x + 7) 

3« 
•7(2x2+ 2x4-13) 
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PROOF. In Entry 35, replace x by 2x + 1. Then y = 4x(x -f 1) + 
2m — m2

9 and we need to require that x > 0. Also let / = n = m. Noting 
that f = 0 and using the second continued fraction of Entry 35, we find 
that 

r(^(2x + 2 + 3m))/*(^-(2jt + 2 - /»)) 

/ ( y ( 2 * + 2 - 3m))r*(±-(2x + 2 + m)) 

/ ( y ( 2 * + 2 + 3mj)r*Q(2x + 2 - /»)) 

/ ( y ( 2 * + 2 - 3w))/73(i-(2x + 2 + /w)j 

2m3 2 ( l -m) ( l 2 -™ 2 ) 2(1 + m)(l 2-m 2) 
y - 2m* + Ï + 3y 

2(2-m)(22-m2) 2(2 + m)(22 - m2) 
+ 1 + 5;; + • • • 

Now divide both sides of (32.5) by m3 and let m tend to 0. On the right 
side, we arrive at 

2 2 - 1 3 2 . I3 2 • 23 2 - 23 

(32.5) 

1 - P 
1 + P 

1 

= -

1 

-

+ 

4x(x+l) + 1 + \2x(x + 1) + 1 + 20x{x + 1) + • • • " 

Simplifying above, we obtain the former continued fraction of (32.4). 
Next, write the aforementioned continued fraction in the equivalent 

form 

1 J^ l3/3 23/3 23/5 33/5 
2x{x + 1) + 1 + 2x(x + 1) + 1 + 2x(x+ 1) 4- 1 + • • • 

Applying Entry 14 to this continued fraction, we deduce the equality 
between the continued fractions of (32.4). 

For brevity, set z = x 4- 1. For z > 1, it remains to examine, by (32.5), 

lim —5- -Î « 

OT_o w3 U P 

x{r(z) + ™ r(z) + ~~r(z) + ~^r\z) + ••• 3 
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= _ r\z) 3Hz)f(z) _ TW 
2f(z) + ir\z) r\z) 

2 dz* v r(z) y 2 ^lz; eh (z + *)3 • 
The proof is now complete. 

Ramanujan's second continued fraction in Entry 32(iii) is slightly in 
error [64, vol. 2, p. 149]. 

We might compare Entry 32(iii) with another continued fraction for 
C(3, x), 

4*3Ç(3, x) = l c + 2 + i Û . î l û . f e , 
^ V / X + X + X + X + X + — ' 

where, for fc ^ 1, pÄ = (&2(Ä: + l))/(4Jt + 2) and ^ = (*(* + l)2)/(4/c + 2). 
The last result was discovered by Stieltjes [67], [70, pp. 378-391]. 

Setting x = 1 in Entry 32(iii), we deduce the following beautiful con
tinued fraction for £(3). 

1 I 3 13 93 ?3 r(3) = 1 + _ —- _ -
^J) 2 - 2 + 1 + 6 - 2 4 - 1 + 10. 2 + • • • ' 

This continued fraction also follows from work of Apery [3]. 

ENTRY 33. Let x > 0 and suppose that m2 and n2 are real. Then 

r(H(x + m + n + 1))AM(* - ™ - « + 0) 
-r(H(x + m-n + \))r(H(x - m + n + 1)) 

AM(* + ro + « + i))/XH(* - m - « + i)) 
+ AM(* + w - « + i))/XM(* - m + n + i)) 

= mn (m2-l2)(n2-\2) (m2-22)(n2-22) (m2 - 32)(n2 - 32) 
x + 3x + 5x + 7x + • • • ' 

PROOF. Set 

iiX-ix + / + n + 1) + mW-i - (* - / - n + 1) + m) 
R(m) = —\± LAA L 

rU-(x - / + n + 1) + w W | ( x + / - A 2 + l ) + m 

and 

r(±-(x + /-n + l ) ) / (y(jc - / + / ! + 1)) 

/ ^ - ( * + / + / * + l ) ) / ( y ( ^ - ' - * + 1)) ' 
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Suppose that m i s a positive integer in Entry 35. Replacing x by x + m 
in Entry 35, we find that 

1 - R(m)T 
1 + R(m)T 

= 2/mn 4(/2-l2)(m2_12)(„2_12) 

x2 + 2mx-/2-n2 + 1 + 3(x2 + 2mx-/2 - n2 + 5) 

1 J 4-5(*2 + 2tfu--/2- tf2 + 13) + ••• 

= //? ( / 2 - l 2 ) ( f t 2 - l 2 ) ( l - l / m 2 ) 
x + (x2 - / 2 - n 2 4- l)/2w + 3(x + (x2 - / 2 - n2 + 5)/2w) 

( / 2 - 2 2 ) ( ^ 2 - 2 2 ) ( l - 2 2 / ^ 2 ) 
+ 5(x + ( ;c 2 - / 2 - r t 2 +13)/2m)+ • • • ' 

Now let m tend to oo in (33.1). By Stirling's formula, R{m) tends to 1 as 
m tends to oo. Hence, 

1 - T == (H ( / 2 - 12)(„2 _ 12) ( /2 - 22)(A72 - 22) 

T + 1 x + 3x + 5x + . • - * 

The convergence of this continued fraction is guaranteed by a theorem of 
Pringsheim [57, p. 47, Satz 2.11]. Replacing / by m above, we complete 
the proof. 

In fact, Entry 33 was first proved in print by Nörlund [52]. 
The continued fraction in Entry 33 is a special case of a more general 

continued fraction for a quotient of two integrals involving hypergeo-
metric functions that was discovered by Stieltjes [67], [70, p. 389, eq. (29)]. 

ENTRY 34. Let x > 0 and suppose that /2 and n2 are real Define 

rfax + / + n + l ) ) / ( j - (* + / - n + 1)) 

" r(\<<x -' + * + 0)/( j-(* - ' - / ! + l)) 

r[\(x - / 4- n 4- 3 ) ) r ( | - (x - / - * + 3)) 

r(^(x + ' + n + 3))r(±{x + / - * + 3)) " 

Then 

\ - P __ / l2 - n2 22 - / 2 32 - n2 42 - / 2 

1 + P x + x + x + x + x + • • • * 

Entry 34 was stated by Ramanujan [63, p. 350] in his first letter to 
Hardy. The first published proof was provided by Preece [60]. Another 
proof has been devised by Perron [55], [57, p. 34, eq. (15)]. 
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COROLLARY. Suppose that x > 0, -a2 < 4f, and -ß2 < y2. Put 

F(a,ß) -taWiL £ ± £ *±Q£L P + ^ 
v ^ \x + x + x + x + • • • 

Then 

F(a, ß) + F(ß9 a) = 2 p { i - ( a + /3), - i ( a + /3)}. 

This corollary was communicated by Ramanujan [63, p. 353] in his 
second letter to Hardy. Again, the first published proof was given by 
Preece [60], and, indeed, this result is a corollary of Entry 34. 

ENTRY 35. Suppose that either / , m, or n is a positive integer, or that 
y > 0 and m, /2 , and n2 are real, where y = x2 — (1 — ni)2. Define t — 
\n2 - /2)(1 - 2m) and 

P = 
rf^jix + / + m + n + l ) ) / 7 ^ * + / - m - /i + 1)) 

/ fy(* - / - m - /i + l ) ) / 7 ^ * - / + w + n + 1)) 

/YyCx - / + m - n + l ) W y O - / - m + /i + 1)) 

r(\(x + / - m + n + l )W-y (x + / + m - « + 1))' 

Then 

1 - P 
1 + P 

= 2/mn 4(/2-l2)(m2-l2)(A22-l2) 
x2_/2_m2_,z2_|_l + 3(x2_/2_m2_„2 + 5) 

(35.1) 4(/2-22)(m2-22)(f t2-22) 
+ 5 ( ; c 2 - / 2 - r a 2 - « 2 + 13)+ ••• 

2//W/I 2 ( l - m ) ( l 2 - K 2 ) 2 ( l + m ) ( l 2 - / 2 ) 

>> + t-2/2m + 1 4- 3j> + r 

2(2-m)(22-ft2) 2(2 + m)(2 2 - / 2 ) 
+ 1 + 5y + t + • • • " 

PROOF. The first equality was shown by Watson [77] to be a corollary 
of Entry 40. If either / , m, or n is a positive integer, Watson's limiting 
process is trivially justified. If neither / , m, nor « is a positive integer, 
then the alternative set of proposed conditions is sufficient to insure the 
convergence of the second displayed continued fraction and to justify the 
limiting process, as we shall see below. 

To prove the second equality, we employ the following generalization 
of Entry 14. 
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XX + 1 + *3 + 1 + • ' • + X2k_1 + 1 

= al a2a3 a4a5 
Xx + a2 - X3 + tf3 + tf4 - X5 + fl5 + « 6 - • • • 

"" *2*-l + fl2*-l + #2* ' 

which can be proved in precisely the same manner as Entry 14. Thus, 
with ax = 2/mn, a2 = 2(1 - m){\ - ft2), . . . and xx = y + t — 2/2m, 
x3 = 3y + f2,. . . , we find that 

2/mn 2([-m)(\-n2) 2 ( l + m ) ( l - / 2 ) 2(2 - m)(22 - ft2) 
j> + f - 2 / % z + 1 + 3^ + / + i 

2(2 + m)(2 2 - / 2 ) 2(k-m)(k2-n2) 
+ 5j + / + ••• + 1 

n ^ 9 . 2/iwi 4(1 - m2)(l - /2)(1 - ft2) 
1 j x2 - / 2 - m2 - «2 + 1 - 3(x2 - / 2 - m2 - n2 + 5) 

4( 2 2 - m 2 ) ( 2 2 - / 2 ) ( 2 2 _ „2) 

- 5(JC2 - / 2 - m2 - ft2 + 13) - • • • 

4((k - l)2 - m2)((k - l)2 - /2)((k - l)2 - ft2) 
- (2* - l)(x2 - / 2 - m2 - ft2 + 2Â:2 - 2k + 1) ' 

where we have used the easily proven identity 

(2/ + \)y + f + 2(y 4- m)(y2 - / 2) + 2(y 4- 1 - m)((J + l)2 - "2) 

= (2/ + l)(x2 - / 2 - m2 - ft2 4- 2/2 4- 2/ 4- 1). 

Now let & tend to oo in (35.2) to formally establish the second equality in 
(35.1). The second alternative set of hypotheses of Entry 35 insures that 
the yth numerator and yth denominator of the second continued fraction 
in (35.1) are positive for j sufficiently large. By a theorem in Perron's 
text [57, p. 47, Satz 2.11], this continued fraction converges. Hence, by 
(35.2), the first continued fraction in (35.1) converges as well. Thus, Wat
son's restriction that / , m, or ft is a positive integer is not necessary. 

ENTRY 36. Suppose either that n or / is an even positive integer or that 
\x\ > 1 and /2 and n2 are real. Let 

/ T ( - | ( ^ + / + « + 3 ) ) / T ( |<Jc- / - / i + 3)) 

r(^.(x + / + « + \))r(^{x - / - « + o) 

r(jix + / - / ! + \))r(±{x - / + n + i)) 
r(\{x + / - n + 3))r ( j - ( x - / + ft 4- 3)) * 
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Then 

\ - P = /n 22-n2 22-/2 42-n2 42-/2 

I 4- P x2 - 1 - / 2 + 1 + x2 - 1 + 1 + x^^l + • • • * 

PROOF. In the second equality of Entry 35, let m = 1/2 and replace x, 
n, and / by x/2, n/2y and / /2 , respectively. After simplification, the 
proposed identity follows. 

ENTRY 37. Suppose that \x\ > 1 and that / 2 and n2 are real Then 

2 

(37.1) - ^+/+ l ,+1)-s<^ /J l l+1)} 
= 2/n 2(\2-n2) 2 (1 2 - / 2 ) 

X 2 - l + A 2 2 - / 2 + 1 -f 3(JC2-1) + A22- /2 

4(22-n2) 4(22 - / 2) 
+ 1 +5 ( J C 2_ i ) + rt2_/2 + 

PROOF. Taking the second equality in (35.1), divide both sides by m and 
then let m tend to 0. Applying L'Hospital's rule on the left side, we 
readily deduce the desired formula with no difficulty. 

ENTRY 38. Assume that \x\ > 1 and that n2 is real. Then 

CO 1 CO 1 

£0(x-n + 2k+\)2 - a ( ; c + rt + 2Â: + l)2 

= n 2{\2-n2) 2 . I2 

(38.1) * 2 - l + « 2 + 1 + 3 ( x 2 - l ) + r t 2 

4(22 - n2) 4 - 22 

+ 1 + 5(x2 - 1) + n2 + 

4(12 - n2)lA 4(22 - A22)2̂  
x2 - n2 + 1 - 3(x2 - n2 + 5) - 5(x2 - w2+13) -

PROOF. TO prove the first equality in (38.1), divide both sides of (37.1) 
by 2 / and let / tend to 0. Applying L'Hospital's rule on the left side, we 
easily achieve the desired equality. 

The second equality in (38.1) is also easily established. First, divide 
both sides of the first equality in (35.1) by m and then let m tend to 0. 
Of course, this gives a second continued fraction for the left side of (37.1). 
Now divide both sides by / and let / tend to 0. 

ENTRY 39. Suppose that \x\ > 1 and that /2 and n2 are real. Then 
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P = 
r[\(x + / + n + l ) ) / 1 ^ * - / + n + 1)) 

/*( j-(* + ' + « + 3))r(-l(x - / + « + 3)) 

(39-1) fU-(x + / - w + 3 ) W i - ( x - / - a + 3)) 

8 12 - /|2 12 - / 2 

(x2 - /2 -f- n2 - l)/2 + 1 + x2 - 1 

32 - ft2 32 - / 2 

+ 1 + x2 - 1 + • • • * 

PROOF. First, we remark that a theorem of Pringsheim [57, p. 47] 
insures that the continued fraction on the right side of (39.1) converges 
for the designated ranges of the parameters / , n, and x. 

To prove Entry 39, we employ the following theorem found in [57, 
p. 27, Satz 1.13]. Suppose that all of the elements are positive in both 
continued fractions below. (Actually, the partial numerators and deno
minators only need to be positive if their indices are sufficiently large.) 
Assume also that each continued fraction converges. Then 

/>A 4- A . _̂ 2_ _03_ 

(39.2) ° + *! + *. + *. + -

bi + r1 + b2 + r2-r0(p2/<p1 + bz + rz-r1(p3l(p2 + 

where 

(39.3) <pk = ak- rk_x(bk + rk\ k > I. 

(The parameters rh k ^ 0, have no restrictions other than those imposed 
above.) 

Let 

F(X) = F(xy,n)=x2-'2 + »2-l + V-»2 

(39.4) 2 1 

12 - /2 32 - n2 32 - / 2 

+ x2 - 1 • + I + x2 - 1 + • • • * 

In the notation above, a2k = (2k - l)2 - /2 , a2k-i = (2k - l)2 - n2, 
b2k = x2 — 1, and 62*-i = U where k ^ 1. Write 

(39.5) r2Ä = dxk + Ci and r2it_i = d2k + c2, t ^ 1. 

Our first goal is to determine ci9 c2, rfx, and d2 so that ^ is constant for 
k>.l. 
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From (39.3), (39.5), and the aformentioned formula for a2k, it follows 
that 

(39.6) dYd2 = 4. 

Thus, from (39.3), we find that 

<P2k = (2k - 1)2 - /2 - (d2k + c2)(x2 - 1 + dxk + cx) 

= - {4 + d2(x
2- l+cx) + c2dx}k + 1 -/2-c2(x

2-1 + Cl) 

and 

(39 8) ^ - i = ( 2 * - l ) 2 - * 2 - R ( * - 1) + ^ { 1 + d2k + c2} 

= - { 4 + ^1( l+c2)-rf2(J1~c1)}/ : + l - « 2 + (öf1-c1)(l+c2), 

where k ^ 1. By our prescriptions, we require that 

(39.9) d2(x
2 - 1 + d ) + c 2 ^ = - 4 = rfxO + c2) - </2(</i - Cl). 

Using (39.6) and simplifying the extremal equality above, we find that 
d\ - 4 ^ + 4(1 - x2) = 0. We shall choose the positive root di = 2x + 
2. Thus, by (39.6), d2 = 2/(x + 1). 

Since we wish <pk to be constant, by (39.7) and (39.8), we need to 
stipulate that 1 - / 2 - c2(x

2 - 1 + cj = 1 - n2 + (dx - c^){\ + c2). 
Simplifying, we find that 

(39.10) cx - c2(x + 1)2 = /2 _ n2 + 2(JC + 1). 

On the other hand, from (39.9), 

(39.11) Cl + c2(x + I)2 = -(jc + I)2. 

Adding (39.10) and (39.11), we deduce that cx = \i(/2 - n2 - x2 + 1), 
and so 

/ 2 _ „2 _ X2 + ! 
c2 = - 1 - 2(JC + I)2 

Hence, we have determined the parameters c1? c2, dh and d2 so that <pk is 
constant, viz., from (39.5), 

(39.12) r2k = 2(x + 1)* + y ( / 2 - n2 - x2 + 1), Jfc è 1, 

and 

(39.13) r2*_1 = * , _ ! _ / « - r f - r f + l 
JC + 1 2(X + 1)2 

Let us set <pk = a. By (39.8) and our determinations above, 
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a = l - n2 + (jx _ Cl)(i + c2) 

_4([-~n2)(x+\)2-4(x+l)(/2--n2-X2+\) + (/2-n2-X2+l)2 

4(x + l)2 

_ - 4ft2(x + l)2 + {̂ 2 - n2 - x2 + 1 - 2(x + l)}2 

4(x + l)2 

__{/2-/*2-.y2 + 1-2(1 + n)(x+\)}{/2-n2-x2 + 1-2(1 — AI)(JC+1)} 
4 ( x + l ) 2 

The numerator above is a polynomial in x of degree 4. It is easily checked 
that the four roots of this polynomial are x + 1 = ±f ± n, where all 
four possible combinations of signs are taken. Hence, 

n Q ! 4x _ (x+\+/+n)(x+\-/-n)(x+\+/-n)(x+l-/+n) 
WAV a 4(x + l)2 

Recalling the definition (39.4), applying (39.2), and employing (39.12) 
and (39.13), we have shown that 

oc l 2 — n2 

F W = 2 / 2 - n2 - x2 +T~ + x2 - 1 4- 2x + 2 
jc + 1 2(JC 4- l)2 

J2_/2 3 2 - « 2 3 2 - / 2 

+ H-2 / (JC+1) + JC2 -1+2X + 2 + 1+2 / ( JC+1) + • • • 

(39.15) «(A: 4- l)2 \2-n2 \2 - /2 

{(jt + 2 ) 2 - / 2 + « 2 - l } / 2 + 1 + (X+1) (JC + 3) 

32-/?2 32 - / 2 

+ 1 + (JC+IXJC + 3) -f . . . 

_ q(x 4- l)2 

F(* + 2) ' 

For brevity, set, for any function/, 

I7±/(* + k±/±n) 
= f(x + k + / + n)f(x + k-/-n)f(x + k + /-n)f(x + k-/ + n). 

Hence, from (39.14) and (39.15), 

F(x)F(x 4- 2) = i - n±(Jc 4- 1 ± / ± /i), 

and so 

F(x)F(x 4- 2) n (x + 1 + / + n\ 
F(x 4- 2)F(* 4- 4) H ± U 4- 3 ± / ± n ) ' 

By iteration of this formula, we find that, for each positive integer m, 
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F(x) =
 mf\ n (x + 4k+\±/±n 

F(x + 4m) |Jo il±\x + 4£ + 3 ± / ± > i 

m-i (Jf(x + 1 ± / ± /i) + Ä;)m!m(*-1±/±w>/4 

= 7̂ 2 11 ± 11 71 \ * 
m ^(Jfix + 3 ± / ± n) + ikjm!m^-3±/±w)/4 

Hence, 

(39.16) lim / ( * ) w i \ = n + - 4 l ^ - " }—± 

From the definition of F(x) in (39.4), we easily see that 

(39.17) lim • "f Asr = i-. 
m-̂ oo F(x + 4m) 8 

Combining (39.16) and (39.17), we deduce (39.1). 

H. Cohen has communicated to us another proof of Entry 39. His 
proof is based upon Apery's method for accelerating the convergence of 
a continued fraction. For a complete description of this method, see 
Cohen's seminar notes [16]. Accounts are also given in [3] and [5]. 

We might note an interesting consequence of Entry 39. From Malm-
stén's integral representation for Log r(z) [78, p. 249], we find that 

Log P = I ( S*I [ - ^ 2.-<)f 

where 2]± indicates a sum of four terms with each possible combination 
of signs taken. Simplifying, we find that 

g-'*/4cosh(/;/4)cosh(ft;/4) __ A dt_ 
L o g / > = 2 l o \ co8h(//4) - Jt 

(39.18) - 2 f O O c - ' / c o s h ( / ° c o s h ( n 0 - lY*' -2["'e~*'~e~x,dt 
Jo V cosh / I t J 0 ; 

= 2 j j ^ ( ^ g 2 « - l ) * + 2 Log(4/*), 

by Frullani's theorem [20, pp. 337-342]. Exponentiating (39.18) and 
combining the result with (39.1), we deduce that 

(39.19) U ° l C 0 S h r h ) 

x2/2 l 2 - / i 2 l 2 - / 2 Vj-n^ 3 2 - / 2 

~ ( ; c 2 - / 2 + « 2 - l ) / 2 + 1 + x 2 - l + 1 + x 2 - ! + • • • ' 
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where 0 g |/ | , \n\ < 1 and x > 1. 
The expansion (39.19) appears to be new. It generalizes a result of 

Rogers [66] and is similar to results of both Rogers [66] and Stieltjes 
[67], [70, pp. 368-391]. 

ENTRY 40. Let P = ft r(\i(a ± ß ± r ± S ± e + Ì)), where the 
product contains 8 gamma functions and where the argument of each gamma 
function contains an even number of minus signs. Let Q = ft AMO* ± ß ± 
y ± Ö ± e 4- 1)), where the product contains 8 gamma functions and where 
the argument of each gamma function contains an odd number of minus 
signs. Suppose that at least one of the parameters ß, ^, <?, e is equal to a 
nonzero integer. Then 

(40.1) P - Q _ 
P + Q 

Zaßroe 
l{2(a4 + iS

4 + r
4 + 54 + £4+l)--(a:2 + /32+7-2H-(52 + ^-l)2---22} 

64(a 2 - l2)(/32- l2)(r
2 - l2)(g2 - l2)(e2- l2) 

+ 3{2(a* + ß* + r
A + S* + e*+\)-(a2 + ß2 + f + d2 + e2 - 5 ) 2 - 6 2 } 

64(q:2 - 22)(ß2 - 22)(r
2 - 22)(g2 - 22)(e2 - 22) 

+ 5{2(a4 + /34 + r4 + ^4 + ^ + 0 - ( a 2 + /32 + r2 + (52 + ^ - 1 3 ) 2 - 1 4 2 } + . . . 

Entry 40 is certainly one of Ramanujan's crowning achievements in the 
theory of continued fractions. Watson [77] has given the only published 
proof of Entry 40. Of course, under Watson's hypotheses, the continued 
fraction terminates. It would be very desirable to have another proof which 
does not require that at least one of the parameters ß9 y, 8, s be a nonzero 
integer. 

In an address before the London Mathematical Society in 1931, Watson 
[76] discussed Entry 40 but incorrectly wrote 9 and 10 instead of 13 and 14, 
respectively, in the last recorded denominator above. In a footnote of 
[77], Watson remarked that "Through an error in copying which occurred 
when I previously published an enunciation of the theorem. . . ." How
ever, Watson did copy the result faithfully; Ramanujan had made the 
same error in [64, vol. 2, p. 152]. Throughout the notebooks, Ramanujan 
normally did not completely state identities involving sequences, but he 
did usually give enough terms to determine the sequence. In particular, if 
a sequence is linear, Ramanujan often gave only two terms, while if a 
sequence is quadratic, he would give three. In the first notebook, he only 
stated two terms of the sequences In2 + In + 1 and In2 + In + 2; i.e., 
1, 5 and 2, 6, respectively, that occur on the right side of (40.1). This was 
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probably carelessness on his part for he most likely knew the quadratic 
patterns of the sequences. When he wrote his second notebook, a revised 
enlargement of the first, he decided to add one more term. However, he 
evidently did not rederive his identity and erroneously assumed that the 
two sequences are linear. Ironically, Watson's statement of Entry 40 in 
[77] also contains a misprint. Watson [77] also obtained a ^-analogue of 
Entry 40. 

ENTRY 4L //Re(x) > 0 or ifRc(x) < - 2 , then 

2 F i ( - j 8 , l ; r + 1; - x) 

riß + \)r(r + i)0 + x)ß+r r 
riß + r + !)*r (ß + \)x + l - r 

i(i - r)jx + i) 2(2 - r)jx + i) 

- (j8 + 2)x + 3 - y - iß + 3)x + 5 - r -

PROOF. From [21, p. 108, formula (2)], 

2Fi(-j8, \\r + 1; - * ) 

n-ß)riT)x—2jFl(1' * - r> 0 + 2, -1/*) 

riß + i)/xr + i)(x + 1)^ 
Ais + r + i)*r 

Now apply (21.3) with /3, 7-, and x replaced by — 7% /3 + 1, and 1/x, 
respectively, to deduce that 

a i ~ rix i(i - r)(i + i/x)/x 
1 ' ~ j8 + 1 + (1 - r)lx - ß + 2 + (3 - r)lx 

2(2 - r)(l + \!x)lx 
- ß + 3 + (5 - r )/x - • • • • 

Combining (41.1) and (41.2), we obtain an equivalent form of the pro
posed formula. 

ENTRY 42. Ifx > 0, then 
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xFiO ; n 4- 1 ; x) 

^exfjn+l) _ n \-n J^ 2~n A 3-w _3_ 
Xn X + 1 + * + 1 + X + 1 + X + " 

(42.1) 
^ ^ r ^ + l ) , ft 1(1 -n) 2(2-n) 3(3 -zfl 

;tw x 4-1 — AÏ — x 4- 3 — « — x + 5 — « — .x 4- 7 — « — • • • ' 

PROOF. In Entry 41, replace x by x/ß and 7- by n to find that 

2 ^ - / 3 , l ; / i + 1; -*/|8) 

__ r(ß + OA« 4- 1)(1 4- x/ß)ß+» r 
r(ß +n + \)ixlßf iß 4- l)jc/j8 4- 1 - n 

1(1 - /i)(l + x//3) 2(2 - n)i\ + jc/j3) 
- (|8 + 2)*//3 4- 3 - n - iß 4- 3)x//3 4- 5 - n -

Letting /3 tend to 00, we deduce the second equality in (42.1) at once. 
To obtain the first equality in (42.1), apply Entry 14. 
Entry 42 was first discovered by Legendre [46]. See also Nielsen's 

book [50, p. 217] for a proof. 

COROLLARY. Ifx 

Ä (-0* _ 
hkl(n + k) 

> 0, then 

fin) e-* 
xn x + 

1 - / 7 
1 4-

2 
4- 1 

X _2_ 
X 4-

PROOF. Multiplying both sides of (42.1) by e~x/n and comparing the 
resulting equality with that above, we see that we must show that 

(42.2) e-*Z 7 ^ - = S-t- X) 

^0 (4+1 ^o^-!(« + *) ' 

However, (42.2) is just a special case of a theorem due to Kummer [40] 
and rediscovered by Ramanujan in Chapter 10. In fact, in [9, Entry 21], 
replace x by — x and n by n 4- 1, and lastly set m = n to deduce (42.2). 

ENTRY 43. If x > 0, /Ae/i 

00 xk 

S T r y . . . (2* + i f 

(43.1) = J f e . * - - L 1 2 3 4 _ S _ 
v 2 x J C + 1 + J C + I 4 - J C + 1 H 

~V2^ 
^ / 2 __ 1 1 . 2 3 - 4 5 - 6 

2x x + Ì - x -h 5 - x + 9 - x-i-13 

PROOF. Putting n = 1/2 in Entry 42, we find that 
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v» (2x)* 
h 1 . 3 . . . (2k + 1) 

= /1LPX-±1?L ll2 * 3 / 2 2 5/2 
V 4;c x + 1 + J C + 1 + X + x + • • • * 

Replacing x by x/2, we obtain an equivalent form of the first continued 
fraction of (43.1). 

The second continued fraction in (43.1) follows in the same way from 
the second continued fraction of (42.1). Alternatively, apply Entry 14 to 
the first continued fraction in (43.1). 

COROLLARY 1. For x > 0, 

n * j " J o at " 2 2x + x + 2x + x + 2* + -. - * 

PROOF. By (42.2), for x, n > 0, 

Jo H k\(n + k) H(n)k+1 

Let Ai = 1/2 and replace / by f2 and x by x2. Applying Entry 43, we then 
find that 

F(x) = xe-* Z o i m ; = *e-* g ! . 3 . . • (2* + 1) 

= xe-*L[J*é*- X ± 2 i 4 -*-
43c2 2x2 + 1 + 2x2 + 1 + 2x2 + 1 + • 

which is equivalent to the proposed formula. 

COROLLARY 2. As x tends to 00, 

(43.3) ^M.dt = ^ { ^ + Log(2*)) + o(l), 

where F is defined in Corollary 1 and y denotes Euler's constant. 

PROOF. Integrating by parts, we find that 

f*ZCi dt = F(x) Log x - Ve-'2 Log tdt 
Jot Jo 

= (T°V<2^- fV'2 dt]hog x 
(43.4) V J ° 3x ì 

- ( ["e-* Log tdt - f°V<2 Log tdt 

= A^L Log x - j V < 2 Log fA + o(l), 



CONTINUED FRACTIONS 291 

as étends to oo. 
From the definition of r(x), 

/•oo 

/"(*) = 4 1 e-Pt**-1 Log tdt. 
Jo 

In particular[47, p. 13], 

(43.5) /"(1/2) = 4 f°V<2 Log tdt = - </W(r + 2 Log 2). 

(In fact, Ramanujan [64, vol. 2, p. 92], [8, §6, cor. 3] established (43.5) 
in Chapter 8.) Employing (43.5) in (43.4), we deduce (43.3) at once. 

ENTRY 44. For x > 0, define 
/•oo 

<p{x) = 1 e-'l(x + t) dt. 

Then, for x > 0, 

(44.1) J o L_l_ A = g I ^ * = r + Log x + er* <p(x), 

where y denotes Euler's constant. 

PROOF. At the outset, we remark that essentially the same calculations 
are made in slightly more detail in our edited version of Chapter 4[12, 
p. 103]. 

The first equality in (44.1) is readily established by writing the integrand 
as a Maclaurin series and inverting the order of summation and integra
tion. 

Next, making a simple change of variable in the definition of cp and 
using a well-known integral representation for y [53, p. 40], we find that 

e-xfix) + y + Log* = j-Çdi + ft^p* - fitl* + J;*. 

Upon simplification, we complete the proof of the second equality in 
(44.1). 

ENTRY 44(0- As x tends to oo, 

- (-l)*fc! 

Entry 44(i) was established by Euler, and a rigorous discussion of it 
can be found in Hardy's book [33, pp. 26, 27]. Ramanujan also stated 
this result in Chapter 4 [64, vol. 2, p. 44], [12, p. 102]. 

For Entry 44 (ii), we quote Ramanujan [64, vol. 2, p. 153]. 

ENTRY 44(h). ç(x) lies between l/x and l/(x + 1) and very nearly 
equals ^<p{x + l)/x. 

PROOF. Letting n tend to 0 in the corollary of §42, we find that, for x > 
0, 
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(44.2) ki k\k „%\n x» ) + e J(X) 

= r + Log x + e-'f(x), 

where 

(44.3) /W = i + | + i + f + | -+ . . . . 

Comparing (44.1) and (44.2), we deduce that/(x) = <p(x). 
Now, from (44.3), it is immediate that <p(x) < \jx. Secondly, if 

we can write (44.3) as 

, X __ 1 1 1 

^ W "" x + 1/(1 + l/F) - ^ , F > x + 1 * 
* + 1 + F 

Thus, Ramanujan's upper and lower bounds for <p(x) are established. 
Squaring the asymptotic series from Entry 44(i), we find that, as x 

tends to oo, 

***>~i-£ + £-£ + -
On the other hand, also from Entry 44(i), as x tends to oo, 

ff(*+l) 1 _ 1 2 
x ~ JC(JC+1) x(;c+l)2 x (x+l ) 3 

-*('-*•*-*)-*(• -$+})+#} -iHi) 

Thus, the initial three terms of the asymptotic expansions for cp2(x) and 
<p(x + \)jx agree. Hence, Ramanujan's approximation for <p(x) is reason
able. 

ENTRY 44(iii). For x > 0, 

efjr\ - ± _L _1_ 2. 2_ _3_ J_ 
^ W JC + 1 + ; C + 1 + ; C + 1 + * + • • • 

1 l2 22 32 

j c + 1 - x + 3 - x + 5 - x + 7 - • • • ' 

PROOF. The former continued fraction was established in the course 
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of proving Entry 44(ii) (see (44.3)). To obtain the latter cont inued frac
tion, apply Entry 14. 

The second continued fraction above was first derived by Tschebyscheff 
[73]. 

ENTRY 44 (iv). Let x be any complex number exterior to ( — oo, 0], and 
let n be a natural number. Then 

(~\Yn\ ( 1 n + \ 2(^ + 2) 3(K + 3) \ 
xn \ * + w + l -x + n + 3-x + n + 5-x + n + 7 - • • •/' 

PROOF. Integrating by parts n t imes, we find that 

<fe) = nf] (-[)^L + {-\)n n\ f°°—e~\ dt 
^v ' ^ 0 xk+l v ' J o (x + 0 W + 1 

(44.4) (-i)*fc! ( -1 ) " f~ «r'f» , 
èb **+1 *n Jo x 4- t ' 

where we have used the equality [57, p. 219] 

I C°° p~ttb—l 1 C°° p—tta—1 

7wL J\hydt = 7WJ„ifw* Re(a)'Re(6) >°-
However, for x $ ( - oo, 0], [57, p. 219, eq. (12)], [38, p. 148, eq. (11.17)], 

1 f°° e~nn , 
nl)oTT7di 

(44.5) 
1 n 4 1 2(/i + 2) 3(/i + 3) 

X + /7+1 - * 4 f l 4 3 - x + n + 5 - x + « + 7 — • 

Substituting (44.5) into (44.4), we deduce the proposed identity. 

COROLLARY 1. Let Hn = £*=i \/k. Then ifx > 0, 

*! = e*(Log x 4- j) 4- pCx). 

Corollary 1 is also given by Ramanujan in Chapter 4 [64, vol. 2, p. 44]. 
See [12, p. 103] for a proof. 

Our formulation of Corollary 2 corrects that given by Ramanujan 
[64, vol. 2, p. 153]. 

COROLLARY 2. For \h\ < 1 andn > 0, define f(h, n) by 

Çna-h) 1 _ p-t 
(44.6) I dt = r + Log « + e~w p(«) - e~n/(A, «). 

*/ o * 
Then 
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k=i K \ /=o J- / 

PROOF. First, if A = 0, we see from Entry 44 that/(0, n) = 0. 
For brevity, set g(h) = /(A, «). Clearly, we shall be finished if we can 

show that 

(44.7) g(*+1)(0) = *! (e» - 2 4fA * è 0. 

First, differentiating (44.6), we find that 

(44.8) e-*W = ^ = r -

Setting A = 0 in (44.8), we deduce (44.7) in the case h = 0. For & > 0, 
we apply Leibniz's rule to (44.8) to find that 

^»«-£0)XGnT)^<—-« 
- £G)£W~~ - 4 

where <?* = 1 and 5/ = 0, 0 ^ y ^ A; - 1. Thus, 

Equality (44.7) now follows upon replacing y by k — j above. 
Ramanujan concludes section 44 by recording the values <p(l) = 

.5963474 and <p( 1/2) = .9229106. From (44.1), 

and 

9 < l / 2 ) = V T ( g i ^ - r - L o g 2 ) . 

Using calculated values for 7% e, ^/~e, and Log 2 [1, pp. 2,3] and 11 and 9 
terms, respectively, from the two sums above, we can readily verify that 
Ramanujan's calculations are correct. 

ENTRIES 45(i), (ii). Consider the continued fraction 

1 x x_ 2x 2x 3x 3x (n — l)x nx 

T + T + T + T + T + T + T+ *" + l + T ' 
Then in the notation of (I A), for n ^ 1, 
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(45.1) B2n = B2„(x) = g / ' f f * * 

and 

(45.2) B2n_x » 4 - i W = S ^ * - (l - •£)**. 

PROOF. We shall induct on n. For n = 1, both (45.1) and (45.2) are 
easily seen to be correct. 

We shall thus assume that both (45.1) and (45.2) are true up to a 
specific positive integer n. By (1.4), 

B2n+iM = B2n(x) + nxB2n_l(x) 

fei *! + M (/c-1)! 

But, for 1 ^ * ̂  «, 

(-n)l (-n)U(n-k+\) _ (-n)U(n-k+ 1) f( ,c + n + / a 

A:! (•-^)-
Hence, we have established (45.2) with n replaced by n + 1. 

By (1.4) and the proof just completed above, 

Bzn+fa) = B2n+l(x) + (/i + l)x£2w(x) 

But, for 1 ^ A: ^ n + 1, 

k\ \ n + 1 ) ^ K n + 1 ; (A: - 1)! 

= ( - / , - ! ) ; / fc A: \ {-n-l)l 

k\ V « + 1 /z + 1/ k\ 

Hence, (45.1) is established with n replaced by n + 1. 

We have slightly rearranged the ordering of the formulas in §46. 

ENTRY 46(i). For \x\ < 1, set 

(46.1) r(x + i) = g Ak(~x)k. 
*=o k\ 

Define <pn(x) to be the constant term in the Laurent expansion of 
xPf(l — p)/pn,0 < \p\ < 1, where n is a nonnegative integer. Then 
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(46.2) <p„{x) = i ±(£)A„.k Log**. 

Furthermore, define (Jjn(x), n ^ 0, by 

(46-3) s ( " i £ l j c * = ^»w + ( - i)"~ie_^»^)-
Then, for n ^ 1, 

(46.4) W x ) - ^ ( x ) = Ì 5 z l W . 

PROOF. First, for \p\ < 1, by (46.1), 

x T Q -/>) _ J_ f, p*Log*x f, Ajpi 
p» p«h k\ £ 0 j \ 

Equality (46.2) is now immediate. 
Using (46.2) in (46.3) and differentiating both sides with respect to 

x, we find that, for n ^ 1, 

(-1)» er* fax) + ( - l )» - ie -^ ; (x ) 

1 /« (-l)*-ijt* 1 <i-}(n - \ \ A T 4 

= _ L ( _ l ) » - 2 e - , ^ _ l ( x ) . 

The proof of (46.4) is now complete. 

ENTRY 46(h). For n è 1, 

(46.5) AH= £ " _ I ; S A _ „ 

w/zere Ak is defined by (46.1), Sx = y, and Sk = Zfjc), k ^ 2, w/zere £ denotes 
the Riemann zeta-function. 

PROOF. Entry 46(H) is a reformulation of a well-known result that 
can be found in Luke's book [47, p. 27]. Namely, if r(x + 1) = 
EJM>M*> 1*1 < 1, then, for« ^ 1, 

(46.6) «Z>W = £ ( - 1 ) ^ V * . 

Translating the recursion formula (46.6) in terms of the coefficients Ak, 
we readily obtain (46.5). 
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We state Entry 46(iii) as recorded by Ramanujan . Afterward, we 
discuss the accuracy of his numerical calculations. 

E N T R Y 46(iii). In the notation (46.6), 

bx = - .5772156649, 

b2 = .9890560173, 

b3 = - .9074790803 , 

bA = .9817280965. 

Furthermore, if we write 

(46.7) f(x + 1) = 1 + bxx + b2x* + b3x3 + bA 1 **d x , 

fAe^ 

oo = 1.00027, 

öi = 51/52, 
ö2 = 77/82, 
06 = 5/68, 
0 7 = - 1 / 3 8 

"nearly' 

The coefficient 6X is equal to 7-, and the numerical value that is given 
is correct. The given values for b2i £3, and è 4 do not seem to be correct. 
We have employed (46.6) along with values of Sk given in [1, p . 811] and 
have found that 

b2 = .9890559953, 
b3 = - .9074790762 , 
b4 = .9817280865. 

Evidently, we are to interpret 0X to be that unique number yielding 
an equality in (46.7). The values given by Ramanujan are rat ional ap 
proximations. The value for 0O is enigmatic, because, for x = 0, 00 is no t 
well defined. In the table below, we give the calculated values of the right 
side of (46.7) using Ramanujan ' s determinat ions and also our determina
tions of b2, &3, and b±. 

x 0X f(x + 1) Ramanujan's value our value 

1 
2 
6 
7 

51/52 
77/82 
5/68 

-1/38 

1 
2 

720 
5040 

.999990949 
1.999702292 

719.9611865 
2623.541808 

.999990967 
1.999702625 

719.9612493 
2623.542013 
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Thus, the values for 0l5 02, and 06 give good approximations, but the value 
for 07 certainly does not. 

We are very grateful to Henri Cohen for motivating the proof of Entry 
46(iv) below. In particular, he informed us of formula (46.20). 

ENTRY 46(iv). If n is a nonnegative integer, then 

x 
(46.8) <j)n{x) = / 5n + 1Q 41tt 4- 58 Y+ï~' 

V 2 + 6x + 10 + • • • / 

PROOF. From (46.4), it is clear that (pn(x) can be expressed as a power 
series in l/x. Putting 

&(*) = S T ' " ^ °> 

we then write (46.4) in the form 

(46 9) y ?*£?) + y (^ - l)gjfc-i(Ag) = y ak-\(n - 1) 

where n ^ 1. It follows immediately that <70(«) = 0 if n ^ 1, ^(w) = 0 
if n ^ 2, and 

(46.10) ak{n) + (* - l K ^ / i ) = ^ ( / i - 1), 

for fc g: 2 and « ^ 1. Now assume that, up to some fixed integer fc — 1, 
ak_i(n) = 0 if n ^ k. Thus, fl^_i(« — 1) = 0 if n ^ & + 1. It follows 
from (46.10) and our inductive assumption that ak(n) = 0 i f w ^ f c + l. 
Hence, we shall rewrite (46.9) in the form 

^ bk(n) ^ (n + k - l)6^!(/i) _ ^ bk(n - 1) 
É4 xn+k h xn+k h xn+k ' 

Hence, for n ^ 1, 

(46.11) b0(n) = bQ(n - 1) 

and, for k, n ^ 1, 

(46.12) bk(n) + (n + k - l )Vi(«) = bk(n - 1). 

From the definition (46.3) of c/jn(x), it is easy to see that ^0(x) = 1. 
Hence, by (46.11) and induction, we find that 

(46.13) b0(n) = 1 , /i è 0. 

Next, in (46.12), let k = 1 and replace n by j . Since ò0(y) = 1, ; à 0> 
we find that 

(46.14) bx{j) + j = bx{j - 1), j à 1. 
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Summing both sides of (46.14) for 1 ^j^n and recalling that &i(0) = 
ax(0) = 0, we deduce that bx(n) + EhiJ = 0, or 

(46.15) bx{n) = -\n{n + 1). 

Put k = 2 and /? = y in (46.12) to obtain the equality 

(46.16) b2(j) + (y + IfaU) = Z>2(y - 1). 

Sum both sides of (46.16) ony, 1 g y ^ /i. Using the fact that Z?2(0) = 0 
as well as (46,15), we find that 

*2(«)=4-Ì;C/3 + 2/2+y) 
(46.17) *"* 

= ^n(n + l)(/i + 2) (3« + 5). 

Lastly, we set k — 3 and n = y in (46.12) and find that 

(46.18) b3(j) + (y + 2)è2(y) = b3(j - 1). 

Summing both sides of (46.18) for 1 ^ j ^ n and employing (46.17), 
we find that 

hin) = - i ^ X y + 1) (y + 2)2 (3y + 5) 
(46.19) J-1 

= - ^ / i ( / i + 1) (/i + 2)2 (/i + 3)2, 

after a lengthy calculation. (Formulae for summing Ei^»./*> 1 g ^ 
5, may be found in [32, pp. 1, 2].) 

In conclusion, from (46.13), (46.15), (46.17), and (46.19), we have 
demonstrated that, for x sufficiently large, 

(46.20) X 

_ / I ( / I + 1 ) ( / I + 2)2(/I + 3) 2 

48x3 

Now, by (46.8), we wish to prove that 

{x-i(/>n(x)}~~£r = X { X ^ „ ( X ) } ~ ^ T 

= x + — 5 " + 1 0 41« -f 58 

• ) • 

2 + 6x + 10 + • • 

JL 5/i + lQ 41/2 + 58 
_ / , 2x \2x 60.x \ 
- x + y + —T~~ + r ~ + •-.;• 
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In fact, it will be slightly more convenient to show that the reciprocals of 
the expressions above are equal. Hence, we shall prove that 

n 5/2+10 41« + 58 

(46.21) {x^n{x)}^ = T + T + X1\ + 
60x 

1 + 

In order to establish (46.21), we shall first compute the power series for 
{xn(pn(x)}1/(n+1) in powers of l/x. By (46.20) and the binomial theorem, 
we find that, for x sufficiently large, 

M B ( X ) } ^ - » + fl-TT(- " ^ + W(W + 1 ) ( 2 4 + J K 3 W + 5) 

«(» + !)(« + 2)2 (n + 3)2 

48x3 

_ « ( «(«+!) «(«+l)(« + 2)(3n + 5) 
2 (n+ l )A 2x + 24x2 + 

»(2« + 1) / «(« + 1) y 
6(n + 1)3 I 2x "*" V ' 

We now compute the coefficients Ci(«), c2(n), and c3(«) of l/x, l/x2, and 
l/x3, respectively. Clearly, cx(«) = — n/2. Secondly, 

, . «(« + 2) (3« + 5) «3 «(11« + 10) 
c2(n) = ^ T = 24 " 

Thirdly, 

( v _ «(« + 2)2(« + 3)2 . «3(« + 2)(3« + 5) «4(2« + l) c3(«) - 48 + 48 48 

«(9«2 + 20« + 12) 
16 

Hence, 

(46.22) { x W } ^ r = X - £ + *£%£» - ^ + 20«+12) + , . , 

We now employ Entry 17 to compute the continued fraction representa
tion (46.21). In the notation of Entry 17, by (46.22), A1 = n/2, A2 = 
«(11« + 10)/24,and^3 = n(9n2 + 20« + 12)/16. First, 

(46.23) ax = Ax = -5_. 

Secondly, 

D / x. A ^ »(H« + 10) 
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Using (46.23) and solving for a2, we readily find that 

SAC <ÏA\ 5n + 10 
(46.24) a2 = Y2 * 

Lastly, 

D / , , >> A A " ( 9 « 2 + 20AÎ + 12) «2(11/2-4-10) 

Solving for a3 and employing (46.23) and (46.24), we find, after a mild 
calculation, that 

(46.25) a3 =
 4ln + 5 8 

60 

Employing (46.23)-(46.25) in Entry 17, we complete the proof of (46.21). 

EXAMPLE. Let 

1 - e-< ™-k t 

Then 

-du 

PROOF. First, from Entry 44, 

(46.26) - 1 F\x) = -jf + y Log2* + r Log x 4- o(l), 

as x tends to oo. 
Next, integrating by parts twice and using Entry 44, we find that, as 

x tends to oo, 

[xliÛdt = F(x) Log x - f* I n f i ' L o g / dt 
Jot J o t 

(46.27) = (r + Log x)Log x + o(l) - 1 ( 1 - er*) Log2* 

+ 1 f V < Log2/<//. 

Combining (46.26) and (46.27), we deduce that 

{*%pdt- JF2(x)= - l r
2 + -y f "*"' L°g2 ' * + °(l) 

(46.28) ° ° 

= - T r 2 + T r ' ( 1 ) + o(1)' 
as x tends to oo. 
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It is well known that [1, p. 256], [64, vol. 2, p. 89], [10, Entry 26] 

Log r(x + i) = -rx + J C(*)(-*)\ w < i. 

Hence, after two differentiations, 

ry t }} - <FK* + 1) = S (-1)*(* - l)«*)**"2, 
1 {X -h 1J *=2 

and so .T'(l) = 02(1) + £(2) = f + ^2/6- Substituting the value for 
T '̂O) found above into (46.28) and letting x tend to oo, we complete the 
proof. 

ENTRY 47. Ifn > 0, then 

•>ni\ f°° -r/i . / w 1 , « K « - l ) 2(/i-2) 3(/i-3) 

M 7 ? . -i+n-X l(n-2) 2(/i-3) 3(/i-4) 

f47 *\ - enr(n + \) __2n 3n 4n 5n 

^Ló) n» 2 + 3 + 4 + 5 + - - - ' 
PROOF. In (21.2), let x = y In and ß = —n. Thus, for «, f > 0, 

2Fx(l - n, l ; r + 1; - ri") 

(47.4) = ^ (l-n)r/n 1(1 +r/ft) (2 —w)y//i 2(l+ r / / i ) 
~ r + i + 7- + i + r + • • • . 

Now, for «, 7- > 0 [4, p. 4], 

Fi(i -/1,1 ;r + 1 ; -rl") = rf *0 - 0r_1(i + tr/n)^dt 
V 0 

= f r ( l - M / r ) r - i ( l +u/ny-idu. 

Thus, letting 7- tend to 00 in (47.4) and (47.5), we find that 

(°° -un , / w w 1 (1-«)/« 1/n (2-n)/n 2/n 

Integrating by parts once, adding 1 to both sides, and writing the right 
side above in an equivalent form, we see that 

(47.5) 

/•oo 

I e~u(l + ujn)ndu = 

= 1 + 

i , « 1—« 1 2 — « 2 
« + 1 + « + 1 + « + 

n_ n-\ 2(w-2) 3(/i-3) 
1 + 3 + 5 + 7 + • • 



n 

n 

n 

-

j _ 

j _ 

+ 
2_ 

n 

1 

-

n 

_2_ 

CONTINUED FRACTIONS 303 

by Entry 14. This completes the proof of (47.1). 
Secondly, let x = y/n and ß = 1 - n in (21.2). Then, for n, y > 0, 

^ ^ ( 2 - / 1 , 1 ; r + l ; - r / / i ) 

_ (n-\)y/n (2-n)r/n 1(1+y/n) Q~n)r/n 2(l +r/n) 
" 7- + 1 + r + * + r +•••' 

Now proceed as above and let y tend to 00 to find that 

n ~ 1 f ° V ' ( l 4- t/n)n-2dt 
n Jo 

_ (n - D//I (2 - n)/n I//1 (3 - /i)//i 2//i 
1 + 1 + 1 4 - 1 4- 1 + • • • 

(47.6) t 

" ' i_ 3 - " A 4 ~ n 

4- n + 1 4- n 4- 1 + • • • 
2(ft - 3) 3(/i - 4) 

+ 4 4- 6 4- 8 4- • • • ' 
by Entry 14. 

If n = 1, (47.2) is elementary. Assuming that n ^ 1 and integrating by 
parts twice, we find that 

^—L f°V'(l 4- t/n)n~2dt = - 2 4- f°V'(l + */*)"*. 

Substituting the formula above into (47.6), we establish (47.2). 
Thirdly, setting x = t — n, we find that 

I e~*(l +x/n)ndx = I er*tndt 
Jo «M J» 

A2* tfw J o 

where in the penultimate line we employed (43.2). Applying Corollary 2 
in §21, we complete the proof of (47.3). 

In essence, Entry 47 is due to Nielsen [50], [51]. Equality (47.1) may be 
derived from [51, p. 46, eq. (6)]. Equality (47.2) can be deduced from 
[51, p. 47, eq. (11)]. Lastly, equality (47.3) can be proved using [50, p. 
219, eq. (8)]. 
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ENTRY 48. As « tends to oo, 

f 
Jo 

-(1 + xinYdx - enf(n + l) + 2 - 4 + 
io V1 ' " / ' v ™ 2n» ' 3 135« ' 2835«2 

(48.1) " 
16 _ 8992 

+ 8505«3 38.52.7. II«4 + ' " ' 

The asymptotic expansion given above was first proposed by Ramanu
jan [62], [63, pp. 323, 324] in an ultimately famous problem in the Journal 
of the Indian Mathematical Society. In addition to Ramanujan's (formal) 
solution, later proofs were given by Watson [75] and Szegö [71]. In fact, 
the last displayed term on the right side of (48.1) has not been recorded by 
any of the aforementioned authors. Because no new ideas are involved and 
because the calculation is extremely laborious, we hope that the reader will 
trust us when we inform him or her that we have, indeed, verified that 
Ramanujan's last determined term is correctly given. 

COROLLARY. Define 0 = dnby 

n^ 
k\ ' n\ " 2 ' (48.2) Z^r + 

k=0 

Then 

(48.3) 4 + 15« 
v w v» - 8 + 45« ' 

PROOF. It is easy to show that [62], [63, p. 324] 

(48.4) e = gW/fy n
+ ^ + 1 - \°°e~x(l + x/n)»dx, 

and so (48.1) may be reformulated as 

as « tends to 00. On the other hand, 

/4o fix 4 + 15« = J _ 4 _ 32 
K } 8 + 4 5 « 3 "*" 135« 6075«2 * ' " ' 

as « tends to 00. Thus, 6* is a fairly good approximation to 0. 

A result analogous to (48.5) has been obtained by Copson [17] for 
e~n. More precisely, if <pn is defined by 

k=0 h\ ' «! 

then 
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_ J L , JL , 1 , 
^ ~ 2 8A2 ^ 32«2 ' " ' 

as n tends to oo. 
Generalizations of Ramanujan's and Copson's theorems have been 

established by Buckholtz [13] and Paris [54]. The commentary in Szegö's 
Collected Papers [72, pp. 151, 152] provides a good summary of the 
literature on generalizations and related problems. Another proof of 
Ramanujan's result (48.5) as well as some related results may be found 
in Knuth's book [39, pp. 112-117]. 

Ramanujan concludes §48 with the following table. 

n 

0 
1/2 
1 
3/2 
2 
00 

On 
.50000 
.37750 
.35914 
.35146 
.34726 
.33333 

a* 

.50000 

.37705 

.35849 

.35099 

.34694 

.33333 

Of course, when n = 0, it is trivial that 0O = 0£ = 1/2. From (48.5) 
and (48.6), it is clear that 0^ = Ot = 1/3. The proposed values for 01? 

0*, 02, 0*> 0*/2> an<3 0*/2 are easily corroborated by using the definitions of 
0n and 0* given in (48.2) and (48.3). It remains to examine the values of 
01/2 and 03/2. 

In order to calculate 01/2 and 03/2, we shall employ (48.4) and the con
tinued fraction (47.3). Hence, 

(48.7) 0 = 1 - eTin+Vj In 3n 4n 5n 
K } °n 2n« ^ 2 + 3 + 4 + 5 + • • • ' n>v' 

In the notation of (1.3) and (1.4), when n — 1/2, 

Ak = (k+ \)Ak_x + \(k + 1)^_ 2 , * = 1, 

and 

2?, = (k + 1 )^_! + y (* + 1)^-2, A: è 1. 

By successive calculations, we eventually find that A5/B5 = .4106925, 
A6/B6 = .4106857, A7/B7 = .4106862. Thus, 

^ 2 . 3/2 4/2 5/2 __ 
2 + 3 + ^ " + ~ 3 ~ + . . . - - 4 1 0 6 8 6 . 

Since ( l / 2 )v / ( ê ï ) / r= 1.033182838, we conclude from (48.7) that Ra 
manujan's proposed value for 01/2 is correct. 

If n = 3/2, again, from (1.3) and (1.4), 
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Ak = (A- + \)Ak_x + (3/2)(* + \)Ak_2, k Z 1, 

and 

£ , = (k + 1)^_! + (3/2)(* + 1)^_2 , t è i . 

Iterated calculations yield A7/B7 = .972952, ^ 8 /^ 8 = .972930, ^ 9 / £ 9 = 
.972933. Proceeding as above, we find that 03/2 = .35145, which differs 
slightly from the value given by Ramanujan. 

Ramanujan [62], [63, p. 324] conjectured, probably partially on the basis 
of his calculations above, that dn always lies between 1/2 and 1/3. This 
conjecture was proved by both Watson [75] and Szegö [71]. 

ENTRY 49. Define 0 = Onby 

, i , ^ "* nfV? k\ , (n - 1)! r + Log n + Y\ -J-YT = en[Y\ —r+r- + zr2-

where y denotes Eider's constant. Then, as n tends to oo, 

2 4 8 
0 ~ T + 135/1 + 2835^2 + ' • • ' 

We are very grateful to Frank W. J. Olver for providing us the following 
solution based upon material from his book [53]. 

PROOF. First, observe that, for n > 0, 

(491) gi=[Và 

By combining (49.1) with a familiar formula for j [53, p. 40], we readily 
find that 

Y + Log n + g - ^ = PVyjj-dt = £/(»), 

where n > 0. Olver has calculated an asymptotic series for Ei(n), and 
in the notation of [53, p. 529, eq. (4.06)], 0 = C„_x(n). By [53, p. 529, form
ula (4.07)], 

(49.2) ^C^(«)~J^>_, 

as « tends to oo, where the first three values for (f)k(\) are given by (see 
[53, p. 530]) r o(l) = 2/3, 0i(l) = 4/135, and 02(l) = -76/2835. Putting 
these values in (49.2), we deduce that 

3 ^ 135(« - 1) 2835(« - l)2 

3 + 135« V + « / 2835«2 + <<*> 
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from which the proposed asymptotic expansion follows. 
For much of the theory of Ei(n), see Nielsen's book [51], 
W. N. Everitt has kindly provided the bibliographic information about 

Wilson in our introduction. As the reader has seen, G. E. Andrews, H. 
Cohen, and F. W. J. Olver have made valuable contributions to this paper. 
R. A. Askey has made several helpful comments, especially on the con
tinued fractions involving hypergeometric series. We are very grateful to 
each of them. 
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