SOME EXAMPLES OF ALGEBRAIC DEGENERACY AND HYPERBOLIC MANIFOLDS

KAZUO AZUKAWA AND MASAAKI SUZUKI

1. Introduction. Let D be an algebraic curve in the complex projective space \mathbf{P}^{2} of dimension 2 . We shall call a non-constant holomorphic mapping from the complex line \mathbf{C} to the manifold $\mathbf{P}^{2}-D$ a holomorphic curve in \mathbf{P}^{2}-D. A holomorphic curve f in $\mathbf{P}^{2}-D$ is called algebraically degenerate if the image $f(\mathbf{C})$ lies in an algebraic curve in \mathbf{P}^{2}. It is conjectured by M. L. Green $[\mathbf{2}, \mathbf{3}, \mathbf{4}]$ that for any D with normal crossings and of degree d at least 4, any holomorphic curve in $\mathbf{P}^{2}-D$ is algebraically degenerate.

We shall first give some examples of algebraic degeneracy in the case of $d=4$ (Examples 1,2 and 3 in section 2).

Next using a result of N . Toda [7] we shall give an example of D for which there is no holomorphic curve in $\mathbf{P}^{2}-D$ (Theorem in section 3). Consequently we shall have an example of a complete hyperbolic manifold of the form \mathbf{P}^{2}-D where D is non-singular (Proposition in section 4).
2. Examples of Algebraic Degeneracy. We shall give three new examples of D and f where D is an algebraic curve in \mathbf{P}^{2} with degree 4 and f is a holomorphic curve in $\mathbf{P}^{2}-D$ and the image $f(\mathbf{C})$ lies in an algebraic curve.

In what follows we use $\left(z_{0}, z_{1}, z_{2}\right)$ for the homogeneous coordinate system of \mathbf{P}^{2}. In the following examples we use k for an arbitrary nonconstant entire function.

Example 1. Let D be defined by $\left(z_{0}^{2}+z_{1}^{2}\right)^{2}+\left(z_{0}^{2}+z_{2}^{2}\right)^{2}=0$ and f be defined by $\left(1+i,(1+i)\left(e^{k}-e^{-k}\right) / \sqrt{2}, e^{k}-i e^{-k}\right)$. Then the image $f(\mathbf{C})$ lies in the conic $z_{0}^{2}+z_{1}^{2}+z_{2}^{2}-\sqrt{ } 2 z_{1} z_{2}=0$.

Example 2. Let D be defined by $z_{0}\left(z_{0}^{3}+z_{1}^{3}+z_{2}^{3}\right)=0$ and f be defined by $\left(9 e^{4 k},-9 e^{4 k}+3 e^{k},-9 e^{3 k}+1\right)$. Then the image $f(\mathbf{C})$ lies in the quartic $9 z^{0} z_{2}^{3}=\left(-2 z_{0}+z_{1}\right)^{3}\left(z_{0}+z_{1}\right)$.

Let D be as in Example 2. A trivial example of f is defined by ($1, k$, $\sqrt[3]{-1} k$). Then the image $f(\mathbf{C})$ lies in the line $\sqrt[3]{-1} z_{1}=z_{2}$.

Example 3. Let D be the Fermat curve $z_{0}^{4}+z_{1}^{4}+z_{2}^{4}=0$ and f be de-

Received by the editors on April 4, 1978, and in revised form on July 5, 1978.
Copyright (c) 1980 Rocky Mountain Mathematics Consortium
fined by $\left(\sqrt[4]{2}\left(\sin ^{2} k-\cos ^{2} k+i \sin k \cos k\right), \alpha\left(\sin ^{2} k+2 i \sin k \cos k\right)\right.$, $\alpha\left(-\cos ^{2} k+2 i \sin k \cos k\right)$) where $\alpha^{2}=i$. Then the image $f(\mathbf{C})$ lies in the conic $i z_{0}^{2} / \sqrt{2}-z_{1}^{2}-z_{2}^{2}+z_{1} z_{2}=0$.
3. Main Theorem. We shall consider an algebraic curve D_{ε}^{d} in \mathbf{P}^{2} of even degree d, with a parameter ε of non-zero complex number, defined by the equation

$$
z_{0}^{d}+z_{1}^{d}+z_{2}^{d}+\varepsilon\left(z_{0} z_{1}\right)^{d / 2}+\varepsilon\left(z_{0} z_{2}\right)^{d / 2}=0
$$

By calculation we have
(i) D_{ε}^{d} is non-singular if and only if ε^{2} is not 2 nor 4 ,
(ii) D_{ε}^{d} is reducible if $\varepsilon^{2}=2$ or if $\varepsilon^{2}=4$ and d is divisible by 4 .

Our main result is the following:
Theorem. Let D_{ε}^{d} be as above. Suppose that D_{ε}^{d} satisfies one of the conditions

$$
\begin{align*}
& \varepsilon^{2} \neq 4 \text { and } d \geqq 30, \tag{1}\\
& \varepsilon^{2}=2 \text { and } d \geqq 14 . \tag{2}
\end{align*}
$$

Then there is no holomorphic curve in $\mathbf{P}^{2}-D_{\varepsilon}^{d}$.
In proving the theorem we shall use two lemmas.
Lemma 1. Let P, Q be polynomials of one variable such that $P(0)=0$, $Q(0)=0$ and $n_{i}(i=1, \ldots, r)(r \geqq 0)$ be positive integers. Suppose

$$
\sum_{i=1}^{r} \frac{1}{n_{i}}<\frac{1}{\|P\|+Q \|+r-1}
$$

where $\|P\|,\|Q\|$ are the numbers of the monomials included in P, Q respectively. Then for any entire solution $\left(g_{0}, \ldots, g_{r}\right)$ of the functional equation

$$
P\left(e^{g_{0}}\right)+Q\left(e^{-g_{0}}\right)+\sum_{i=1}^{r} g_{i}^{n_{i}}=1
$$

at least one of the g_{i} is constant.
Proof. If $P=Q=0$ the assertion is a corollary of Theorem 1 in [7]. Generally we can find a positive integer n_{0} such that the inequality

$$
\frac{\|P\|+\|Q\|}{n_{0}}+\sum_{i=1}^{r} \frac{1}{n_{i}}<\frac{1}{\|P\|+\|Q\|+r-1}
$$

holds. Then we can apply the result for the case of $P=Q=0$.
Lemma 2. Any entire solution of the functional equation $g_{0}^{2}+g_{1}^{2}=1$ is of the form $g_{0}=\left(e^{h}+e^{-h}\right) / 2, g_{1}=\left(e^{h}-e^{-h}\right) / 2 i$ where h is an entire function.

Proof of Theorem. We take any holomorphic mapping $f: \mathbf{C} \rightarrow \mathbf{P}^{2}$ D_{ε}^{d}. We shall show that f is a constant mapping. Now f is written by (f_{0}, f_{1}, f_{2}) where f_{i} are entire functions not vanishing at the same time. By assumption we have

$$
f_{0}^{d}+f_{1}^{d}+f_{2}^{d}+\varepsilon\left(f_{0} f_{1}\right)^{d / 2}+\varepsilon\left(f_{2} f_{0}\right)^{d / 2}=e^{h}
$$

where h is an entire function. Considering $f_{i} e^{-h / d}$ in stead of f_{i} we may assume

$$
\begin{equation*}
f_{0}^{d}+f_{1}^{d}+f_{2}^{d}+\varepsilon\left(f_{0} f_{1}\right)^{d / 2}+\varepsilon\left(f_{0} f_{2}\right)^{d / 2}=1 \tag{3.1}
\end{equation*}
$$

Part (1): Suppose $\varepsilon^{2} \neq 4$ and $d \geqq 30$. Applying Lemma 1 to the functional equation

$$
g_{1}^{d}+g_{2}^{d}+g_{3}^{d}+g_{4}^{d / 2}+g_{5}^{d / 2}=1
$$

we have by (3.1) and $d>28$ that at least one of the functions f_{0}, f_{1}, f_{2}, $f_{0} f_{1}, f_{0} f_{2}$ is constant. In each case we examine as follows.
(a) $f_{0}=c$ (const.): By Lemma 1 we may assume $c^{d}=1$. Then

$$
\left(f_{1}^{d / 2}+\varepsilon^{\prime} / 2\right)^{2}+\left(f_{2}^{d / 2}+\varepsilon^{\prime} / 2\right)^{2}=\varepsilon^{\prime 2} / 2(\neq 0)
$$

where $\varepsilon^{\prime}=\varepsilon c^{d / 2}$. By Lemmas 2 and 1 we have that f_{1} and f_{2} are constant.
(b) f_{1} or $f_{2}=c$ (const.): By symmetry we may assume $f_{1}=c$. Suppose $c^{d} \neq 1$. We may assume by Lemma 1 that $f_{0} f_{2}=c_{1}$ (const.) and $c_{1} \neq 0$. Writing $f_{0}=e^{h}, f_{2}=c_{1} e^{-h}$ where h is an entire function and applying Lemma 1 , we have that h is constant and so are f_{0} and f_{2}. If $c^{d}=1$ (3.1) implies

$$
\left(f_{2}^{d / 2}+\varepsilon f_{0}^{d / 2} / 2\right)^{2}+\varepsilon^{\prime \prime}\left(f_{0}^{d / 2}+\varepsilon^{\prime} / 2 \varepsilon^{\prime \prime}\right)^{2}=\varepsilon^{\prime 2} / 4 \varepsilon^{\prime \prime}
$$

where $\varepsilon^{\prime}=\varepsilon c^{d / 2}, \varepsilon^{\prime \prime}=1-\varepsilon^{2} / 4(\neq 0$, by assumption (1)). By the same argument as (a) we can show that f_{0} and f_{2} are constant.
(c) $f_{0} f_{1}$ or $f_{0} f_{2}=c$ (const.): By symmetry we may assume $f_{0} f_{1}=c$. By (a) and (b) we may assume $c \neq 0$. Denote $f_{0}=e^{h}, f_{1}=c e^{-h}$ where h is an entire function. If $\varepsilon c^{d / 2} \neq 1$, applying Lemma 1 we have that f_{2} or $e^{h} f_{2}$ or h is constant. Then f_{0}, f_{1} and f_{2} are constant. If $\varepsilon c^{d / 2}=1$ we have

$$
1+\left(c e^{-2 h}\right)^{d}+\left(f_{2} e^{-h}\right)^{d}+\varepsilon\left(f_{2} e^{-h}\right)^{d / 2}=0
$$

By Lemma 1 we have that h or $f_{2} e^{-h}$ is constant. Then f_{0}, f_{1} and f_{2} are constant.

We have proved part (1) of the theorem.
Part (2): Suppose $\varepsilon^{2}=2$ and $d \geqq 14$. By a linear change of the coordinate system D_{ε}^{d} is reduced to the reducible curve defined by

$$
\left(z_{0}^{d / 2}+z_{1}^{d / 2}\right)^{2}+\left(z_{0}^{d / 2}+z_{2}^{d / 2}\right)^{2}=0
$$

With respect to the new coordinate system the functional equation (3.1) is

$$
\left(f_{0}^{d / 2}+f_{1}^{d / 2}\right)^{2}+\left(f_{0}^{d / 2}+f_{2}^{d / 2}\right)^{2}=1
$$

By Lemma 2 we have

$$
\begin{align*}
& (1+i) f_{0}^{d / 2}+f_{1}^{d / 2}+i f_{2}^{d / 2}=e^{h}, \tag{3.2}\\
& (1-i) f_{0}^{d / 2}+f_{1}^{d / 2}-i f_{2}^{d / 2}=e^{-h} \tag{3.3}
\end{align*}
$$

where h is an entire function. Since $d>12$, applying Lemma 1 to (3.2) we obtain that at least one of $f_{i} e^{-2 h / d}$ is constant. As we can do the same argument for the others we may assume $f_{0} e^{-2 h / d}=c$ (const.). If $(1+i)$ $c^{d / 2} \neq 1$, by Lemma 1 we have that $f_{1} e^{-2 h / d}$ and $f_{2} e^{-2 h / d}$ are constant, hence f is a constant mapping. Suppose $(1+i) c^{d / 2}=1$. Eliminating f_{0} and f_{1} from (3.3) we have

$$
-i e^{2 h}-2 i\left(f_{2} e^{2 h / d}\right)^{d / 2}=1
$$

By Lemma 1 we have that h and $f_{2} e^{2 k / d}$ are constant. Hence f_{0}, f_{1} and f_{2} are constant. We have proved part (2) of the theorem.
4. An Example of a Complete Hyperbolic Manifold. From the theorem in the previous section and Theorem 2 in [5] we obtain the

Proposition. Let D_{ε}^{d} be as in the theorem. Suppose that D_{ε}^{d} satisfies one of the conditions
(1) ε^{2} is not 2 nor 4 and $d \geqq 30$,
(2) $\varepsilon^{2}=2$ and $d \geqq 14$.

Then \mathbf{P}^{2}-D ${ }_{\varepsilon}^{d}$ is a complete hyperbolic manifold in the sense of Kobayashi [6].
We have an example of a complete hyperbolic manifold of the form \mathbf{P}^{2} - D where D is non-singular ((1) in the proposition).

If $\varepsilon^{2}=2$ and $d=4, \mathbf{P}^{2}-D_{\varepsilon}^{d}$ is not a hyperbolic manifold (Example 1 in the section 2).
By the use of the theorem in [1] we obtain another proof of part of the proposition:
For sufficiently small $\varepsilon, D_{\varepsilon}^{d}$ is non-singular and \mathbf{P}^{2} - D_{ε}^{d} is a complete hyperbolic manifold provided $d \geqq 50$.

Acknowledgment. The authors wish to express their thanks to the referee for some useful comments.

References

1. R. Brody and M. L. Green, A family of smooth hyperbolic hypersurfaces in \mathbf{P}^{3}, Duke Math. J., 44 (1977), 873-874.
2. M. L. Green, On the functional equation $f^{2}=e^{2 \phi_{1}}+e^{2 \phi_{2}}+e^{2 \phi_{3}}$ and new Picard theorem, Trans. Amer. Math. Soc., 195 (1974), 223-230.
3. J. Math., 97 (1975), 43-75.
4. -, Some examples and counter-examples in value distribution theory for several variables, Compositio Math., 30 (1975), 317-322.
5. -, The hyperbolicity of the complement of $2 n+1$ hyperplanes in general position in P^{n} and related results, Proc. Amer. Math. Soc., 66 (1977), 109-113.
6. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.
7. N. Toda, On the functional equation $\sum_{i=0}^{p} a_{i} f_{i}^{n_{i}}=1$, Tôhoku Math. J., 23 (1971), 289-299.

Department of Mathematics, Toyama University, Gofuku, Toyama, JAPAN

