CANTOR SETS IN 3-MANIFOLDS¹

DAVID G. WRIGHT

1. Introduction. We answer the following 3-dimensional questions posed by Bing and Daverman which show that wild Cantor sets in 3-manifolds behave essentially like a 1-dimensional polyhedron. Furthermore, any compactum in the interior of a 3-manifold can be approximated by a Cantor set. The questions below are unsolved for n > 3; however, some partial solutions are known and pointed out.

QUESTION 1.1 (BING). [4, Question 1, p. 17]. What are necessary and sufficient conditions on an n-manifold M^n without boundary in order that it have the property that each Cantor set in M^n lies in an open n-cell in M^n ?

If we stipulate that the M^n in Bing's question is closed, then an answer to Bing's question is: M^n is homeomorphic to the *n*-sphere for n = 3 [8] and n > 4 [13].

DEFINITION 1.1. A compactum K in an n-manifold M^n is said to be approximable by Cantor sets if for each neighborhood U of K there exists a Cantor set C in U such that a loop γ in $M^n - U$ is inessential in $M^n - K$ if and only if γ is inessential in $M^n - C$. We say that the Cantor set C approximates K with respect to U.

QUESTION 1.2 (DAVERMAN). Is every compactum in the interior of an *n*-manifold approximable by Cantor sets?

Recent work of Daverman and Edwards [7] has shown that the answer to Question 1.2 is affirmative if K is a closed, flat, PL (n-2)-dimensional manifold.

I would like to express my indebtedness to the friendship and instruction of J. W. Cannon. I would also like to thank R. J. Daverman for a helpful discussion.

2. Approximating compacta by Cantor sets.

LEMMA 2.1. Suppose P is a polyhedral finite graph in the interior of a 3-manifold M. Then P is approximable by Cantor sets.

Received by the editors on August 10, 1976, and in revised form on March 10, 1977.

¹Some of this work is found in the author's doctoral thesis under Professor J. W. Cannon at the University of Wisconsin, Madison.

378 D. G. WRIGHT

PROOF. We assume P is connected. If P has more than one component we repeat the following argument for each component of P. We assume that a neighborhood U of P is given and let N be a regular neighborhood of P which is contained in U. Let P be a regular neighborhood of a maximal tree of P which is contained in the interior of P. The set P is a P is a P is a contained in an open set P in each P in each P is contained in an open set P in each P in each P in each P is an unknotted cell pair and P in each P i

Since B is cellular, there exists a map [5] $P: M \to M$ such that the restriction to M - N is the inclusion and the only nondegenerate inverse set is B. Let C be a Cantor set in N which contains the compact 0-dimensional set $P(\bigcup C_i \cup B)$. The Cantor set C is the desired Cantor set.

Let γ be a loop in M-U which is inessential in M-C. Thus, there is a map $f:D\to M-C$ where D is a disk and $f\mid \operatorname{Bd} D=\gamma$. The map P^{-1} of f shows that γ bounds in the complement of $\bigcup C_i \cup B$. Hence, there is a map $F:D\to M-(\bigcup C_i \cup B)$ such that $F\mid \operatorname{Bd} D=\gamma$ and F is in general position with respect to the 2-spheres S_i^2 . The set $F^{-1}(\bigcup S_i^2)$ is a collection of disjoint simple closed curves in D. The map F restricted to each of these simple closed curves is a trivial loop in some $S_i^2-G_i$. If this were not the case, a simple argument would show that the inclusion from N_i into U_i-C_i does not induce a monomorphism on fundamental groups. Let J_1,\cdots,J_m be the outermost simple closed curves. Redefine F on the interior of the disks bounded by the J_i by sending the interior of each disk to some $S_j^2-G_j$ and we see that γ is inessential in M-P.

On the other hand, if γ is a loop of M-U which is inessential in M-P, γ is inessential in M-N and hence in M-C.

I am indebted to Ric Ancel for pointing out the following result. Ancel as shown [1] the surprising result that the following lemma is false in all dimensions greater than three.

Lemma 2.2. Let K be a compactum in the interior of a 3-manifold M. If U is a neighborhood of K, then there exists a smaller neighborhood V of K such that a loop in M-U which is inessential in M-K is inessential in M-V.

PROOF. We may assume that U is a compact PL 3-manifold with boundary. For each component C_i of Bd U, we let M_i be the component of M-K which contains C_i . The subgroup of $\pi_1(M_i)$ which is the image of $\pi_1(C_i)$ under inclusion is finitely generated and hence [10] finitely presented. Therefore, the kernel of the homomorphism on fundamental groups induced by the inclusion of C_i into M_i is the normal closure of a finite number of elements which we designate as H_i . We let V be a neighborhood of V contained in V such that, for each V any element of V is inessential in V by general position and cut and paste the set V satisfies the conclusion of the lemma.

We give an outline of the reason Lemma 2.2 fails in higher dimensions. Let G be a finitely generated group with a countable presentation but which fails to have a finite presentation. Let K be a locally finite 2-complex with carrier P such that $\pi_1(P) = G$.

Now P can be embedded in $E^n(n \ge 5)$ as a closed polyhedron. If the complex K is chosen carefully, P can also be embedded as a closed polyhedron in E^4 [1]. Let W be an open neighborhood of the embedded P which strong deformation retracts onto P. Hence, $\pi_1(W) = G$ and W is an example of an n-manifold $(n \ge 4)$ in which Scott's theorem is false. We consider $E^n \subset \Sigma^n$ (the 1-point compactification of E^n). We set $X = \Sigma^n - W$. Let U be any neighborhood of X in Σ^n which misses a finite set of generators for $\pi_1(W)$. It is now evident that Lemma 2.2 fails with this choice of X and U in Σ^n ; otherwise, all the relators for $\pi_1(W)$ would bound in a compact subset of W which would imply that $\pi_1(W)$ is finitely presented.

THEOREM 2.1. Suppose K is a compactum in the interior of a 3-manifold M. Then K is approximable by Cantor sets.

PROOF. Let U be a neighborhood of K. Let V be a neighborhood as given by Lemma 2.2. We further assume that V is a PL 3-manifold with boundary in the interior of U. By Lemma 2.1 there is a Cantor set C in the interior of a small regular neighborhood of the 1-skeleton of the boundary of V which approximates that 1-skeleton with respect to the small regular neighborhood. The Cantor set C is the desired Cantor set

If γ is a loop in M-U which is inessential in M-K, then γ is inessential in M-V and hence in M-C. On the other hand if γ is inessential in M-C, then γ is inessential in the complement of the 1-skeleton of V and hence in M-V which is contained in M-K.

3. Punctured cells. Suppose C, C_1, \dots, C_k is a finite collection of *PL* n-cells in Euclidean n-space such that $C_i \cap C_j = \emptyset$ if $i \neq j$ and

380 D. G. WRIGHT

 $C_i \subset \operatorname{Int} C$. Then $C - \cup \operatorname{Int} C_i$ is a cell with holes and any set homeomorphic to $C - \cup \operatorname{Int} C_k$ is called a punctured n-cell. The boundary of a punctured n-cell is the union of a finite number of (n-1)-spheres. Two punctured n-cells are homeomorphic if their boundaries have the same number of components. In fact if H_1 and H_2 are punctured n-cells with the same number of boundary components and f is a homeomorphism between a boundary component of H_1 and a boundary component of H_2 , then f can be extended to a homeomorphism of H_1 onto H_2 . This fact is well known if the H_i have only one boundary component. To prove the general case it is helpful to take handle decompositions of the punctured n-cells H_i in which each decomposition consists of a single 0-handle and k (n-1)-handles. The map f is then extended on each handle by using induction on n and the well known case in which there is only one boundary component.

The following lemma will be used only in the case n = 3, but we prove it for all dimensions.

Lemma 3.1. Suppose M is an n-dimensional manifold. Then M is homeomorphic to the n-sphere S^n minus a tame compact 0-dimensional subset if and only if M can be written as the union of punctured n-cells $H_i(i=1, 2, 3, \cdots)$ where $H_i \subset \operatorname{Int} H_{i+1}$.

PROOF. If M is homeomorphic to S^n minus a tame compact 0-dimensional subset, then it is easy to show that M is the union of an ascending sequence of punctured n-cells.

We now suppose that M is the union of an ascending sequence of punctured n-cells H_i . By shrinking each H_i slightly we may assume that $\operatorname{Bd} H_i$ is collared in M. We wish to find a sequence H_i' of punctured n-cells such that $H_i \subset H_i' \subset \operatorname{Int} H_{i+1}$ and $\operatorname{Cl}(H'_{i+1} - H_i')$ is a finite collection of punctured n-cells. We define $H_1' = H_1$ and assume that by induction we have defined H_1', \cdots, H_m' where $\operatorname{Bd} H_m'$ is collared in M. Let $f: H_{m+2} \to S^n$ be an embedding such that $\operatorname{Cl}(S^n - f(H_m'))$ is the union of disjoint PL n-cells. In each component U_i of $S^n - f(H_{m+2})$ we choose a PL n-cell B_i . Since $\operatorname{Cl}(U_i)$ is cellular there exists a homeomorphism $g: S^n \to S^n$ which fixes $f(H_{m+1})$ and takes $\operatorname{Cl}(U_i)$ into $\operatorname{Int} B_i$ [5]. We define H'_{m+1} to be the set $(g \circ f)^{-1}(S^n - \bigcup \operatorname{Int} B_i)$.

We now define an embedding $h: M \to S^n$. We suppose inductively that we have defined h on H_i and that $\operatorname{Cl}(S^n - h(H_i))$ is the union of a finite number of PL n-cells of diameter less than 1/i. Since each component of $\operatorname{Cl}(H'_{i+1} - H'_i)$ is a punctured n-cell, there is a natural way to extend h to H'_{i+1} such that $\operatorname{Cl}(S^n - h(H'_{i+1}))$ is the disjoint union of PL n-balls of diameter less than 1/(i+1). The map h is an embedding and $S^n - h(M)$ is a compact 0-dimensional set. Since for each $\epsilon > 0$

there exists a finite number of disjoint *n*-cells of diameter less than ϵ whose interiors cover $S^n - h(M)$, we conclude [9, Theorem 1] that $S^n - h(M)$ is tame.

4. 3-manifolds in which Cantor sets lie in open 3-cells. To answer Bing's question for n = 3 we will need the following theorem.

Theorem 4.1. Suppose M is a 3-manifold in which every Cantor set lies in an open 3-cell of M. Then every polyhedral finite graph in M is contained in an open 3-cell of M.

PROOF. The proof is implicit in [13, Theorem 2.3]. For completeness we give a proof which is similar to the proof of our Lemma 2.1.

Let K be a polyhedral finite graph in M. Since the hypothesis of the theorem implies M is connected, we assume, without loss of generality, that K is connected. We let $\sigma_1, \dots, \sigma_m$ be the 1-simplexes of K. Each σ_i is contained in an open set U_i of M which is homeomorphic with Euclidean 3-space. There exist PL 2-spheres S_i^2 in each U_i such that $\sigma_j \subset S_i^2$, S_i^2 is the join of $\operatorname{Bd} \sigma_i$ and a simple closed curve Σ_i , and $S_i^2 \cap S_j^2 = \sigma_i \cap \sigma_j$ for $i \neq j$. Let B be a regular neighborhood of a maximal tree of K. For each i, let G_i be a regular neighborhood of the end points of σ_i in S_i^2 such that $G_i \subset B$. We let N_i be a regular neighborhood of Σ_i in U_i such that $S_i^2 - G_i \subset N_i$. Let C_i be an Antoines necklace [2, 12] in $U_i - N_i$ which links N_i .

If we identify the cell B to a point, we get M/B which is homeomorphic to M [5]. Let P be the identification map from M to M/B. The compact 0-dimensional set $P(\bigcup C_i \cup B)$ is contained in a Cantor set C in M/B which in turn is contained in an open 3-cell U' in M/B by the hypothesis of the theorem. The set $U = P^{-1}(U')$ is also an open 3-cell [5] in M which contains $\bigcup C_i \cup B$.

We let W be a closed collared 3-cell in U such that $\bigcup C_i \cup B \subset W$. Triangulate each S_i^2 so finely that if a simplex of S_i^2 intersects W then it is contained in U. Let P_i be the union of all the closed simplexes of S_i^2 which miss W. The polyhedron P_i is contained in $S_i^2 - G_i$ and hence in N_i . If P_i separates the end points of γ_i in S_i^2 , then P_i contains a simple closed curve γ_i which is homotopic to Σ_i in N_i . Since γ_i is in the complement of W, γ_i is homotopically trivial in W. Since W is simply connected at infinity, W is homotopically trivial in W in the choice of W is a contradiction to the choice of W in W is a contradiction to the choice of W in W

Choose a polyhedral arc δ_i connecting the end points of σ_i in $S_i{}^2 - p_i$. Let K' be the polyhedron formed by taking the union of the δ_i . The polyhedron K' is contained in the open 3-cell U. We take an isotopy of the 2-spheres $S_i{}^2$ which takes each δ_i onto σ_i , keeping the

382 D. G. WRIGHT

end points fixed. By using collars on the S_i^2 we extend this to an isotopy of M which takes K' to K. Hence K is also contained in an open 3-cell.

THEOREM 4.2. Suppose M is a 3-manifold. Then M is homeomorphic to S^3 or S^3 minus a tame compact 0-dimensional subset if and only if each polyhedral finite graph in M is contained in an open 3-cell of M.

Proof. If every finite polyhedral graph of M is contained in an open 3-cell of M and M is compact then M is homeomorphic to S^3 . For, using complementary 1-skeleta and Stallings' stretching technique [11], M is the union of two open 3-cells and hence [5] is homeomorphic to S3. If M is not compact, we show that M is the union of an ascending sequence of punctured 3-cells. Hence by Lemma 3.1 we can conclude that M is homeomorphic to S^3 minus a tame compact 0-dimensional subset. It will suffice to show that every compact subset of M is contained in the interior of a punctured 3-cell. An arbitrary compact subset of M is contained in a finite polyhedron L. By hypothesis the 1skeleton of L is contained in an open 3-cell. By the Hauptvermutung for 3-manifolds the 1-skeleton of L lies in the interior of a PL 3-cell B which we assume to be in general position with respect to L. By the techniques used in the proof of [3, Lemma 4] it is possible to modify B by cut and paste to obtain a punctured 3-cell H which contains L in its interior.

As a consequence of Theorems 4.1 and 4.2 we get our desired answer to Bing's question for n = 3.

THEOREM 4.3. Suppose M is a 3-manifold. Then M is homeomorphic to S^3 or S^3 minus a tame compact 0-dimensional subset if and only if each Cantor set of M is contained in an open 3-cell of M.

Conjecture 4.1. Suppose M is an n-manifold ($n \ge 3$). Then M is homeomorphic to S^n or S^n minus a tame compact 0-dimensional subset if and only if each Cantor set of M is contained in an open n-cell of M.

Bing showed [3, Lemma 7] that if each polygonal simple closed curve of a 3-manifold lies in a topological 3-cell in the manifold, then each polyhedral finite graph in the manifold lies in an open 3-cell of the manifold. Hence we also have the following corollary which strengthens a theorem [6, Theorem 2] of Costich, Doyle and Galewski.

COROLLARY 4.1. Suppose M is a 3-manifold. Then M is homeomorphic to S^3 or S^3 minus a tame compact 0-dimensional subset if and only if each polygonal simple closed curve of M lies in a topological 3-cell of M.

Corollary 4.2. A contractible 3-manifold M is topologically E^3 if and only if each Cantor set in M lies in an open 3-cell of M.

Our final corollary is only a slight modification of a theorem of Bing [3, Theorem 2].

COROLLARY 4.3. A contractible 3-manifold M is topologically E^3 if and only if each polygonal simple closed curve in M lies in a topological 3-cell of M.

BIBLIOGRAPHY

- 1. F. D. Ancel (to appear).
- 2. L. Antoine, Sur l'homeomorphie de deux figures et de leur voisinages, J. math. Pures Appl. 86 (1921), 221-325.
- 3. R. H. Bing, Necessary and sufficient conditions that a 3-manifold be S³, Ann. of Math. (2) 68 (1958), 17-37.
- 4. _____, Radial Engulfing, in Conference on the Topology of Manifolds, 1967 (John G. Hocking, ed.), 1–18, Prindle, Weber and Schmidt, Boston, 1968.
- 5. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 6. O. L. Costich, P. H. Doyle and D. E. Galewski, A characterization of punctured open 3-cells, Proc. Amer. Math. Soc. 28 (1971), 295-298.
 - 7. R. J. Daverman and R. D. Edwards (to appear).
- 8. P. H. Doyle and J. G. Hocking, *Dimensional invertibility*, Pacific J. Math. 12 (1962), 1235-40.
- 9. R. P. Osborne, Embedding Cantor sets in a manifold, Part I: Tame Cantor sets in E^n , Michigan Math. J., 13 (1966), 57-63.
- 10. G. P. Scott, Finitely generated 3-manifold groups are finitely presented, J. London Math. Soc. (2) 6 (1973), 437-440.
- 11. J. Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481–488.
- 12. D. G. Wright, Cantor sets and homotopy connectedness of manifolds, doctoral thesis, University of Wisconsin, Madison, Wisconsin, 1973.
- 13. _____, Cantor sets and homotopy connectedness of manifolds, Proc. Amer. Math. Soc. 50 (1975), 463-470.

UTAH STATE UNIVERSITY, LOGAN, UTAH 84322