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CANTOR SETS IN 3-MANIFOLDS1

DAVID G. WRIGHT

1. Introduction. We answer the following 3-dimensional questions
posed by Bing and Daverman which show that wild Cantor sets in 3-
manifolds behave essentially like a 1-dimensional polyhedron. Further-
more, any compactum in the interior of a 3-manifold can be approx-
imated by a Cantor set. The questions below are unsolved for n > 3;
however, some partial solutions are known and pointed out.

QUESTION 1.1 (BING). [4, Question 1, p. 17]. What are necessary and
sufficient conditions on an n-manifold Mn without boundary in order
that it have the property that each Cantor set in Mn lies in an open n-
cell in Mn?

If we stipulate that the Mn in Ring's question is closed, then an an-
swer to Bing's question is: Mn is homeomorphic to the n-sphere for
n = 3 [8] and n > 4 [13].

DEFINITION 1.1. A compactum K in an n-manifold Mn is said to be
approximable by Cantor sets if for each neighborhood U of K there ex-
ists a Cantor set C in U such that a loop y in Mn — U is inessential in
Mn — K if and only if y is inessential in Mn — C. We say that the Can-
tor set C approximates K with respect to U.

QUESTION 1.2 (DAVERMAN). Is every compactum in the interior of an
n-manifold approximable by Cantor sets?

Recent work of Daverman and Edwards [7] has shown that the an-
swer to Question 1.2 is affirmative if K is a closed, flat, PL (n — 2)-di-
mensional manifold.

I would like to express my indebtedness to the friendship and instruc-
tion of J. W. Cannon. I would also like to thank R. J. Daverman for a
helpful discussion.

2. Approximating compacta by Cantor sets.

LEMMA 2.1. Suppose P is a polyhedral finite graph in the interior of a
3-manifold M. Then P is approximable by Cantor sets.
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PROOF. We assume P is connected. If P has more than one com-
ponent we repeat the following argument for each component of P. We
assume that a neighborhood U of P is given and let N be a regular
neighborhood of P which is contained in U. Let B be a regular neigh-
borhood of a maximal tree of P which is contained in the interior of N.
The set B is a PL 3-cell. We let al9 • - •, ak denote the 1-simplexes of P.
Each ai is contained in an open set Ui of N which is homeomorphic to
Euclidean 3-space. We choose a PL 3-cell Bi in each Ui such that
(Bi9 Oj) is an unknotted cell pair and Bi fl Bj = ai C\ aj for i ¥= /'. We let
Sj2 denote the boundary of B{. We now let Gi be a regular neighbor-
hood of Bddj in S? which is contained in B. We then denote by Ni a
regular neighborhood of 01(5^ — G^ which is contained in U^ Let Ci

be an Antoine's necklace [2, 12] in Ui — Ni which links A^; i.e., the in-
clusion from NI into Ui — Ci induces a monomorphism on fundamental
groups.

Since B is cellular, there exists a map [5] P : M —»• M such that the re-
striction to M — N is the inclusion and the only nondegenerate inverse
set is B. Let C be a Cantor set in N which contains the compact 0-di-
mensional set P( U C{ U B). The Cantor set C is the desired Cantor set.

Let y be a loop in M — U which is inessential in M — C. Thus, there
is a map /: D —> M — C where D is a disk and /1 Bd D = y. The map
P"1 of / shows that y bounds in the complement of U Ci U B. Hence,
there is a map F : D ^ M - ( U C i U B ) such that F | Bd D = y and F is
in general position with respect to the 2-spheres S^. The set
F-^ U Sj2) is a collection of disjoint simple closed curves in D. The
map F restricted to each of these simple closed curves is a trivial loop
in some S4

2 — G{. If this were not the case, a simple argument would
show that the inclusion from Ni into Ui — C{ does not induce a mon-
omorphism on fundamental groups. Let Jl3 • • •, Jm be the outermost
simple closed curves. Redefine F on the interior of the disks bounded
by the Ji by sending the interior of each disk to some S^2 — Gj and we
see that y is inessential in M — P.

On the other hand, if y is a loop of M — U which is inessential in
M — P, y is inessential in M — N and hence in M — C.

I am indebted to Ric Ancel for pointing out the following result. An-
cel as shown [1] the surprising result that the following lemma is false
in all dimensions greater than three.

LEMMA 2.2. Let K be a compactum in the interior of a ^-manifold M.
If U is a neighborhood of K, then there exists a smaller neighborhood V
of K such that a loop in M — U which is inessential in M — K is in-
essential in M — V.
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PROOF. We may assume that U is a compact PL 3-manifold with
boundary. For each component Ci of Bd U, we let Mi be the com-
ponent of M — K which contains C^ The subgroup of 7T1(Mi) which is
the image of ?r1(Ci) under inclusion is finitely generated and hence [10]
finitely presented. Therefore, the kernel of the homomorphism on fun-
damental groups induced by the inclusion of Ci into Mi is the normal
closure of a finite number of elements which we designate as H^ We
let V be a neighborhood of K contained in U such that, for each i, any
element of Hi is inessential in M — V. By general position and cut and
paste the set V satisfies the conclusion of the lemma.

We give an outline of the reason Lemma 2.2 fails in higher dimen-
sions. Let G be a finitely generated group with a countable present-
ation but which fails to have a finite presentation. Let K be a locally
finite 2-complex with carrier P such that ?r1(P) = G.

Now P can be embedded in ^(n = 5) as a closed polyhedron. If the
complex K is chosen carefully, P can also be embedded as a closed
polyhedron in E4 [1]. Let W be an open neighborhood of the em-
bedded P which strong deformation retracts onto P. Hence, ?r1(W) = G
and W is an example of an n-manifold (n ^ 4) in which Scott's theo-
rem is false. We consider En C 2n (the 1-point compactification of E71).
We set X = 2n - W. Let 17 be any neighborhood of X in 2n which
misses a finite set of generators for 7T1(W). It is now evident that Lem-
ma 2.2 fails with this choice of X and U in 2n; otherwise, all the rela-
tors for ?r1(W) would bound in a compact subset of W which would im-
ply that 7T1(W) is finitely presented.

THEOREM 2.1. Suppose K is a compactum in the interior of a 3-mani-
fold M. Then K is approximable by Cantor sets.

PROOF. Let U be a neighborhood of K. Let V be a neighborhood as
given by Lemma 2.2. We further assume that V is a PL 3-manifold
with boundary in the interior of U. By Lemma 2.1 there is a Cantor set
C in the interior of a small regular neighborhood of the 1-skeleton of
the boundary of V which approximates that 1-skeleton with respect to
the small regular neighborhood. The Cantor set C is the desired Cantor
set.

If y is a loop in M — U which is inessential in M — K, then y is in-
essential in M — V and hence in M — C. On the other hand if y is in-
essential in M — C, then y is inessential in the complement of the 1-
skeleton of V and hence in M — V which is contained in M — K.

3. Punctured cells. Suppose C, Clt • • •, Ck is a finite collection of
PL n-cells in Euclidean n-space such that Ci D C^f = 0 if i ¥* j and
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Ci C Int C. Then C — U Int Ci is a cell with holes and any set home-
omorphic to C — U Int Ck is called a punctured n-cell. The boundary
of a punctured n-cell is the union of a finite number of (n — l)-spheres.
Two punctured n-cells are homeomorphic if their boundaries have the
same number of components. In fact if Hl and H2 are punctured n-cells
with the same number of boundary components and / is a home-
omorphism between a boundary component of Hl and a boundary com-
ponent of H2, then / can be extended to a homeomorphism of Hl onto
H2. This fact is well known if the Hi have only one boundary com-
ponent. To prove the general case it is helpful to take handle decompo-
sitions of the punctured n-cells Hi in which each decomposition consists
of a single 0-handle and k (n — l)-handles. The map / is then extended
on each handle by using induction on n and the well known case in
which there is only one boundary component.

The following lemma will be used only in the case n = 3, but we
prove it for all dimensions.

LEMMA 3.1. Suppose M is an n-dimensional manifold. Then M is
homeomorphic to the n-sphere Sn minus a tame compact ^-dimensional
subset if and only if M can be written as the union of punctured n-
cells Hfi = 1,2,3, • • •) where H{ C IntHi+1.

PROOF. If M is homeomorphic to Sw minus a tame compact 0-dimen-
sional subset, then it is easy to show that M is the union of an ascend-
ing sequence of punctured n-cells.

We now suppose that M is the union of an ascending sequence of
punctured n-cells H{. By shrinking each Hi slightly we may assume that
Bd Hi is collared in M. We wish to find a sequence H/ of punctured n-
cells such that Hi C H/ C Int Hi+1 and C1(HJ+1 - H/) is a finite col-
lection of punctured n-cells. We define H^ = Hl and assume that by
induction we have defined H/, • • •, Hm' where Bd Hm' is collared in M.
Let f:Hm+2-+Sn be an embedding such that Cl(Sn - f(Hm')) is the
union of disjoint PL n-cells. In each component Ui of Sn — f(Hm+2) we
choose a PL n-cell B{. Since Cl(U{) is cellular there exists a home-
omorphism g: Sn—> Sn which fixes f(Hm+l) and takes Cl^) into IntBi

[5]. We define H'm+l to be the set (g ° j^S* - U Int B,).
We now define an embedding h: M —» Sn. We suppose inductively

that we have defined h on fl/ and that Cl(Sn - ft(H/)) is the union of a
finite number of PL n-cells of diameter less than l/i. Since each com-
ponent of Cl(H'i+l — ///) is a punctured n-cell, there is a natural way
to extend h to H'i+l such that Cl(Sn - h(HJ+1)) is the disjoint union of
PL n-balls of diameter less than l/(i -h 1). The map h is an embedding
and Sn — h(M) is a compact 0-dimensional set. Since for each c > 0
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there exists a finite number of disjoint n-cells of diameter less than c
whose interiors cover Sn — h(M), we conclude [9, Theorem 1] that
Sn - h(M) is tame.

4. 3-manifolds in which Cantor sets lie in open 3-cells. To answer Ring's
question for n = 3 we will need the following theorem.

THEOREM 4.1. Suppose M is a 3-manifold in which every Cantor set
lies in an open 3-cell of M. Then every polyhedral finite graph in M is
contained in an open 3-cell of M.

PROOF. The proof is implicit in [13, Theorem 2.3]. For completeness
we give a proof which is similar to the proof of our Lemma 2.1.

Let K be a polyhedral finite graph in M. Since the hypothesis of the
theorem implies M is connected, we assume, without loss of generality,
that K is connected. We let al9 • • •, am be the 1-simplexes of K. Each
QJ is contained in an open set Ui of M which is homeomorphic with
Euclidean 3-space. There exist PL 2-spheres S* in each Ui such that a;

C Sj2, Sj2 is the join of Bd ai and a simple closed curve 2i? and
S? H S? = ai fl Oj for i ¥= j. Let B be a regular neighborhood of a
maximal tree of K. For each i, let Gi be a regular neighborhood of the
end points of ai in S? such that Gi C B. We let Nt be a regular neigh-
borhood of Si in Ui such that S^ — Gi C N{. Let Ci be an Antoines
necklace [2, 12] in Vi — Ni which links N^

If we identify the cell B to a point, we get M/B which is home-
omorphic to M [5]. Let P be the identification map from M to M/B.
The compact 0-dimensional set P( U Ci U B) is contained in a Cantor
set C in M/B which in turn is contained in an open 3-cell U' in M/B
by the hypothesis of the theorem. The set U — P~\U'} is also an open
3-cell [5] in M which contains U C{ U B.

We let W be a closed collared 3-cell in U such that U Ci U B C W.
Triangulate each S^2 so finely that if a simplex of S? intersects W then
it is contained in U. Let Pi be the union of all the closed simplexes of
Sj2 which miss W. The polyhedron Pi is contained in S^— Gi and
hence in N^ If P{ separates the end points of yi in S?, then Pi contains
a simple closed curve yi which is homotopic to 2j in N{. Since y{ is in
the complement of W, y{ is homotopically trivial in M — W. Since Ui

is simply connected at infinity, y{ is homotopically trivial in C7i — Ci

which is a contradiction to the choice of C{. Thus, we may conclude
that Pi does not separate the end points of ai in S^.

Choose a polyhedral arc 5i connecting the end points of ai in
Sj2— P}. Let K' be the polyhedron formed by taking the union of the
8^ The polyhedron Kf is contained in the open 3-cell U. We take an
isotopy of the 2-spheres S^ which takes each 5i onto ai9 keeping the
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end points fixed. By using collars on the St
2 we extend this to an iso-

topy of M which takes K' to K. Hence K is also contained in an open
3-cell.

THEOREM 4.2. Suppose M is a 3-manifold. Then M is homeomorphic
to S3 or S3 minus a tame compact (^-dimensional subset if and only if
each polyhedral finite graph in M is contained in an open 3-cell of M.

PROOF. If every finite polyhedral graph of M is contained in an open
3-cell of M and M is compact then M is homeomorphic to S3. For, us-
ing complementary 1-skeleta and S tailings' stretching technique [11], M
is the union of two open 3-cells and hence [5] is homeomorphic to S3.
If M is not compact, we show that M is the union of an ascending se-
quence of punctured 3-cells. Hence by Lemma 3.1 we can conclude
that M is homeomorphic to S3 minus a tame compact 0-dimensional
subset. It will suffice to show that every compact subset of M is con-
tained in the interior of a punctured 3-cell. An arbitrary compact sub-
set of M is contained in a finite polyhedron L. By hypothesis the 1-
skeleton of L is contained in an open 3-cell. By the Hauptvermutung
for 3-manifolds the 1-skeleton of L lies in the interior of a PL 3-cell B
which we assume to be in general position with respect to L. By the
techniques used in the proof of [3, Lemma 4] it is possible to modify B
by cut and paste to obtain a punctured 3-cell H which contains L in its
interior.

As a consequence of Theorems 4.1 and 4.2 we get our desired answer
to Bing's question for n = 3.

THEOREM 4.3. Suppose M is a 3-manifold. Then M is homeomorphic
to S3 or S3 minus a tame compact (^-dimensional subset if and only if
each Cantor set of M is contained in an open 3-cell of M.

CONJECTURE 4.1. Suppose M is an n-manifold (n ^ 3). Then M is
homeomorphic to Sn or Sn minus a tame compact 0-dimensional subset
if and only if each Cantor set of M is contained in an open n-cell of M.

Bing showed [3, Lemma 7] that if each polygonal simple closed
curve of a 3-manifold lies in a topological 3-cell in the manifold, then
each polyhedral finite graph in the manifold lies in an open 3-cell of
the manifold. Hence we also have the following corollary which
strengthens a theorem [6, Theorem 2] of Costich, Doyle and Galewski.

COROLLARY 4.1. Suppose M is a 3-manifold. Then M is homeomorphic
to S3 or S3 minus a tame compact 0-dimensional subset if and only if
each polygonal simple closed curve of M lies in a topological 3-cell of
M.
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COROLLARY 4.2. A contractible 3-manifold M is topologically EB if
and only if each Cantor set in M lies in an open 3-cell of M.

Our final corollary is only a slight modification of a theorem of Bing
[3, Theorem 2].

COROLLARY 4.3. A contractible 3-manifold M is topologically E3 if
and only if each polygonal simple closed curve in M lies in a topologic-
al 3-cell of M.
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