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TORSION THEORY FOR NOT NECESSARILY
ASSOCIATIVE RINGS

W. G. LEAVITT AND R. WIEGANDT

1. Introduction. The purpose of this note is to investigate torsion
theories in the category of not necessarily associative rings. Torsion the-
ories for abelian groups and abelian categories were studied in Dick-
son's papers [4] and [5] and it is found that for associative and alterna-
tive rings radical and semisimple classes (in the sense of Kurosh and
Amitsur) correspond to torsion and torsionfree classes, respectively.

We will be considering subclasses of some universal class of not nec-
essarily associative rings, where a class is universal if it is homomorphi-
cally closed and hereditary (closed under taking ideals). Calling a class
co-radical when its properties are dual to those of a radical class, it is
well-known that a semisimple class need not be a co-radical class or
vice versa. However, starting from Dickson's definition of a torsion the-
ory, we nevertheless obtain a complete duality between torsion and tor-
sionfree classes. Torsion classes turn out to be particular radical classes
and torsionfree classes are special kinds of semisimple and co-radical
classes. In Section 2 torsion and torsionfree classes will be character-
ized. In Sections 3 and 4 classes and constructions related to torsion
theories will be investigated and further characterizations of torsion
theories will be obtained. For fundamental definitions and properties of
radical and semisimple classes we refer to [8] and [16].

2. Characterizations of torsion theories. All rings considered will be
members of some fixed universal class of not necessarily associative
rings. It is assumed that every class X considered contains the ring 0
and is an abstract class (that is, if A G X and A ^ B then B G X). Also
remark that whenever we give an example we are tacitly assuming that
our universal class is such that it contains the example. As usual, define
the following functions fy and .f acting on classes of rings by ^X =
(A \A has no nonzero homomorphic image in X}. ,/X = (A | A has
no nonzero ideal in X}. Further, let us associate for any class X and to
any ring A the ideals

X(A)= 2 (/a
a

and
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(A)X= r\(Kp<A\A/KeeX).
ft

The fact that B is a homomorphic image of A will be denoted by
A —-»B. We recall that B is an accessible subring of a ring A if there
are finitely many subrings Bl9 • • •, Bn of A such that
B = Bn < • • • <d B2 < Bl = A. If jB is an accessible subring of A we
shall write B >—A.

DEFINITION. A pair (T, F) of classes of rings defines a torsion theory,
if

(1) T H F = 0;
(2) T is homomorphically closed;
(3) F is hereditary, that is K A e F implies I e F;
(4) for every ring A there exists an ideal Ay, of A such that AT E T

and A/Ar e F.

The classes T and F of a torsion theory (T, F) are called a torsion class
and a torsion free class, respectively.

This concept was introduced by Dickson [4], [5] for abelian groups
and categories.

THEOREM 1. The following four statements are equivalent:

(A) The pair (T, F) satisfies T = ^/F where F has the following proper-
ties:

(i) =(3)F is hereditary;
(ii) F has the co-inductive property, that is, if 1^ D • • • D Ia D

is a descending chain of ideals of a ring A such that every A/Ia is in F,
then also A/ C\ala e F;

(iii) F has the extension property, that is, if I < A such that I E F
and A/7 E F, then also A belongs to F;

(iv) ((A)F)F < A for every ring A.

(B) The pair (T, F) satisfies
(I) if A E T, B E F and A — C^—B, then C = 0;

(II) =(4) for every ring A there exists an ideal AT of A such that
AT E T and A/AT e F.

(C) (T, F) is a torsion theory,
(D) The pair (T, F) satisfies F = .j/T where T has the properties:

(a) = (2)T is homomorphically closed;
(b) T has the inductive property, that is, if l^ C • • • C Ia C - - • is

an ascending chain of T-ideals of a ring A, then also U a Ia E T.
(c) =(iii)T has the extension property;
(d) T(L) C T(A) for every ideal L of any ring A.
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PROOF. (A) => (B) Suppose that the class F satisfies conditions (i), (ii),
(iii) and (iv) and consider the class ̂ F. We claim that the pair (^F, F)
fulfills (I) and (II). The class ^F is clearly homomorphically closed,
moreover ^F PI F = 0. Since by (i) F is hereditary, in each relation
A — C ̂ -B it follows from A E?/F and B E F that C E^F n F = 0.
Hence, (I) is valid.

By the co-inductive property (ii) the dual of the Zorn lemma is ap-
plicable, so there exists a minimal ideal I <d A such that A/I e F. If K
is an ideal of A with A/K E F, then we have

K/(i n K) ~
and

K/(I 0 K) ̂  (K + I)/1 < A/I E F.

Hence, (i) and (iii) imply A/(I n K) E F and so the minimality of I
yields I C K. Thus I is unique and by definition I = (A)F. Now condi-
tion (iv) yields ((A)F)F <A. Further, since A has been chosen arbi-
trarily, also (A)F/((A)F)F E F holds. Hence, taking into consideration

A/((A)F)F
(A)F/((A)F)F -

condition (iii) implies A/((A)F)F E F. Consequently (A)F C ((A)F)F C
(A)F holds and so (A)F E <?/F. Thus (II) has been established.

(B) => (C) Suppose that the pair (T, F) satisfies (I) and (II). (I) implies
(1) trivially. If A E T and B is an arbitrary homomorphic image of A,
then by (II) we have an ideal BT of B such that BT E T and B/BT E F.
Since B/BT is also a homomorphic image of A, we have the relation
A-+B/BT>—B/BT and condition (I) implies B = BT E T. Thus (2)
holds. If A E F and B <A, then again considering the ideal BT of B,
BT>—A is valid. Hence, by BT E T and by the relation BT—> BT>—A
condition (II) yields BT = 0. Thus by (II) we have B = B/BT E F and
(3) is valid. Finally, (4) is exactly (II).

(C) => (D) Assume that (T, F) is a torsion theory. We claim that T
fulfills the requirements of (a), (b), (c) and (d) and that F = ^T. (a)
equals (2). Next, consider an ascending chain l^ C • • • C Ia C • • • of
T-ideals of a ring A. (4) is applicable to the ring K — U a Ia, and so
there exists an ideal / of K such that / E T and K/J E F. Since by (2)
T is homomorphically closed and by (3) F is hereditary, from

ia/(la n J) s (ia + /)// < K/J e F
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follows 1J(IU n / ) G T n F = 0. Hence, Ia C / for every a which im-
plies K = / G T. Thus (b) holds. To see (c), suppose that L is an ideal
of A such that LET and A/L E T. In view of (4) there is an ideal AT

of A with AT E T and A/AT E F. Hence, we have L/(L fl Ar) s
(L + A r)/A r<A/A reF, and by (1), (2) and (3) it follows that
L/(L H AT) = 0. Hence, L C AT. From

(A/L)/(A r/L)sA/A reF

(1) and (2) yield A/AT E T n F = 0 that is A = Ar e T, so (c) has
been established. For any ring A and ideal L < A consider the ideals
AT<A and LT<L such that A^ LT E T and A/A^ L/LT E F. We
have

Lim/ \Llrp II A rpJ ^^ \~T ' **T/' T

<(L + A7,)/A7,<A/Ar e F

and conditions (1), (2) and (3) imply

Lr/(L n AT) e T n F = o,

that is LT C AT. We still have to see that AT = T(A) for every ring A.
Since for any T-ideal I of A

//(/ 0 AT) =s (I + AT)/AT < A/Ar e F

holds, conditions (2) and (3) imply //(/ n AT) e T n F. Thus / C AT

and so T(A) C AT. On the other hand AT e T implies trivially
AT C T(A). Hence, (d) holds. If A E F then by (1) and (3) A has no
nonzero T-ideals. Conversely, if a ring A has no nonzero T-ideals, then
by (4) AT = 0 and A ̂  A/Ar E F follow. Hence, F = ,/T.

(D) => (A) Let us suppose that a class T has (a), (b), (c) and (d). We
show that F = ,/T has (i), (ii), (iii) and (iv), and that <&/T = T. If
/ < A E F, then by (d) it follows that T(J) C T(A) = 0. Thus (i) is satis-
fied. Consider a descending chain 7X D • • • D Ia D • • • of ideals of a
ring A such that each A/Ia is in F. Putting K = Ha/a, take an arbi-
trary T-ideal L/K of A/K. Then for each a we have

L/(L H Ia) - (L + Itt)//fl < A//tt E F.

Hence (a) and (i) yield L/(L n/tt) E T n F = 0. Thus L C Ia for each
a, that is L = K, and therefore A/K E F. Hence, (ii) has been estab-
lished. Let us suppose that 7 E F and A/7 E F for an ideal 7 of a ring
A. We have

T(A)/(T(A) 07)^ (T(A) + 7)/7 < A/7 E F.
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Applying (i) and (a) it follows that

T(A)/(T(A) D 7 ) G T n F = 0.

Consequently, T(A) C 7 G F holds, so again by (i) we obtain T(A) e F.
But as is well-known, (a), (b), (c) imply T is radical so T(A) G T and we
have T(A) G T n F = 0. Thus A e F and (iii) is satisfied. To see (iv),
take an ideal I of a ring A and consider

(I)F= Q(Ka<I\I/Ka£F).

We claim that 7/T(7) G F. Otherwise there would be an ideal L of /
such that 0 ¥= L/T(I) < 7/T(7) and L/T(7) G T. But then by (c) we
would get L G T and so also L C T(7), a contradiction. Thus
7/T(7) G F holds, and the definition of (7)F gives (7)F C T(7). By (ii) and
the dual of Zorns lemma there exists a minimal L < 7 such that
7/L G F. Then (7)F C L and if they were unequal there would exist
some / < 7 such that I/] G F but L (£ /. But then (i) would imply
0 ^ (L + /)// ss L/(L 0 /) G F and by (iii) from 7/L G F would follow
7/L n / G F contradicting the minimality of L. Thus 7/(7)F G F so
from T(7)/(7)F < 7/(7)F it follows by (i) that T(7)/(7)F G T n F = 0.
Hence T(7) = (7)F and so

((A)F)F = T(T(A)) = T(A) <A

and thus (iv) has been proved. If A G T, then A has clearly no nonzero
homomorphic image in F. Therefore, A G ̂ F holds. If A G ̂ F, then A
has no nonzero homomorphic image in F, so A = (A)F = T(A) G T
holds. Thus, Theorem 1 has been proved.

We say that the class ^X has the intersection property relative to X,
if ^X(A) = (A)X for every ring A.

COROLLARY 1. In (A) conditions (ii) and (iv) can be replaced by
(ii') F is closed under subdirect sums, that is if A is a subdirect sum

of Y-rings then also A G F;
(iv') ^F has the intersection property relative to F.

PROOF. Clearly (i), (ii), and (iii) is equivalent to (i), (ii'), and (iii).
Now (ii') implies A/(A)F G F so ̂ F(A) C (A)F. Also (A)F/((A)F)F G F
so assuming (iv) by (iii) we have A/((A)F)F G F. Thus ((A)F)F = (A)F,
that is (A)F has no non-zero images in F so is in ^F and we have

^F(A) = (A)F. On the other hand ^F(A) = (A)F clearly implies
((A)F)F = (A)F<A.

The proofs of the following two corollaries are straightforward so we
omit them.
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COROLLARY 2. Conditions (2) and (3) can be replaced in the definition
of torsion theories by

(2') if A G T and A -+ B ¥* 0, then B $ F;
(3') if A G F and 0 * B >—A, then B $ T.

COROLLARY 3. In (D) for condition (b) can foe substituted (b')
T(A) G T for every ring A.

Remark that in the proof of Theorem 1 we have used only the iso-
morphism theorems, and did not use the operations of rings. Thus, The-
orem 1 could have been proved in any category satisfying some addi-
tional requirements (see for instance, Rjabuhin [12], Sulinski [14], and
Wiegandt [15]). In particular, Theorem 1 is valid also for multioperator
groups.

As is well-known, a class R of rings having properties (a), (b) and (c)
is said to be a radical class in the sense of Kurosh and Amitsur, (cf.
Amitsur [1]), and the class ^R is the semisimple class for the radical
class R (cf. Amitsur [1] and Leavitt [8]). In view of Theorem 1 we may
say that a torsion class is a radical class with the additional property
(d), and a torsionfree class is a hereditary semisimple class. For associa-
tive and alternative rings condition (d) is a consequence of (a), (b) and
(c) (cf. Anderson, Divinsky, and Sulinski [2]) and every semisimple class
is hereditary. Hence, every radical class is a torsion class and every
semisimple class is a torsionfree class. On the other hand, in the case of
associative and alternative rings condition (iv) follows from conditions
(i), (ii) and (iii), so the semisimple classes are characterized by condi-
tions (i), (ii) and (iii) (cf. Sands [13] and van Leeuwen, Roos, and
Wiegandt [11]).

A radical class R is called a strict radical class, if R(A) contains every
R-subring of A. Clearly any strict radical class fulfills condition (d) and
so is a torsion class. Examples of strict radicals are Gardner's A-radical
classes (cf. [6]): a radical class R is said to be an A-radical class, if
A G R and A+ ̂  B+ imply B G R where X+ denotes the additive
group of the ring X. This means that belonging to an A-radical class
depends only on the additive structure of the ring. Thus we can easily
get examples of torsion classes. For instance

T0 = (A | every a G A is torsion (that is, has finite additive
order)},

or

Tp = (A | A has p-primary additive group for some fixed
prime p}.
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To construct another example of a torsion theory, let V be the class
of all rings with characteristic 2 and claim that (^V, .j/*fy\) is a torsion
theory. Clearly V C .y^V and ^V contains all rings of characteristic
p ¥= 2. Since ^V is a radical class, we only need y^V hereditary. Let
A G .yfyV and define Ax = A, Aa+1 = 2Aa for all ordinals a, and
A^ = ^aoS^a f°r I*1™* ordinals /?. By induction we have a descend-
ing chain A1 D • • • D Aa D • • • of ideals of A which must stabilize at
some Av = Av+1. If Ay ¥= 0 then since Ay <A we would have some
0 =£ AY// G V. But this leads to the contradiction Ay = 2Ay C ] and
thus Ay — 0. Now consider an arbitrary sub ring B of A. We claim that
if B = 2B then B = 0 for we have B C A = Al and if B C Aa for all
a < /? then either B C D a<)Q Aa = A^ where /Ms a limit ordinal or
B - 2B C Att+1. Thus by induction B C Av = 0. Thus if 0 ¥= B then
0 ¥= B/2B E V and since this is true for all ideals of B it follows that
B EJ/^V.

Note that if our universal class is the class of all not necessarily asso-
ciative rings torsionfree classes tend to be very large. For example, it
follows from Proposition 1.2 of Andrunakievic and Rjabuhin [3, p. 25]
that a torsionfree class containing any non-zero O-algebra (for an arbi-
trary field O) contains all 0-algebras. This is, of course, not in general
true for more restricted universal classes. Another consequence of this
result is that while if (T, F) is a torsion theory in the class of all rings
then (T Pi A, F D A) is a torsion theory in the class A of all associative
rings, there are associative torsion theories not obtainable in this way
since, for example, many associative radicals have semisimple classes
containing some but not all Z2-algebras.

3. Classes related to torsion theories. Conditions (i), (ii), and (iii) are
dual to (a), (b) and (c) which define the radical classes. A class with
properties (i), (ii) and (iii) is therefore called a co-radical class (cf.
Rjabuhin [12]). Leavitt and Armendariz [9] have shown that in the cat-
egory of not necessarily associative rings there are non-hereditary semi-
simple classes, hence, a semisimple class is not always a co-radical class
(or a torsionfree class).

Next, we shall construct a co-radical class containing a given heredi-
tary class. This construction yields another characterization of tor-
sionfree classes and shows that a co-radical class need not be a tor-
sionfree class.

LEMMA 1. If M is a hereditary class of rings, then ^M = ^M where

M — (A | every accessible subring of A is

is the largest hereditary class continued i
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PROOF. Since M C M C y^M we get

THEOREM 2. For M an arbitrary class, the largest hereditary subclass
is a co-radical class.

PROOF. Let M C y^M where M is hereditary. Then
M C y^M C y^y^M C y^M. Thus M is also the Jargest hereditary
subclass of y^M and we might as well assume M = M from the begin-
ning. To see (iii) let I be an ideal of a ring A with I E M and
A/I E M. Certainly A E.y?/M since if 0 ¥= ] < A with / E^M, then
/({I/. But this leads to the contradiction

0 * ]/(! PI 7) ^ (/ + /)// E^M n M = 0.

If A $ M, then the maximality of M would require that there is some
accessible subring B E ̂ M with

0 * B = An <An_1 < • • • <AX = A.

Then B $ /, for otherwise I G M implies B E M n ^M = 0. But this
leads to the contradiction

0*(B + r)/I = (An + I)// < • • • <(A! + I)//

= A/I e M.

Thus, the conclusion is A E M.
In order to prove (ii), without loss of generality let us consider a

chain 1± D • • • D Ia D • • • of ideals of a ring A where each
A/Ia G M and r\ala = 0. Again A G.y^M, for if 0 ^ /<A with
/ E ̂ M then for some a we would have / (£ Ia leading to the con-
tradiction

o * ]/(] n ij ^ (/ + y//fl E^M n M = o.

As before, if A $ M, then the maximality of M would require some ac-
cessible subring 0 ^ An E ̂ M. But then An $ Ia would lead to the
contradiction

(A» + *«) /*«<•• • < A / / a E M .

Theorem 2 and Corollary 1 yield immediately the following charac-
terization of torsionfree classes.

COROLLARY 4. A class F is a torsionfree class if and only if F satisfies
(a) F is the largest hereditary class in y^F;
(/?) ^F has tfie intersection property relative to F.
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COROLLARY 5. If M is a hereditary class such that.y^M is not hered-
itary, then the largest hereditary subclass M of y^/M is not a tor-
sionfree class (though a co-radical class).

PROOF. Suppose that M is a torsionfree class, then by Lemma 1 ^M
= ^M and by Theorem 1 ̂ M is a torsion class. Hence, .y*&M is a tor-
sionfree class and so hereditary, a contradiction.

Thus for M = (Z2°, 0} where Z2° is the zero ring with two elements,
M is a co-radical class which (in the universal class of all rings) is not a
torsionfree class since it is known that in this case yfyM is not heredi-
tary, (cf. Leavitt and Armendariz [9].)

The following theorem characterizes the maximal hereditary subclass
M of .jffyM and gives another characterization of a torsion theory. For
this purpose we shall need condition

(v) Let A — /j D • • • D Ia D • • • be a transfinite chain of subrings
of a ring A such that Ia+1 <\ Ia and Ia/Ia+l G M for all ordinals a, and
Ip is the largest ideal of A contained in H a</8 Ia when ft is a limit or-
dinal. If n v Iy = 0 then A G M.

THEOREM 3. If a class M is hereditary and has property (v), then M is
the largest hereditary subclass Min^^M.

PROOF. By the hereditariness of M we have M C^y^M. Take an ar-
bitrary ring A G M For induction assume that for all a < ft distinct
subrings Ia have been defined with the desired properties. If ft is a lim-
it ordinal then define

I/B = 2 ( I x | / x < a A a n d I x C ritt</JIfl).

Otherwise since A G M it is easy to check that Ia G^y^M so there
exists an Ia+l <Ia such that 0 ¥= Ia//a+1 G M. Note that we could have
I0 = 0 when ft is a limit ordinal, or if ft = a + 1 we could have
Ia = 0. If so we simply let Iy = 0 for all y ^ ft.

Now the descending chain of distinct Ia must stabilize at some
Iy = Iy+i which implies Iy = 0. We thus have Pi v Iy = 0, so by (v) it
follows that A G M.

Theorems 2 and 3 imply

COROLLARY 6. A class F is a torsionfree class if and only if F has
properties (i), (iv) and (v).

PROOF. The sufficiency is clear from Theorem 3 and Theorem 2, and
for necessity it is enough to prove that a torsionfree class has property
(v). Thus let M be a torsionfree class and A = ^ D • • • the ring of
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property (v). If A $ M then A would have 0 ¥= KA with /
Then I C 7X and since PI y Iy — 0 there would be some ordinal y such
that I (f 7V. Let /? be the least ordinal such that / $ /#, so that I Q Ia

for all a < /?. Clearly /? cannot be a limit ordinal so fi = a + 1 for
some a. But then / would have a non-zero image under Ia — » /tt//a+1,
so Ia/Ia+i would have a non-zero ideal in fyM contrary to the heredi-
tariness of M.

COROLLARY 7. A class S of associative or alternative rings is a semi-
simple class if and only if it has properties (i) and (v).

4. Smallest and largest constructions. First we shall construct the
smallest co-radical class containing a given hereditary class. For a class
X define

= [A A D /! D • • • D /tt D • • • where all Itt <A, A/7a G X,

and n Ia = 0},
a

-^X = (A I /, A// G X for some ideal I <A}.

Clearly X has (ii) if and only if ^X = X, and has (iii) if and only if
-^X = X.

LEMMA 2. I f M i s hereditary, so is J^M.

PROOF. Let A D 1^ D • • • D Ia D • • • be a descending chain of
ideals of A such that all A/Ia are in M and Dtt 7tt = 0. If / < A then

/ D (/! n /) D • • • D (/fl n /) D • • •

where Pla (7a n /) C Ha Ifl = 0 and

By the hereditariness of M each J/(Ia H J) is in M and so /

LEMMA 3. I f M i s hereditary, so is ^M.

PROOF. Let /, A/I be in M and / <A. The hereditariness of M im-
plies / H 7 G M. Further, by //(/ n I) ̂  ( /+/)/!< A/I G M we have
//(/ 0 /) G M. Hence, / G^M.

Note that M C ̂ M and M C^M for any class M, and that M C N
implies ̂ M C^N and^M C^N.

We also have

LEMMA 4. // {My} w ant/ ascending chain of classes defined for all
ordinals y then^~ U My = U^M^ and & U My =
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PROOF. From My C U My it is clear that U^MV C F U My so to
establish the reverse inequality let A G y U My. Then A D 7X D • • •
D 7a D • • • where A/7a G UMy for all Ia. Thus for some ordinal \(a)
we have A/7a G MX(a). Sine {Ia} is a set there must be some ordinal
/x > A(a) for all a and so all A/7a G M^. Thus A G ̂ M^ C U5rMv.
The proof that^ U MV = U^M7 is similar.

For a class M define Mx = M, Ma+1 = J^Ma and M^ = Ua<^g Ma

if /? is a limit ordinal, and consider the class M' = UMV where y
ranges over all ordinals.

THEOREM 4. M' is tfie smallest class having properties (ii) and (iii)
and containing M. 7n particular, ifMis hereditary, then M' is the
smallest co-radical class containing M. Even when M is hereditary, the
class M' need not coincide with the largest hereditary class M

PROOF. From Lemma 4 we have M' C JHH' C JHfM' = GMy+1

M' and M' C^M' CJT^M' C M'. Thus M' = JTtf' and M' =
so M' has properties (ii) and (iii). If M is hereditary, then Lemmas 2
and 3 imply that M' is also hereditary and so is a co-radical class. Let
N be a class such that M C N, r^N = N and .^N = N. Since
.^r-^Ma C.^^N = N for every non-limit ordinal, it follows that
M' C N, that is M' is the smallest class having properties (ii) and (iii)
and containing M.

Finally we shall give a hereditary class M such that M' ¥= M. Let M
= {Z2°, 0}. Let A be the ring generated over the two-element finite
field Z2 by the symbols xl9 x2, • • • where x^ = x^ = • • • = 0 and
XjXj = xfy = xi+l for all i < \. Note that A is isomorphic to the ring l{

generated over Z2 by x{, xi+l, • • • for any i. We claim that I2 is the
only non-trivial ideal of A. Let /<A and notice that if x2 G / then
X2x3 = x3 G I and so on, that is, 72 C /. First suppose y £ /, y (jE 72 so
y = x± + xi + • • • + xi . It is easy to check that in all cases
x2 = (y — yx2)x2 so x2 G I; then xl G / and therefore I = A. Thus if
I =£ A we have / C I2, and if 0 ¥= y G / then y = xi -{- -- - + xin

where 2 ^ i± < • • - < in. Then x2 = yxl if n is odd or x2 — (yxi^)xl if
n is even, so in either case x2 G I. Therefore, I = I2 and the only image
of A is A//2 ^ Z2°. By the above remark on A ^ I{ we have
A = 7X D I2 D • • • D In D • • • where each Ii+1 is the sole ideal in 7j

and each 7i/7i+1 = Z2°. Hence, it follows that the hereditary closure of
A is in J^frM so A G M. But A $ M = M^ and suppose A ^ Ma for all
a. < (I then certainly when ft is a limit ordinal A GM^. Also if
A G ^Ma then we would have 72, A/72 G Ma contradicting
72 = A £j= Ma. Thus A ^^Ma, and since the sole descending chain of
ideals in A is A D 72 D 0 and 72 ̂  A/0 ^ A $^Mtt> so A
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Thus A (JE NT follows and so in this case M' is properly contained in M.
A variation of the above example shows that the sufficient condition

of Theorem 3 is not necessary; that is, for the class M = {Z2°, 0}, M
does not satisfy (v). This will follow when we show the existence of a
ring B satisfying the hypothesis of (v) relative to M with B $ M Let B
be generated over Z2 by xly • - •, xn, • • •, xu with relations x? — 0 for
all i < co; XjXu = xjc^ = x'2; xfu = x^ = xu for all 2 ^ i ^ to and
xfi = xfa = xi+l for all i < / < co. Let Ii9 2 ^ i < <o, be the ring gen-
erated by xi9 xi+l, • • •, xu. We claim as before that I2 is the only ideal
of B. This follows as before from the fact that if y = x± + x^ +
• • • + xin then x2 = (y — yx2)x2 and if y = x^ -f • • • + xin (with
2 ^ il < • • • < in ^ J, then x2 = yxl when n is odd or x2 = (yx^x^
when n is even. We have B = Ij D J2 D • • • where each
Jn//n+1 ^ Z2° G M. Also n/n = (0, actt} is not an ideal of_B so Itt = 0.
Thus, B satisfies the hypothesis of (v) relative to M, but since
(0, xj G^M is an ideal of I2 it follows that B $ M.
The smallest torsionfree (i.e., hereditary semisimple class) containing a

given class, was given in Leavitt [7] Theorem 2. Let -^X denote the
hereditary closure of any class X.

PROPOSITION 1. Every class M is contained in a smallest torsionfree
class F. F can be constructed as follows: Define Ml = ^M,
Ma+1 ==/y^Ma and M^ = Ua</3 Ma if ft is a limit ordinal. Then F
= U My where y runs over all ordinals.

In view of Theorem 1 it is obvious that T = ^F = ^( U My) is the
largest torsion class such that T n F = 0.

In Leavitt and Watters [10, p. 103] an example was given showing
that in general there does not exist a smallest torsion class containing a
given class. However, it was shown that every class M is contained in a
smallest radical class P with the somewhat stronger property P(7) < A
for every / < A. It is also true that every class M is contained in a
smallest hereditary torsion class (called strongly hereditary radical in
[10]).
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