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OSCILLATION AND EVEN ORDER LINEAR 
DIFFERENTIAL EQUATIONS 

DAVID LOWELL LOVELADY 

Let 9 be a continuous function from [0, oo ) to (0, oo ), and let n be a 
positive integer. We shall obtain herein oscillation and nonoscillation 
criteria for 

(1) u<2"> + qu = 0 

on [0, oo ). It follows from results of J. G. Mikusinski [7] and I. T. 
Kiguradze [5] (see also G. V. Anan'eva and V. I. Balaganskii [1], 
H. C. Howard [4], V. A. Kondrat'ev [6], and C. A. Swanson [8, 
Theorem 4.59, p. 173] ) that if 0 < a < 2n - 1 and Jo Fq(t) dt = oo? 

then every solution of (1) is oscillatory (i.e., every solution of (1) has an 
unbounded set of zeros). Thus, we shall assume throughout that if 
0 < a < 2n — 1, then Jo taq(t) dt < oo . Also, since our primary 
results compare (1) to certain second order equations, we assume 
n = 2. R. Grimmer [2] has recently done some related work com­
paring higher order equations to second order equations. 

THEOREM 1. Suppose the second order equation 

(2) w"{t) + ( (l/(2n - 3)!) J°° (s - t)2n~3q(s) ds ) w(t) = 0 

is oscillatory. Then every solution of(l) is oscillatory. 

THEOREM 2, Suppose the second order equation 

(3) w"(t) + (t2n~2l(2n - 2)\)q(t)w(t) = 0 

is nonoscillatory. Then there exists a nonoscillatory solution of(l). 

COROLLARY 1. Suppose 

lim s u p ^ wf j (s - t)2n~2q(s) ds > (2n - 2)!. 

Then every solution of(l)is oscillatory. 
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COROLLARY 2. Suppose 

lim sup^oo* J " s2n~2q(s)ds < (2n - 2)1/4. 

Then there exists a nonoscillatory solution of (I). 

Note that Corollaries 1 and 2 are partial extensions of more detailed 
results obtained by E. Hille [3] in the second order case. In fact, 
Corollaries 1 and 2 are immediate consequences of Theorems 1 and 2 
and of [3]. (See [8, Theorem 2.1, p. 45] for a summary of those 
results of Hille which are relevant here). Since there is a voluminous 
literature on oscillation and nonoscillation in second order equation 
(see, for example, [8, Chapter 2] and D. Willett [9] ), Theorems 1 
and 2 permit the drawing of a great many additional conclusions re­
garding (1). With the exceptions of Corollaries 1 and 2, we leave this 
to the reader. 

PROOF OF THEOREM 1. We shall assume the existence of a non-
oscillatory solution of (1), and show that this implies that (2) is non-
oscillatory. Suppose M is a nonoscillatory solution of (1). If u is even­
tually negative, we may replace u by — u, so we assume u is eventually 
positive. Find a ^ 0 such that u(t) > 0 if t è a. Now u(2n) < 0 on 
[a, oo )? so u{2n~1} is eventually one-signed. Since w(2n_1) is eventually 
one-signed, u ( 2 n _ 2 ) is eventually one-signed. Continuing this, we see 
that there i s c â a such that none of w, u ', • • -, u{2n~l) has any zeros in 
[c, oo ). Let j be the largest integer such that u{i) > 0 on [c9 oo ) if i :§ j 
(where we write u = w(0)). Now j is odd. (Note that, thus far, our 
argument is essentially due to Kiguradze [5]). Suppose l<j< 
2n — 1. Now, 

-uU + l\t) = (l/(2n - j - 2)!) J°° (s - t)2n-J-2q(s)u(s) ds 

whenever t ^ c, and 

u(s) ^ (I/O* - 2)!) P (s - Çy-W-v(Ç) d€ 

i f s ^ c, so 

-„(/+!>(*) ^ (i/(2n - j - 2)\{j - 2)!) 

| " (* - f)2"--'-29(s)( j' (S - *)'-%#«-!>(*) dt) ds 
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S ( l / ( 2 n - j - 2 ) ! ( / - 2 ) ! ) 

J" (s - t)2n-J-2q(s)( J' (s - ty-W-Vfâdi) ds 

if t^ c. Since u ^ > 0 on [c, » ), w 0 - 1 ) is increasing on [c, oo ), and 
(2n - 7 - 2)!(/ - 1)! ^ (2n - 3)!, so 

-u<J + l\t) è iiü-i)(t)(i/(2n - 3)!) J " (Ä - t)2n-*q(s) ds, 

and 

(4) uV + l\t)luU-l\t) S - ( l / (2n - 3)!) J " (Ä - t)2n-*q(s) ds 

if e ^ c. I f / = 1, then 

- u " ( t ) = (l/(2n - 3)!) J " (Ä - t)2n-*q(s)u(s) ds 

^ ii(0(l/(2n - 3)!) j 0 0 (5 - t)2n-*q(s) ds 

whenever f ^ c , s o we see that (4) holds if j < 2n — 1. Let v be given 
on [c, 00) by v(t) = u^\t)lu^-l\t), and note that t?(t) > 0 if t^ c. 
Now 

v'(t) = u<J+l\t)luV-l)(t)-v(t)2
9 

and (4) says that 

(5) v'(t) + v(t)2 g - ( l / (2n - 3)!) J " (* - t)2n~3q(s) ds 

if f = c. A classical result of A. Wintner [10] (see also [8, Theorem 
2.15, p. 63] ) says that (5) implies nonoscillation for (2), so the proof is 
complete in the casej < 2n — 1. 

Finally, suppose j = 2n — 1. Now, 

W ( 2 n - l ) ( f ) = l i ( 2 n - l ) ( T ) + J* q(S)u(s) ds 

^ q(s)u(s) ds 

if T è t S C, SO 
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u<2»-i)(f)^ f°° q(s)u(s)ds 

if t== c. Thus 

«<2»- i ) ( t )^ ( i / (2»-3) ! ) 

J " <7(*)( J ' (* - f)2«-3W(2n-2)(^) ^ rfg 

g (l/(2n - 3)!) 

f 9(S) (I! (S ~ £)2n-3«(2n-2)(f) # ) ds 
if t = c. Let {i/m}m+i be a sequence, each value of which is a continu­
ous function from [c, oo ) to [u(2n~2)(c), °° ) such that yl = ui2n~2\ ym(c) 
= u<2"-2>(c),ifmg l ,and 

y^+l(t) = (l/2n - 3)!) J " 9 ( s ) ( J ' (s - £)2"-3</m(f) di) ds 

if £§l c and ra ^ 1. Clearly {t/m}m=i is equicontinuous and locally 
bounded, so z, given by z(t) = limm_> »t/m(0> exists and is continuous. 
Also, since t/m(f) ^ u&n-2\t) for all m ^ 1, t è c, and 

Km J " q(s) ( £ (* - £)2"-3t/m(£) df ) ds 

exists, locally uniformly in t, we see that z is differentiable and 

z'(t) = (l/(2n - 3)!) J " 9(Ä) ( J* (* - £)2«-3z(£) d f ) ds 

whenever t^ c. Now 

s"(t) = - ( l / (2n - 3)!) J " (5 - tfn-*q(s)z(t) ds 

and 

z"(t)/z(t) = - ( l / (2n - 3)!) J00 (5 - t)2n-*q(s) ds 

whenever t = c. If we now let v be given on [c, °° ) by v(t) = z'(t)lz(t), 
the remainder of the proof follows as before, and we are through. 
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PROOF OF THEOREM 2. Suppose (3) is nonoscillatory, and let w be an 
eventually positive solution of (3). Find a ̂  0 such that w(t) > 0 if 
t^ a. Now w' > 0on [a, <» ), so 

w'(t) = w'(r) + (l/(2n - 2)!) J1" s2"-2q(s)w(s) ds 

^ ( l / ( 2 n - 2 ) I ) J' s2n-2</(s)u;(s) ds 

whenever r ^ £ = a, and 

u>'( t )S (l/(2n - 2)!) J°° s 2 « - 2 g ( s H # 

â (l/2n - 2)!) J " (5 - *)2»-2</(s)u;(s) cb 

whenever ^ a . As in the last part of the proof of Theorem 1, this 
says that there is a differentiable function u from [a, oo ) to [iü(a), °° ) 
such that u(a) = 10(a), u(t) = w(t) whenever f ^ a , and 

u'(t) = (l/(2n - 2)!) J " (5 - t)2n-2q(s)u(s) ds 

whenever t> a. Differentiating this last equation 2n — 2 times yields 

w(2n-i)( f)= j"°° q(s)u(s)ds, 

and then 

U(2n){t) = _ q{t)u{t); 

so we see that u satisfies (1) on [a, 00 ). Clearly u can be extended to a 
solution of (1) on [0, 00 ), and since u has no zeros in [a, 00 ), this solu­
tion is nonoscillatory. The proof is complete. 
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