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DIFFEOMORPHISMS OF TOM, 
THEIR LIFTS AND SUSPENSIONS 

CARL S. HARTZMAN* 

ABSTRACT. Every e l ement / G Diff^T™) is shown to have a 
lift to Rn of the form F(x) = Ax + TT(X) where n(x) is a map of 
fln periodic of period 1 in each component of x and A is a 
matrix with integer entries of determinant ± 1 . DifF(Tn) is 
then shown to be decomposed into a disjoint union of open sets 
U A 6 ( / M ( Z ) DifF (Tn)(A), where UM(z) are matrices as de
scribed above. For the particular case Differ2), DifF(fl2) (A) 
is shown to be path wise connected in DifP(712) for each 
A G UM(z) yielding an arithmetic classification of isotopy 
classes of DifF(T2). As a corollary one obtains an arithmetic 
classification of the manifolds of suspension of elements of 
DiffXT2). 

0. Introduction. Consider a homeomorphism of the c i rc le / : S1 —• 
S1 • S1 may be viewed as the real line R where points are identified 
according to whether their coordinates differ by an element of Z, the 
integers, i.e., RIZ = S1. For any choice of a function F : R -» R which 
projects onto / u n d e r the quotient map, p : R —» RIZ, if/ is orientation 
preserving, the "lift" F may be shown to satisfy the following conditions: 

(i) F is continuous, 
(ii) F is strictly increasing, and 

(iii) F(x + 1) = F(x) + 1, for all x G R. 
From (iii) it is easy to see that F(x) = x + TT(X), where ir(x) is a periodic 
function of period 1. Topological properties o f /may almost be com
pletely studied by examining arithmetic properties of F. The function, 
/ : S1 —» S1, may arise as the map induced on a cross-section of a flow 
on a two-dimensional torus T2 by that flow. Topological properties of 
the flow can then be studied almost completely by studying topological 
properties of / The situation just described has been extensively 
studied, initially by A. Denjoy [1] (or see [2]). Denjoy con
sidered limn_^oo(Fn(x)/n), where Fn means the n-th iterate of F, and 
shows that this limit exists and is independent of x. The limit is called 
the rotation number. It is then shown that if the rotation number a is 
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irrational and F is twice continuously differentiate the set of points 
{fn(x) : n = 0, ± 1, ± 2, • • •} is dense on S1 for all x and if a is rational, 
then/* has a fixed point for some k. I f / i s the map induced on a cross-
section of a flow on T2 by that flow, continuity properties of differen
tial equations can then be used to show that if a is rational, the flow 
has a periodic orbit, and if a is irrational and the flow is C2, every path 
of the flow is dense on T2. 

The novice then seeking to explore extensions of these techniques to 
n-dimensional tori V1 may study homeomorphisms/: V1 —• T*. View
ing T" as RnIZn, the natural assumption may possibly be made (in view 
of (iii)) that any lift F : Rn —> Rn of an orientation preserving homeo-
morphism / : Tn-> Tn satisfies F(xl9 • • -, x{ + 1, • • -xn) = F(xl9 • • -, 
xn) + (0, ' ' *,0, 1, 0, • • -0), where F is an n-vector; i.e., F(x) = 
Id(x) + ir(x), where ir(x) is a map of period 1 in each component of 
x = (%i, ' * *,xn). Everything proceeds smoothly (or not) until the 
discovery is made that 

™ - ( î i ) ( ï ) 
projects onto an orientation preserving homeomorphism of T2. 

One purpose of this paper is to put on a precise footing the relation
ships between homemorphisms (not necessarily orientation preserving) 
of a torus (denoted Diff°(Tn)) and their lifts. To this end, DifP(Tri) is 
decomposed into a disjoint union of subsets (called lift classes) (§ 1); in 
particular it is shown that any element of DifP(Tn) has an almost 
unique lift of the form F(x) = Ax + n(x)y where A is a matrix with 
integer entries whose determinant is = ± 1 , and7r(jc) is a map of period 
1 in each coordinate of x. In § 2, an arithmetic for lift classes is dis
cussed and applied to situations of topological conjugacy. In §3, a 
topology is put on DifF(Tri) (the set of diffeomorphisms of class Cr of 
T1^^ 0), and it is shown that lift classes are open. In § 4, it is proven 
that lift classes are connected in case V1 = T2 (theorem 4.22). Al
though many of the theorems in § 4 are known, most are only im
plicitly contained in the literature. They are proven here, for the most 
part, by means of elementary methods. § 4 also contains extensive dis
cussions of suspensions of diffeomorphisms of T2 and shows that the 
manifolds of suspension of elements of the same lift class are diffeo-
morphic (theorem 4.23). The results in § 4 may also be of interest in so 
far as theorem 4.22 is essentially an arithmetic classification of the 
isotopy classes of diffeomorphisms of T2. 

The mathematics in the first half of this paper is not particularly 
difficult and may be read by many students. The presentation is par-
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ticularly detailed in order that this be possible, since it is a purpose of 
this paper to foster a better intuitive feeling for diffeomorphisms of 
tori. Questions appear at the ends of several of the sections. The 
author does not know whether they are easy or difficult, but it is felt 
that their answers will yield a complete arithmetic and qualitative 
understanding of lifts and hence may bear some scrutiny. 

Once this study has been made, one is then in a position to return to 
the original problem of extending of the techniques of Denjoy to 
higher dimensional manifolds. An appropriate generalization of the 
notion of rotation number must be found, and following that, it would 
be hoped that results could be obtained pertaining to the topological 
properties of flows, not just on Tn, but on any manifold admitting toral 
cross-sections (see theorem 4.23 and succeeding remarks). 

1. Lift classes. Before proceeding, we will need a couple of facts 
about covering spaces. 

DEFINITION 1.1. Let X be a topological space. A covering space of 
X is a pair consisting of a space X and a continuous map p : X —» X 
such that each x G X has an arcwise connected open neighborhood U 
such that each arc component of p~l(U) is mapped homeomorphically 
onto U by p • p is called the projection. 

DEFINITION 1.2. Let X and Y be topological spaces. Let (X, p) be a 
covering of X. A map / : Y —> X can be lifted iff there exists a map 
/ : Y —> X such that the following diagram commutes: 

V 

f is called a lifting of/. 
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DEFINITION 1.3. Let X and Y be topological spaces. Let p : X —» X 
and q : ¥ -» Y be coverings of X and Y respectively. L e t / : Y —> X. 
A function F : ¥ —> X will be called a lift off iff the following diagram 
commutes: 

Note the difference between the words lifting and lift in the previous 
two definitions. In fact, F of definition 1.3 is a lifting of the m a p / ° q. 

The following two theorems (see [5], for instance) will be necessary. 

THEOREM 1.4. Let (X, p) be a covering space of X, and let y be a 
connected locally connected space. Given any two continuous maps 
/o,/i : Y -* X such that p ° f0 = p ° fl9 the set E = { i / E Y :/o(y) = 
fi(y)} is either empty or all ofY. 

THEOREM 1.5. Let (X, p) be a covering space of X, and let Y be a 
connected and locally arcwise connected space. Let y0 G Y, x0 G X, 
and x0 = P(XQ). Given a continuous map f:(Y,y0) —> (X, x0) (i.e., 
f(yo) = *o), there exists a lifting/ : (Y,t/0) -* (X, ï0) ifffaiW* ìfo) C 
p*7Ti(X, x0). Here, ni(X, x0) denotes the fundamental group of(X, x0\ 
and f* denotes the homomorphism between fundamental groups in
duced byf 

PROPOSITION 1.6. Let f ': X —» X be continuous, and let p : X —» X 
be a covering of X, where X is simply connected. Then there always 
exists a map F : X -* X such that the following diagram commutes: 
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x 

V 
X 

i.e., f always has a Ufi. 

PROOF. This is a direct consequence of theorem 1.5, since TT1(X, X0) 

= 1 so that (/o p^Tr^X, So) C p̂ TTi (X, x0). 

Let Rn = fl X • • • X R (n-times) and Zn = Z X • • X Z the integral 
lattice points of fln. Let Tn = Rn/Zn, and let p : Rn -* RnIZn be the 
natural projection of Rn onto the quotient Rn/Zn. We then see that 
(Rn, p) is a covering space for Rn/Zn, and, further, that p may be used to 
induce a differentiable structure on V1 making T" a differentiable 
manifold. We call T* an n-dimensional torus. We fix p : Rn —> Rn/Zn 

once and for all as the covering of T1 we will use. An immediate con
sequence of proposition 1.6 is 

PROPOSITION 1.7. Let f: T" —> T" be continuous. Then f has a Ufi 
F.Rn -> Rn. 

PROOF. Rn is simply connected. 

DEFINITION 1.8. Let (X, p) be a covering of a space X. The fibre 
over a point x G X i s the set p ~ l (x) G X. 

For the particular covering of T" that we have, two points x = 
(*i>*2> ' ' %*n) a n d xo = (*oi> ' * *>*0n) i n An a r e i n *he same fibre if 
and only if Xi — x0i G Z for all i = 1, • • -, n. This implies immediately 
that if/: Tn -» Tn, and x - x0 E Zn, then F(x) - F(x0) G Zn, for any 
lift F of/ 

PROPOSITION 1.9. Let f: T" —> T1 be continuous. Let F be any Ufi of 
f Then for each (m1? • * -, mn) G Zn, there exists a unique (p1? • • *, pn) 
G Zn suc/i f/iaf 

F(xx + m l5 • • -,xn + mn) = F f o , • • -,*„) + (p l5 • • -,pn). 

Moreover (px, • • -, pn) is determined by the set {(a<i, • * *, ain)} C Zn 
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such that F(0, • • -, 1, • • -,0) = F(0, • • -,0) + (an, • • -,ain), where 
the l occurs in the i-th place. 

PROOF. Suppose F(xx + ml9 - - \xn + mn) = F(xu • • -,xn) + 
(Pi> ' ' *> Pn) for some (*i, • * -, xn) G Rn. Suppose (pl9 • • -, pn) G Zn 

varies with x G ßn . Then F(j/x + m^ • • -, j / n + mn) = F(yx, • • -, t/n) 
+ (pi(y)y ' ' -,pn(y)). But F is continuous (as may easily be shown, 
since / is), hence, F(yx + mx, • • -, j / n 4- mn) — F(JCX + m^ • • -, xn + 
"%) = (Pi(î/)> ' ' ->Pn(t/)) - (Pi, ' ' *,p«) i s continuous. But (pi(y), 

• -, pn(y)) ~~ (pi> ' ' % pn) is a continuous map into a discrete set, and 
hence is constant. 

It is easy to see that given (mi • • -, mn) G Zn, F(xx + ml9 - - -, xn + 
mn) = F(xl9 ' • -yxn) + ^ ^ m ^ u , • • ',ain), by using the first part 
of the theorem. In other words, 

n 

PJ = £ m{a{y 
j = i 

PROPOSITION 1.10. Suppose/: V1 —> T1 is continuous, and F : Rn —> Rn 

is a lift off. Then F is uniquely determined up to an element ofZn; i.e., 
if F is any other lift of f then F = F + (qìy • • -, qn) for some 
(</!, • •• ,</ n)GZ». 

PROOF. We prove that the statement of the proposition is equivalent 
to the following statement S and prove S. S : If x0 = (x0i, • -, x0n) G 
Rn with p(x0) = f° p(0), then the lift F such that F(0) = x0 is uniquely 
determined. 

Necessity. If F is any other lift of F, then F = F + (qÌ9 * * -, qn). 
But F(0) = F(0) = x0 implies 0 = F(0) - F(0) = (q^, • • • qn). 

Sufficiency. Suppose F is a lift of / such that F (0) = x0 and F is 
uniquely determined. Let F be any other lift of / . If F ^ F, there 
exists x G Rn such that F(x) ^ F (a). We may suppose that this x = 0. 
Consider F(0) — F(0) = x0 — XQ1. Then, since p ° F(x) = p°.F(x) = 
/ ° p(x), F(x) and F(x) must be in the same fibre over f° p(x); i.e., 
F(x) — F(x) G Zn. Hence continuity of F(x) and F(x) implies that 
F(x) - F(x) is constant for all x G fln. 

Statement S follows directly from theorem 1.4, replacing Y by Rn 

and/0 and/x by F and F. 

PROPOSITION 1.11. If F and F are lifts of continuous maps f I : T1 

—» Tn, thenf = f if and only ifF= F + qfor some q G Zn. 

PROOF. Sufficiency is the preceding proposition. Necessity is easily 
proven as follows. Let F = F + q. Let t G Tn. Then t = p(ac) for 
some x G fln, and /(f) = f° p(x) = p ° F(x) = p ° F(x) = / ° p(x) = 
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Proposition 1.7 and 1.10 guarantee that any continuous function 
f:Tn—>Tn has a lift unique up to translation by elements of Zn. It is 
clear that any continuous function F : Rn—> Rn such that F(x + m) = 
F (x) + p,m, p G Zn, projects onto a continuous function of Tn, and 
proposition 1.11 guarantees that any such function projects onto a 
unique function/: Tn -» Tn. 

In view of the preceding paragraph we will decompose C(Tn), the 
continuous maps of a torus into itself, into "lift class" as follows: 

DEFINITION 1.12. Let A = (a#) be an n X n matrix with integer 
entries; denote the set of such matrices by M(Z). Define C(Tn) (A) to 
be C(Tn) (A) = { / £ C(Tn) : / h a s a lift F satisfying F(1,0, • • -,0) = 
F(0, • • -,0) + (all9 • • - ,a l n) ; F(0, 1, 0, • • -,0) = F(0, • • -,0) + (a21, 
' * -,fl2»); ' * S F(0, * * -,0,1) = F(0, • • -,0) + (anl, • • - ,an n)}. 

Proposition 1.11 guarantees that C(Tn) (A) Pi C(Tn) (B) = 0 if 
A / B, and proposition 1.7 guarantees that C(Tn)•'= U A GM(Z)C(Tn) (A). 

We are now in a position to give the precise structures of lifts 
F : Rn-> fln of m a p s / : Tn-> Tn in C(Tn). 

PROPOSITION 1.13. Suppose fG C(Tn) (A). Then any Ufi F of fis of 
the form F(x) = Alx + 7r(x), where A1 denotes the transpose of A, and 
7T(X) is a continuous map, ir : Rn —> Rn, of period 1 in eac/i component 
0fx= (*!, ' ' -,Xn). 

PROOF. Consider 

F(Ä! + mx, • • -,«„ + mn) - A' 

z ^ + m! 

xn + mn, 

= F(Xl,--;xn) + A' . - A ' . \-A< 

\mj \xn/ 

P\ 
= F(xl9 • • -, xn) - A* I . , where (m^ • • -, mn) G Zn. 

The second equality follows from the proof of proposition 1.9. The 
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equality between the first and last expressions above immediately 
yields èie fact that 

F(*i, • ' -, xn) - AM ! = ir(*i, • • -, xn) 

is a map of period 1 in each component of x. 

Up to now, everything that has been done has been for continuous 
maps f:Tn—> Tn. Henceforth, we shall assume that / is a homeo
morphism. For such /, we can give a very precise description of its 
lift. This is done in the next three propositions. We define Diff°(Tn) (A) 
= {/:/is a homeomorphism and/G C(Tn) (A)}. The sets DifP(Tn) (A) 
are called lift classes. 

We will need the following theorem: 

THEOREM 1.14. (BROUWER INVARIANCE OF DOMAIN) (see [10]). Sup
pose that Ui and U2 are homeomorphic subsets of Sn. Then, if Ul is 
open, U2 is also open. 

PROPOSITION 1.15. J / / G Diff°(Tn), then any lift F of fis a homeo
morphism ofRn with itself 

PROOF. F is onto. For suppose not, let s G d Im F C Rn. Then 
p(s) G Tn, and there is a neighborhood U of p(s) and a neighborhood 
7) of s such that p : TJ —> U is a homeomorphism. Let s0 G F-1(cr), 
where a = p~l ° p(s). F~l(a) j^ 0 since F~1(a) = p~lof-io p(sy 
There exists a neighborhood U0 of p(s0) and a neighborhood T}0 of s0 

such that piriQ—> [70 is a homeomorphism. Consider N = p~lof~l 

(f(U0) n f/). N is open in Rn and s0 £ N. Furthermore, F(N) = p " 1 ° 
/ ° p(N) is a homeomorphic image of N in Rn and s G F(N). Since 
F(N) is open in Rn, by theorem 1.14, s is an interior point of F(N), 
contradicting the fact that 5 G d Im F. 

F is 1 — 1, for suppose F(x0) = F ^ ) = s. There are two cases: 
(i) x0 and xx are not in the same fibre over Tn, and (ii) x0 and xx are in 
the same fibre over Tn. In the first case, p(x0) ^ p(*i), but /° p(x0) = 
/ ° p(*i) = p(s)> contradicting the fact that / is a homeomorphism. In 
the second case, let y be any non-self intersecting curve joining x0 and 
Xi not passing through the same fibre twice. Then p(y) is a closed 
curve on Tn which is not null-homotopic, hence/0 p(y) is a non-null-
homotopic closed curve on Tn. But F(y) is null homotopic in Rn, so 
that p° F(y) is null-homotopic on Tn, contradicting the fact that 
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^ R ] 

P 

Y 

f 

commutes. 
With a careful selection of open neighborhoods it is easy to see 

locally that F = p~l° f° p and F - 1 = p~l ° f~l ° p are functions that 
are continuous. Hence F and F~l are continuous. 

PROPOSITION 1.16. Iff G Diff°(Tn) (A), then A is non-singular. 

PROOF. Suppose A is singular. Let N(A) be the null-space of A. 
Since the entries in A are all integers, it is not difficult to show that the 
null space contains points of the form h = (hì9 • • -, hn) G Zn (ftj, • • •, 
hn) 7̂  0. Let £ C N(A) be a line joining the origin with h. Then F(0) 
= ^(0) = n(h) = Alh + ir(h) = F(h). The second equality follows 
from the periodicity of n. Hence F is not a homeomorphism contra
dicting proposition 1.15. 

Note that the converse of this theorem is not true. For instance, on 
T2take 

v i, 2/ \ 0 1 A x2 / ^ 2sinirxi / 

PROPOSITION 1.17. Iff G Diff°(T*) (A), then |det A| = 1. 

PROOF. Let F = A*x + 7r(:t) be a lift of/. Since A* is non-singular, 
F(x) = A** maps the rectangular parallelepiped R with vertices (1,0, 
• • -, 0), (0,1,0, • • , ) , • • , (0, • -, 0,1) into a non-degenerate 

parallelepiped with vertices in Zn. Also F(x) maps the parallelepiped 
R onto a curvilinear parallelepiped with the same vertices because of 
the periodicity of TT(JC). Since F is the lift of a diffeomorphism of the 
torus, the image of R must cover the torus since R does. This implies 
that F(R) must have volume one since R does. Now F(R) may be 
gotten from F(fl) by taking congruent perturbations of opposite (n-1)-
dimensional faces; the perturbations given by ir(x). Hence the volume 
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of F(R) must be the same as that of F(R); i.e., the volume of F(R) is 1. 
The only way the volume of {y :y = A% x Œ R} can be 1 is if 
|det A'| = 1. 

The following diagram may help in visualizing the proof of the last 
proposition. 

Diagram 1.1 

The solid lines form the boundary of F(R) and the dotted liaes form 
the boundary of F(R). 

The results of this first section may be summarized in the following 
theorem. 

THEOREM 1.18. Let Diff°(rn) (A) be as defined above. Then the set 
of homeomorphisms of Tn may be written as the disjoint union 
DifP(Tn) = U A GC7M{Z}DifP(Tn) (A), where UM(Z) is the set of all nXn 
matrics with integer entries whose determinant is ± 1. 

QUESTION. When talking about a lift class we may also define TT( A) = 
{TT(X) periodic of period 1 in each component of x : Afx + ir(x) is the 
lift of a homeomorphism of Tn}. It is not difficult to see that AfB 
often implies n(A) f ir(B). Can some definitive information be given 
as to the functions which may belong to a given 77(A)? 

A "good" answer to this question would make an element of 
DifP(Tn) particularly susceptible to a complete arithmetic analysis of 
its qualitative characteristics. 
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2. Arithmetic of Lift Classes. In this section, we are interested in 
the lift class that is obtained by taking compositions and inverses of 
elements of DifT°(Tn) that are contained in arbitrary lift classes. The 
section also contains some consequences of the arithmetic relating to 
topological conjugacy. 

PROPOSITION 2.1. / / F is a lift of f G DifP(Tn), and G is a lift of 
g G DifP(T"), then G ° F is a lift of g ° / 

PROOF. Immediate from the commutativity of the following diagram: 

PROPOSITION 2.2. If f G DifP(Tn) (A) and g E Diff°(T*) (B), then 
go/GDifP(T"(AB)). 

PROOF, / h a s a lift F(x) = A*x + mix), and g has a lift G = Bfx + 

TT2{X). 

Go F(x) = B^Mx + iri(x)) + iT2(A
tx + mix)) 

= WA*x + Bhrx(x) + 7r2(A
tx + m(x)) 

= (AB)*x + &in(x) + n2(A
tx + mix)) 

is then a lift of g o / g ° / £ DifF°(Tn) (AB), since Bhr^x) + 7r2(A*x + 
7Ti(x)) is a function of period 1 in each component of x, since TTY and 
7T2 are, and AB G t/M(Z), since A and B are. 

PROPOSITION 2.3. Iff G Diff°(T») (A), thenf~l G DiflP(T») (A"1). 

PROOF. First note that A"1 G C7M(Z), so that DifP(rn) (A"1) is a 
properly defined subset of DifP(Tn). Let G be a lift of/-1. Then G ° F 
= id within a translation by elements of Zn. Hence if/"1 G DifP(Tn)(B), 
B A = J; i.e., B = A 1 . 

It should be noted that proposition 2.2 is also valid for elements 
/ G CiTn). At this point we shift our perspective to Diffr(Tn). 
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DEFINITION 2.4. Diff'(T") = {/G DifP(Tn) : any lift F of / and G 
off- * are r times continuously differentiable maps of Rn}. 

Note: Definition 2.4 is equivalent to saying t h a t / a n d / - 1 are r times 
continuously differentiable since p : Rn—» Tn induces a C00 dif
ferentiable structure on Tn. Note also that Diffr(Tn) C Diff°(Tn), r e 
0. 

PROPOSITION 2.5. / / / G Diffr(Tn) (A), then there exists a g £ 
Diffr(Tn) (Id) 3 / = pA° g, where p : Rn -> Kn/Zn is tfie covering 
projection. 

PROOF. Let F = Ax 4- 7r(x) be a lift of / There exists a g G 
Diff Tn (Id) such that F = A ° G, where G = Id x + TT^X) is a lift of 
g. Take G to be G = A~lF = I d * + A-V(x). Then g = p * G. 

DEFINITION 2.6. / a n d gGDiff^T") are called topologically con
jugate if and only if there is an h G Diff°(Tn) such tha t / 0 h = h ° g. 

It is an immediate consequence of propositions 2.2 and 2.3 

PROPOSITION 2.7. 7 / / G DifF(Tn) (A) and gGDifP(T") (B) are 
topologically conjugate, then the eigenvalues of A are the same as 
those ofB. 

PROOF. B = ClAC for some matrix C in UM(Z). 

The converse of this proposition is not, in general, true. If A = 
( | i) and B = (4 }), A and B have the same eigenvalues and A and B 
are in l/Af(Z); however, there is no matrix C in UM(Z) such that 
B = C-iAC. 

This observation leads us to state a proposition and pose a question. 

PROPOSITION 2.8. Z / / G Difff(Tn) (A) is topologically conjugate to 
g G Differ*) (B), tfien for each fx G Diff'(Tn) (A), tfiere is a gx G 
Difff(Tn) (B) u;/iich is topologically conjugate tofv 

PROOF. Let F = Ax + 7rA(*) be a lift of/ Since g= h~l ° f° h for 
some h,G= H~l ° F ° H is a lift of g, where H = Cx -h ÎTC(C) is a lift 
of h. Now, if H" 1 = Clx + <K*), we get 

G(x)= Bx + TTB(X) = H - 1 » F » H(x) 

= C_1ACx 4- 7f(x), for somen", 

i.e. B = ClAC. 
Let Fi = Ax + iri(x) be a lift of £ . Then, G ^ C - ^ F ^ C(x) = 

C" 1 ° A« Cx + C-Vi ° C(x) = Bx -f TT(X) is the lift of some element 
gi of Diffr(Tn) (B), and the topological conjugacy in Rn of Fx and G Ì 
projects down to a topological conjugacy in Tn between/! and gx. 
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It is clear that a topological conjugacy of an element in DifP(Tn) (Id) 
is again an element of DirF(Tn) (Id). 

This last proposition indicates that we can identify element-wise 
certain lift classes between which topological conjugacy occurs. How
ever, the preceding example leaves serious doubt in our minds as to 
which they are. Hence, 

Question: Characterize those lift classes between which topological 
conjugacy can hold. 

Topological conjugacy will be pursued a bit further in § 4. 

3. Lift Classes are Open. Before we can talk about openness in 
DifP(Tn) (A), we must put a topology on DifF(Tn). At this point, we 
ought perhaps to make precise a fact that we have stated loosely be
fore; namely that p : Rn -> Rn/Zn = Tn makes Tn into a differentiate 
manifold. In particular, given any point m G Tn, there is a point xm 

in Rn and a neighborhood JVm of xm such that p is a homeomorphism 
of Nm with a neighborhood of p in Tn (see definition 1.1). Take 
neighborhoods {p(Nm)}mGTn and homeomorphisms {(p \Nm)~1}meTn 

to be an atlas for a Cr differentiable structure of Tn. Now if / G 
Diffr(Tn), in terms of local coordinates, the derivative of / at m is 
Df(ra) = Df(xm), where F is any lift off If x and y G Rn, we define 
||*—y\\ = maXi\Xi — t/J. Then we can define a base for a topology of 
Differ») by defining p(flg) = m a x 0 ^ r supmGr» ||Df(m) - D*g(m)||, 
where Df(m) is the t-th derivative and taking as basic open sets the 
sets {g G DifP(Tn) : p(f g) < e for any e > 0 and e a c h / G Diffr(Tn)}. 

PROPOSITION 3.1. Diffr(Tn) (A) is open in Diffr(Tn) for r ^ 0, A G 
UM(Z). 

REMARK. This proposition is, in a sense, a stability property; i.e., if 
/ G Diffr(rn) (A), then any element g G Diffr(Tn) sufficiently close to 
/wi l l also be in Diff^T") (A). 

PROOF. Suppose /GDiff (T n ) (A) and gGDifP(T n) (B) with 
p(/> g) < *• Then 1 1 / - g|| < «• L e * F = Abe + TT^X) and G= B*x + 
7T2(x) be lifts of/ and g respectively. We may take ^(O) = 7r2(0) = 0 
by adding appropriate a and b G fln to F and G, i.e.; F(x) = A'x + 
^(ac) + a and G(x) = B'x + 7r2(x) H- &. The components a{ — fo{ of 
a — b may be taken such that 0 < \a{ — b{\ < 1 because of the periodic 
nature of the covering. This eliminates "inessential differences" be
tween the lifts and allows us to say that ||/— g|| < € implies |j F — G\\ 
= ||(A< - B«)* + mix) - TT2(X) + (a - b)\\ < €, or ||(A< - B*)x + 

(a - fe)|| < e + WiTiix) - 7T2(x)||, for all x such that 0 ^ x{ ̂  1, f = 1, 
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SinceTT^O) = 7T2(0) = 0, \\a - b\\ < €. 
Then, ||(A« - B*)*|| < 2e + ||Wl(x) - n2(x)\\. But ||(A* - B')*|| is 

largest at one of the vertices v of {x : 0 ^ ^ ^ 1, i = 1, • • -, n}, and at 
this point m(v) = 7T2(Ü) = 0. Hence, ||(A* - B*)x|| ^ ||(A* - B<)i>|| < 
2c. If € < 1/2, || (A* — Be)x|| < 1. But it is possible to choose x so as to 
yield (A* — B*)x = any column of A1 — BK Hence the absolute value 
of the maximum of the entries of A1 — Bl in any column is less than 
2e < 1. Since the entries are integers, the difference of them, being 
less than 1, must be 0, i.e., A* — B' = 0. Hence, /and g are in the same 
lift class. 

4. Suspensions, Flows and Lift Classes. 
In this section, we apply the previous work to T2 to show that the 

manifolds of suspensions of diffeomorphisms of tori are diffeomorphic 
if the diffeomorphisms are in the same lift class. As a corollary, we 
will see that lift classes are pathwise connected. This last result yields 
an arithmetic classification of isotopy classes of diffeomorphisms on Tn. 
From a certain viewpoint we will also see that the lift class of the 
identity map of Tn is particularly important. 

DEFINITION 4.1. / and g in Diffr(Tn) are called Cr isotopie if and 
only if there is a Cr homotopy h(m, t) : Tn X I -+ Tn such that (i) 
h(m,o)=f(m\ (ii) h(m, 1) = g(m), and (iii) h(m91) G Diff^T") for 
0 S * S 1 . Here I = [0,1] . 

DEFINITION 4.2. A Cr flow on a manifold M is a function </>(ra, t) : 
M X R-+M such that (i) </> is of class Cr, (ii) <j>(m, 0) = m, (iii) 
<f>(<f>(m, t)s) = <f>(m, t + s), and (iv) <f>(m, t) is a diffeomorphism for each 
t The orbit through m is defined to be the set {<f>(m, t) : t E R}. 

Note: A flow itself defines an isotopy between the diffeomorphism 
</>(ra, 1) : M —* M and the identity. 

DEFINITION 4.3.a. A cross-section of a flow 0 on a compact manifold 
M is defined to be a compact submanifold N of codimension 1 such 
that (i) every orbit of <j> intersects N, (ii) the intersection of each orbit 
with N is transverse, (iii) if n G N, there is a t > 0 such that <£(n, t) G 
N, and there is a t < 0 such that <£(n, J) G N. 

b. If a flow on M has a cross-section N, we can define an associated 
diffeomorphism of N by the formula / (n) = <f>(n, tn), where tn is the 
smallest positive t satisfying <f>(n, tn) G N. 

An extremely simple example of the above concepts is given by the 
solution of the following differential equation 
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where a is any real number. The projection p : R2 —» R2/Z2 gives a 
flow on a torus. The projection of the xx-axis gives a cross-section of 
the flow which is a circle. The map p° F° p~l : p(x raxis) —» p r 
axis), where F = a + x, is the associated diffeomorphism. Despite its 
simplicity, this is an important example and has been extensively 
studied (see [1] or [2] for instance). 

DEFINITION 4.3.b has a converse definition associated with it, that of 
suspension. 

DEFINITION 4.4. Suppose N is a compact manifold a n d / G Diffr(N). 
Define a diffeomorphism T:NXR-*NXR by T(n, t) = (f~\n\ 
t + 1). The space N X #/(n, £) ~ r(n, £) is a manifold, say M0. De
fine a flow i / f : N X f l X f l - > N X f l b y ^(n, w, t) = (n, w + £). This 
induces a flow on M0 by projection which we call 0o(m> £) : M0 X 
fl —* M0. The pair (M0, <f>o) is called the suspension of/; we call M0 

the manifold of the suspension. The flow <f>0 has as cross-section N0 = 
q(N X 0) C M0, where q : IV X K -+ N X B/Z = M0 is the quotient 
map. Note that M0 is diffeomorphic to N X //(n, 0) ~ r (n, 0). 

One may study the diffeomorphism/= p° F° p _ 1 , where F(x) = 
a + x is from the previous example, and see that the suspension of/ 
is the flow on the torus given in that example. 

The notion of suspension was first introduced by S. Smale in [9] 
and extensively studied by G. Ikegami in [3] and [4]. 

We now proceed with the exposition as outlined at the beginning of 
this section, but it will be necessary to have a couple of preliminary 
definitions and theorems at our disposal. 

DEFINITION 4.5. Let/, g G. DifF(M) • / a n d g are said to be pseudoiso-
topic if and only if there is a Cr diffeomorphism G: M X I -+ M X I 
such that G(x , 0) = (/(*), 0) and G(x, 1) = (g(x), 1). 

It is clear that if / and g are isotopie they are pseudoisotopic. 
Whether the converse is true is not known. It is also easy to show 
that pseudo-isotopy is an equivalence relation. 

THEOREM 4.6. (See [6] ). Let M and N be compact manifolds with 
boundary. Let f0 be a fixed O-diffeomorphism of dM onto dN\ Then 
for any Cr-diffeomorphism / : dM —» dN, let / = f0~

l ° fE. 
DifP(dM). Then M UfN depends only on the pseudo-isotopy class of 

f, up to diffeomorphism. Here M UfN denotes M U Nim ~~ f{m). 
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LEMMA 4.7. Suppose / , g £ Diffr(M), and f and g are pseudo-
isotopie. Then M X Z/(x, 0) ~ (/(*), I) and M X Z/(x, 0) ~ (g(x), 1) are 
dtjffeoraorphic. 

PROOF. We apply theorem 4.6. Let f0 : d(M X Z) -» d(M X Z) be 
defined by /0(m, 0) = (ra, 1) and /0(m> 1) = (m> 0)« Also, let g0 : 
d(M X I ) - * d(M X Z) be defined by g0(m,0) = (m, 1) g0(m, 1) = 
(m,0). 

We compute with / , similar results hold when we compute with g. 
f0-\m, 0) = (m, 1), and/o-Km, 1) = (m , 0). 

L e t / : d(M X I ) ^ d(M X Z) be defined by 

f(m, 1) = (ra, 0) and 
(*} / ( m , 0 ) = ( / ( m ) , l ) . 
Here we have confused f:M -> M with / : d(M X I ) - » d(M X Z). 
It is clear from the number of independent variables in the parentheses 
which we mean. 

Then, 

/ ( m , 0) = / o " 1 ° / (m, 0) = / o - W , 1) = /(ro, 0), and 

/ ( r o , 1) = / o " l o / ( m , 1) = / 0 - 1 ( m , 0 ) = (m, 1). 

Similar computations yield g(ra, 0) = (g(m), 0) and g(ra, 1) = (ra, 1). 
Since /(m) is pseudo-isotopie to g(m), say by G(ra, t\ f is pseudo-

isotopie to g by a map G : d(M X I) X I -+ d(M X I) X I; 

C(x t) = J G ( m > *)> °)> for * = (m> °) 
K , ) I (ro,t), forx=(m,l). 

Hence, M X I U / M X Z, where / is defined in (* ), is diffeomorphic 
to M X Z Ug M X Z, for the analogous g. But these identifications are 
equivalent to M X U(m, 0) ~ (/(m), 1) and M X Z/(m, 0) ~ (g(ra), 1) 
respectively. 

It is clear, now, where we are headed. We wish to prove that the 
manifolds of suspension of diffeomorphism / and g in Diffr(Tn) (A) are 
diffeomorphic. To do this, all we must do is prove that / and g are 
pseudo-isotopie and apply theorem 4.7. We carry this out only for the 
case n = 2 and first only for Diffr(T2) (Id). 

The problem is formulated as follows. 
Consider T2 X I d(T2 X I) = T2 X {0} U T2 X {1}. Let / G 

DifP(d(T2 X I)). Def ine/G DifP(d(T2 X I)) by 

/(ro, 0) = (m,0) and 

/ ( m , l ) = ( / ( m ) , l ) . 
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Note that the notational difficulty here is the same as in the proof of 
theorem 4.7. If we can prove that /EDi fP (d (T 2 X /)) can be ex
tended to a diffeomorphism <f> G Differ2 X J), we will have proven 
the existence of a pseudo-isotopy between/and id. 

The tool that we will use is the following important theorem. 

THEOREM 4.8. (see [7]). Let M and N be combinatorially equivalent 
n-manifolds. Let dM be the disjoint union ofM0 and M1} where each 
is a union of components of dM; similarly, let dN = N0U Nx. Let 
f:M0 -* N0bea diffeomorphism which is extendible to a combinatorial 
equivalence *3 : M —» N. The obstructions to extending f to a diffeo
morphism of M onto N are elements of Hm(M, Mlt Tn~m); if the ob
structions vanish, f may be so extended. 

In this theorem, Hm is homology based on infinite chains, m = 0, 
1, • • -,n. 

pn-m is a g r o Up defined in [8], and Tk is known to be 0 for k ^ 4. 
In view of the last statement, the homology groups above of a 3-

dimensional manifold are 0, and since the dimensions of the suspension 
manifolds of elements of Diffr(T2) are 3-dimensional, we may disre
gard the last requirement of the theorem. 

We must still take note of some of the other terminology in the 
theorem. 

DEFINITION 4.9. If v0, • • -,vm are independent points of Rn, called 
vertices, the simplex a = v0, • • -, vm they span is the set of points x G 
Rn such that x = ^bpi, where b{ §£ 0 and ^ib{ = 1. A face of a 
simplex a is a simplex spanned by a subset of the vertices of a. 

DEFINITION 4.10. A simplicial complex K is a collection of simplices 
in Rn such that 

(i) every face of a simplex of K is in K, 
(ii) the intersection of two simplices of K is a single face of each of 

them, and 
(iii) each point of \K\ has a neighborhood intersecting only finitely 

many simplices of K. Here |K| denotes the union of the points of K and 
is called the polytope of K. 

DEFINITION 4.11. Let K be a complex, M a manifold, possibly with 
boundary. The m a p / : |K| —> M is differentiate of class Cr relative to 
K iff ^ is a class Cr for each simplex a of K. 

DEFINITION 4.12. L e t / : a —» M be a Cr map. Given the point b of 
a, define the map dfh : a —> fln by the formula dfb(x) = Df(b) • (x — b), 
where Df(b) is the derivative of /a t b. 
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DEFINITION 4.13. If x is a point of |K|, the star of x in K, denoted 
st(oc, K), is the union of the interiors of all simplices a such that x lies on 
a. 

DEFINITION 4.14. Iff: K -» M is a Cr map we have maps dfb:a -> 
Rn for each a in st(fo, K), and these maps agree on the intersection of 
any two simplices in st(b, K) (since either (i) one is a face of the other 
or (ii) their intersection is a union of rays emanating from b). Also a 
single coordinate neighborhood of M can be found such that/(st(fo, K)) 
is contained in that coordinate neighborhood. Hence dfb is well-defined 
and called the differential of/, / i s called an immersion if dfb : st(b, k) 
—> Rn is one-to-one for each b. If/ is also a homeomorphism, it is called 
an imbedding, and if it is a homeomorphism onto M, it is called a tri
angulation of M. 

DEFINITION 4.15. A mapping / : M —• N is a Cr-combinatorial 
equivalence between M and N if and only if there are Cr-triangula-
tions h: K —» M and fc : L —> N, K and L complexes, and a linear 
isomorphism & : K -+ L such that f=k°ioh~l. £ is a linear iso
morphism between K and L if and only if £ maps |K| —> |L| homemor-
phically and maps simplices of K linearly onto simplices of L. 

We will have cause to use the following theorems (these can be 
found fully discussed in [6] ). 

THEOREM 4.16. If M is a Cr-manifold, possibly with boundary, and 
f.K^M and g : L —» M are CT-triangulations of M, there are sub
divisions of K and L which are linearly isomorphic. 

THEOREM 4.17.a. If M is a C-manifold without boundary, M has a 
Cr-triangulation. 

b. If M is a Cr-manifold with boundary, any Cr-triangulation of the 
boundary may be extended to a Cr-triangulation of M. 

The terminology in the above two theorems are covered in the fol
lowing two definitions. 

DEFINITION 4.18. If f:J —> dM is a Cr-triangulation of dM, an 
extension of / is a Cr-triangulation g : L —> M such that g" 1 ° / is a 
linear isomorphism of J with a subcomplex of L, where a subcomplex 
of L is a subset which is itself a complex. 

DEFINITION 4.19. A subdivision K ' of K is a complex such that |K ' | = 
|K| and each simplex of K' is contained in a simplex of K. 

We now attack the problem as outlined preceding theorem 4.8. 
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PROPOSITION 4.20. Let fG DifP(T2) (Id). Let f: d(T2 XI)-* 
d(T2 X I) be defined by 

f(m, 0) = (m, 0) and 

f(m, 1) = (f(m), 1). 

Then, there is a combinatorial equivalence Q between T2 X I and it
self such that S31 a(T2x /) = / 

PROOF. We perform the appropriate constructions in R2 X 7/~ and 
view T2 X 7 as R2 X 7/~, where ~ represents the relation (oc, t/, £) ~-
(3c, y,l) if and only if (x — x, y — y) G. Z2 and ^ = t. 

We can without loss of generality assume that the lift F off is of the 
form 

*<*->=(; ;)(;;)+(;l:::;i). 
where 7^(0,0) = 0. 

Let R = {(*, (/, f) : 0 S x, y, t S 1}. The recipe for the proof is as 
follows: 

(1) Let K be a triangulation of R that is extendable throughout R2 X 
/ by periodicity. 

(2) Construct a volume V diffeomorphic to R having as part of its 
bounding surface the surfaces {(x, i / , 0 ) ; 0 â x , i / ^ l } and {( F(x9 y), 1) : 
0 ^ x, y ^ 1}. Moreover V must be constructed in such a way as to be 
periodically extendible throughout R2 X /. 

(3) Let /o and Jx be the subcomplexes of K that triangulate the faces 
of R that lie in the planes t = 0 and t = 1, respectively. Triangulate 
the faces of V that lie in the planes t = 0 and £ = 1 by J0 and F(/x) 
respectively. 

(4) Extend this partial triangulation of dV to all of dV, and extend 
again to all of V in such a way that the triangulation is extendible 
throughout R2 X / b y periodicity. 

(5) Subdivide the triangulations of R and V in such a way that the 
projection R2 X I —» R2 X Z/~ = T2 X J induces triangulations of 
T2 X 7. 

What we have so far are two triangulations of T2 X 7, say, h : K —> 
P X I induced from R, and K : L - • T2 X 7 induced from V, such that 
the second triangulation of the boundary is the image u n d e r / : d(T2 

X 7) -+d(T2X 7) of the first 
(6) Subdivide K and L so that they become linearly isomorphic. 
It is clear that the proof is now finished. We justify steps (l)-(6). 
Step 1 is clear. 
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Step 2 is somewhat more difficult. The situation we have is pictured 
below (Diagram 4.1). The map (id, F) on (R D {t = 0}) U (R Pi 
{t = 1}) maps the shaded area in (a) onto the shaded area in (b). 

Ca) lb) 

Diagram 4 . 1 , 

Label the curves bounding (F(x, y), 1) by Y1,Y2,Y3,Y4, as in the 
diagram. Y1?Y3 are translations of each other in the plane t = 1 as are 
Y2 and Y4, hence congruent; this follows from the periodicity of IT. 
Furthermore they do not intersect each other. Consider the following 
diagram representing their projections onto the plane t = 0 (Diagram 
4.2). The union of the rectangle S = {(x, y) : 0 ^ x, y ^ 1} and por
tions of the eight adjoining rectangles can be divided up periodically 
into four simply connected closed sets S1? S2, S3 and S4 such that Sx 

contains the projection of Yx and the line segment Cx = {0 ^ x ^ 1, 
y = 0}, etc., and only the endpoints of these curves lie on the bound
aries of the respective sets in which they are contained. 

Since Yx is a Cr-smooth curve homotopic to the line segment C± 
relative to the endpoints, and S : is simply connected, there is a Cr-
smooth homotopy Hx(x, y, t) between Yx and Cx keeping the endpoints 
fixed and otherwise deforming Yx into Cl5 through points of the in
terior of Sx. Let (Jibe the surface defined by {(H^x, y, t), t) : 0 S ^ S 1 } . 
Likewise construct a2 via a homotopy H2(x, t/, t). Let a 3 and cr4 be 
surfaces obtained from the homotopies Hx + (0,1) and H2 + (1,0), 
respectively. These four surfaces are of class Cr, do not intersect each 
other, and bound a region in R2 X I that projects onto T2 X /. Extend 
this picture periodically throughout R2 X I. This completes step 2. 
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Diagram 4.2. 

Step 3 is self evident. 
Step 4 again is a bit more complicated. Triangulate the four lines 

Lx = { ( 0 , 0 , 0 : 0 ^ ^ 1 } , L 2 = { ( l , 0 , t ) : 0 ^ ^ 1 } , L3 = {(1,1,*) 
: 0 g t S 1}, and L4 = {(0,1, t) : 0 ̂  t g 1} in the same way. The 
triangulations of {(F(x, t/),0) : 0 ^ x, t/ ̂  1} and {(F(x,y), 1) : 0 ^ 
x, t / = l } induce triangulations of Ci,C2,C3, C4 and Y1,Y2,Y3,Y4 

such that Cx and C3 have the same triangulation as do C2 and C4,YX 

and Y3 as Y2 and Y4. This follows from the fact that R was triangulated 
in such a way as to be extendible throughout R2 X / b y periodicity. 
Hence the boundaries of ai9a2, or

3 and <J4 are triangulated in such a 
way that dai a n d dcr3 have the same triangulation as do da2 and 
da4. Extend (by theorem 4.18b) these triangulations to <Ti,cr2,(r3 and 
a 4 in such a way thatc^ andcr3 (cr2 anda 4 ) have the same triangula
tions. dV is now triangulated. Extend this triangulation to all of V 
(again, by theorem 4.18b). Now extend this triangulation throughout 
B2 X / b y periodicity. This completes step 4. 

The triangulations constructed in R2 X I in steps 1 and 4 may not 
project to a triangulation of T2 X /, since upon projection two sim-
plices may meet in more than one face; hence the necessity of per
forming the operation in step 5. 

Step 6 follows from theorem 4.17. 

REMARK. The proof of this theorem in case TT(0) ^ 0 is now clear. 
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Proposition 4.20 shows that / G Diffr(T2)(Id) is pseudo-isotopie to 
the identity map on T2. 

PROPOSITION 4.21. The suspension manifold off G Diffr(T2)(Id) is a 
torus. 

PROOF. The suspension manifold of the identity is a torus. Since/is 
pseudo-isotopie to the identity, apply theorem 4.7. 

THEOREM 4.22. If fand g are elements of DifP(T2)(A), then fand g 
are Cr-isotopic. 

PROOF. In the case where A is the identity, the suspension manifold 
is a torus (proposition 4.20), and 0i(£), the flow of the suspension, pro
vides an isotopy between/and the identity since 0o(l) = / . 

Suppose A ^ Id. Then / = p ° A(Idx + TT(X)) for some lift I d* + 
ir(x) of a map g G DifP(T2)(Id) (by proposition 2.5). Let 0O be the 
isotopy of g with the identity guaranteed above. Define 0 by <f>(t) = 
p ° A ° p~l ° </>o(0> where p~l(m) is in a single simply connected sub
set of p-\T2) for all m G T2. 0(0) = p ° A, and 0(1) = / Since 0O is 
an isotopy, so is 0, so that every element of DifP(T2)(A) is isotopie to 
p ° A. The proof that / and g in Diffr(T2)(A) are isotopie is now im
mediate. 

Another way of stating this theorem is 

THEOREM 4.22A. Diffr(T2) may be decomposed into a disjoint union 
of open connected subsets, U A GUM(Z) 

DifP(T2)(A). 
Since isotopies are pseudo-isotopies proposition 4.21 has a natural 

generalization. 
THEOREM 4.23. The manifolds of suspension of fand g, elements of 

Diffr(T2)(A), are diffeomorphic. 

PROOF. Since/and g are pseudo-isotopie apply theorem 4.7. 

A few final remarks are in order. Of particular interest to one 
studying differential equations on T3 is the following. 

PROPOSITION 4.25. fG Difff(T2)(Id) if and only if fis the associated 
dijfeomorphism of a flow on T3. 

PROOF. Necessity. Iff is the associated diffeomorphism of a flow 0 
on T3, then 0 is an isotopy off with the identity. Hence by theorem 
4.22,/GdifP(T2)(Id). 

Sufficiency. Iff G diffv(T2)(Id), the manifold of its suspension is T3. 
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This shows that the naive approach to induced diffeomorphisms of 
cross-section of flows on T3 was not without merit. 

Finally, how good is theorem 4.23? Are there as many manifolds of 
suspension as lift classes? The following theorem of S. Smale ([9]) 
says no. 

THEOREM 4.24. Let (M0i<f>0) and (Ml5 <fo) be suspensions off0 and 
fi in DifFr(T2). Iff0 and fi are topologically conjugate, then (M0, <f>o) 
and (Mi,(f>i) are topologically conjugate. 

DEFINITION 4.27. Two dynamical systems (M0,<£o) ar*d (Mi,<f>i) are 
said to be topologically conjugate, if there is a homeomorphism h : 
Mo-* Mi which maps sensed trajectories of <f>0 onto sensed trajectories 
of<h. 

Hence, theorem 4.24 implies that the manifolds of suspension of 
diffeomorphisms in lift classes between which a topological con-
jugacy exist (see proposition 2.8) are homeomorphic. 

It is clear that there is more than one such manifold, since if there is 
only one, it is that of the lift class Diffr(T2)(Id), i.e., a torus, implying 
that every difFeomorphism is isotopie to id, a contradition of theorem 
4.22A. 

Question: Classify manifolds of suspension of elements of diff(T2) up 
to difFeomorphism. 
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