SOME DISCRETE SUBSPACES OF βm

J. A. GUTHRIE

ABSTRACT. By considering some discrete subspaces of the Stone-Čech compactification βm of a discrete space, we show that a nondiscrete door space which is not maximal door can be embedded in βm for every infinite discrete space m. This provides a counterexample to the converse of a theorem of Y. Kim. Maximal door spaces are characterized in terms of their embedding in βm .

By a space we shall mean a Hausdorff topological space. An infinite cardinal number m and a discrete space of cardinality m will be denoted by the same symbol, and βm will represent its Stone-Čech compactification. The cardinality of a set A will be denoted by |A|, $Cl_X A$ is the closure of A in X, and N is the set of natural numbers. See [1] for a general reference.

A door space is a space in which every subset is either open or closed. A nondiscrete door space is called maximal door if the only finer door topology for the set is discrete. Kim [2] characterized nondiscrete door spaces and maximal door spaces as follows. A Hausdorff space X is nondiscrete door (maximal door) if and only if $X = S \cup \{p\}$ where S is an infinite discrete set and p is a point such that the restriction of its neighborhoods to S forms a filter (an ultrafilter) in S. Kim also showed that for every maximal door space X there is a discrete space m such that X can be embedded in βm ; and, furthermore m may be taken to be |X|. He left open the question of whether every door space which can be embedded in βm for some m must be maximal door. We answer this question in the negative, and supply a stronger condition which does characterize maximal door spaces.

THEOREM 1. For every infinite cardinal m there exists a nondiscrete door space X with |X| > m so that X can be embedded in βm , but X is not maximal door. In particular, there is a nondiscrete door space of cardinality 2^{\aleph_0} which is not maximal door, but can be embedded in $\beta \aleph_0$.

PROOF. We first construct for each infinite cardinal m a certain discrete subspace of βm which is of cardinal n > m. When $m = \aleph_0$, we have $n = 2^{\aleph_0}$. By [1; 12B] every m can be taken to be the union of a

Copyright © 1976 Rocky Mountain Mathematics Consortium

Received by the editors on March 28, 1975, and in revised form on September 15, 1975.

AMS Subject Classification: Primary 54D35, 54G99; Secondary 54C25, 54F65.

collection $\{A_{\alpha} \mid \alpha \in I\}$ where $|A_{\alpha}| = m$ for each $\alpha \in I$, |I| > m, and $|A_{\alpha} \cap A_{\beta}| < m$ for $\alpha \neq \beta$. It follows from [1; 6.9(a)] that for each α , $\operatorname{Cl}_{\beta m} A_{\alpha} = \beta A_{\alpha}$, which is homeomorphic to βm . By [1; 12I] we may choose $x_{\alpha} \in \operatorname{Cl}_{\beta m} A_{\alpha}$ such that every neighborhood of x_{α} intersects A_{α} in a set of cardinality m. Now by [1; 6.9(c)] $\operatorname{Cl}_{\beta m} A_{\alpha}$ is open in βm and is therefore a neighborhood of x_{α} . Suppose $x_{\beta} \in \operatorname{Cl}_{\beta m} A_{\alpha}$ for $\alpha \neq \beta$. Then $x_{\beta} \in \operatorname{Cl}_{\beta m} A_{\alpha} \cap \operatorname{Cl}_{\beta m} A_{\beta}$ which must be a neighborhood of x_{β} in the relative topology on $\operatorname{Cl}_{\beta m} A_{\beta}$. But $A_{\beta} \cap \operatorname{Cl}_{\beta m} A_{\alpha} \cap \operatorname{Cl}_{\beta m} A_{\beta} = A_{\alpha} \cap A_{\beta}$ is a neighborhood of x_{β} in A_{β} which has cardinality less than m, contradicting the choice of x_{β} . Hence $S = \{x_{\alpha} \mid \alpha \in I\}$ is a discrete collection. In case $m = \aleph_0$ we may choose $|I| = 2^{\aleph_0}$ by [1; 6Q.1].

For each $p \in \operatorname{Cl}_{\beta m} S \setminus S$ we see that $S \cup \{p\}$ is a nondiscrete door space embedded in βm . We now show that not every such $S \cup \{p\}$ can be maximal door. Suppose $S \cup \{p\}$ is maximal door for each $p \in \operatorname{Cl}_{\beta m}$ $S \setminus S$. Consider the extension $f: \beta S \to \operatorname{Cl}_{\beta m} S$ of the inclusion map of Sinto $\operatorname{Cl}_{\beta m} S$. We shall now show that f is one-to-one and onto, and hence a homeomorphism.

If $p \in \operatorname{Cl}_{\beta m} S \setminus S$, then p is a cluster point of the ultrafilter \mathfrak{P} of the restrictions of its neighborhoods to S. This ultrafilter is a z-ultrafilter, and so has a unique limit x in βS , and f(x) = p.

On the other hand, \mathfrak{P} is the only ultrafilter in S of which p is a cluster point. For suppose \mathcal{G} is a filter in S which clusters to p in S $\cup \{p\}$. Then each element of \mathfrak{P} intersects G, and G must be in \mathfrak{P} for each $G \in \mathcal{G}$. But each $x \in \beta S \setminus S$ is the limit of an ultrafilter in S, so f(x) = p for only one $x \in \beta S \setminus S$.

Thus $\operatorname{Cl}_{\beta m} S = \beta S$. But $|\operatorname{Cl}_{\beta m} S| \leq |\beta m| < |\beta n| = |\beta S|$. Hence there must exist some $p \in \operatorname{Cl}_{\beta m} S \setminus S$ such that $S \cup \{p\}$ is not maximal door.

A subset of S of βm is said to be strongly discrete if for each $s \in S$ there is a neighborhood $U_s \subset \beta m$ of s such that if $s \neq t$, then $U_s \cap U_t \cap m = \emptyset$. This definition is equivalent to that in [3].

THEOREM 2. A nondiscrete door space $S \cup \{p\}$ is maximal door if and only if it can be embedded in some βm in such a way that S is strongly discrete.

PROOF. Kim [2] showed that every maximal door space could be embedded in such a way.

Suppose, then, that $S \cup \{p\}$ can be embedded in βm for some m and that S is strongly discrete in βm . Let f be a continuous function from S to [0, 1]. We shall show that f can be extended to βm , so that $\operatorname{Cl}_{\beta m} S = \beta S$. For each $s \in S$ let U_s be a neighborhood of s so that the U_s 's illustrate that S is strongly discrete. Extend f to $S \cup m$ by defining f(x) = f(s) if $x \in U_s$, and f(x) = 0 otherwise. Now f is a continuous

function on m, and hence it has a unique extension F to βm . But m is dense in $S \cup m$, and f and F agree on m. Thus f and F must agree on all of $S \cup m$ and, in particular, on S. Therefore S is C^* embedded in $\operatorname{Cl}_{\beta m} S$, so $\operatorname{Cl}_{\beta m} S = \beta S$ [1; 6.9]. Now $p \in \beta S \setminus S$ and, since S is discrete, the unique z-ultrafilter \mathfrak{P} in S which converges to p is an ultrafilter of open subsets of S. Thus $F \cup \{p\}$ is open in $S \cup \{p\}$ for each $F \in \mathfrak{P}$, and \mathfrak{P} is exactly the restriction to S of the neighborhoods of p. Hence $S \cup \{p\}$ is maximal door.

In light of Theorem 1 it is natural to ask whether a countable nondiscrete door space which is embedded in βm must be maximal door. Theorem 4 gives an affirmative answer to this question.

LEMMA 3. Every countable discrete subset of βm is strongly discrete.

PROOF. Let $S = \{x_i \mid i \in N\}$ be a countable discrete subset of βm , and let U_i be an open set which contains s_i but not s_j for $i \neq j$. By the regularity of βm , for each *i* there is an open set V_i such that $s_i \in V_i \subset Cl_{\beta m} V_i \subset U_i$.

We now define a neighborhood W_i for each i so that $\{W_i \mid i \in N\}$ illustrates that S is strongly discrete. Let $W_1 = V_1$, and for each i > 1, let $W_i = V_i \setminus \bigcup_{j=1}^{i-1} \operatorname{Cl}_{\beta m} V_j$. It is clear that each W_i is an open neighborhood of x_i , and that $W_i \cap W_i = \emptyset$ when $i \neq j$.

THEOREM 4. Every countable nondiscrete door space which can be embedded in β m is a maximal door space.

PROOF. This follows directly from Theorem 2 and Lemma 3.

References

1. L. Gillman and M. Jerison, *Rings of continuous functions*, Van Nostrand, 1960.

2. Y. Kim, Door topologies on an infinite set, J. Korean Math. Soc. 7(1970), 49-53.

3. V. Saks and R. M. Stephenson, Jr., Products of m-compact spaces, Proc. Amer. Math. Soc. 28(1971), 279-288.

UNIVERSITY OF TEXAS AT EL PASO, EL PASO, TEXAS 79968