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SOME DISCRETE SUBSPACES OF ßm 

J. A. GUTHRIE 

ABSTRACT. By considering some discrete subspaces of the 
Stone-Cech compactifìcation ßm of a discrete space, we show 
that a nondiscrete door space which is not maximal door can be 
embedded in ßm for every infinite discrete space m. This 
provides a counterexample to the converse of a theorem of 
Y. Kim. Maximal door spaces are characterized in terms of 
their embedding in ßm. 

By a space we shall mean a HausdorfF topological space. An infinite 
cardinal number m and a discrete space of cardinality m will be de
noted by the same symbol, andern will represent its Stone-Cech com
pactifìcation. The cardinality of a set A will be denoted by | A|, Clx A 
is the closure of A in X, and N is the set of natural numbers. See [ 1] 
for a general reference. 

A door space is a space in which every subset is either open or 
closed. A nondiscrete door space is called maximal door if the only 
finer door topology for the set is discrete. Kim [2] characterized non-
discrete door spaces and maximal door spaces as follows. A Hausdorff 
space X is nondiscrete door (maximal door) if and only if X = S U {p} 
where S is an infinite discrete set and p is a point such that the restric
tion of its neighborhoods to S forms a filter (an ultrafilter) in S. Kim 
also showed that for every maximal door space X there is a discrete 
space m such that X can be embedded in ßm; and, furthermore m may 
be taken to be |X|. He left open the question of whether every door 
space which can be embedded in ßm for some m must be maximal 
door. We answer this question in the negative, and supply a stronger 
condition which does characterize maximal door spaces. 

THEOREM 1. For every infinite cardinal m there exists a nondiscrete 
door space X with \X\ > m so that X can be embedded in ßm, but X is 
not maximal door. In particular, there is a nondiscrete door space of 
cardinality 2 ° which is not maximal door, but can be embedded in 

PROOF. We first construct for each infinite cardinal m a certain dis
crete subspace of ßm which is of cardinal n> m. When m = No, we 
have n = 2 °. By [1; 12B] every m can be taken to be the union of a 
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collection {A^ \ a G 7} where |AJ = m for each a G I, |I| > m, and 
14« Pi A^l < m for a ^ ß. It follows from [1; 6.9(a)] that for each a, 
Cl/8m 4» = /3A,,, which is homeomorphic to ßm. By [1; 121] we may 
choose xa G CliSm 4 , such that every neighborhood of xa intersects Aa in 
a set of cardinality m. Now by [1; 6.9(c)] C\ßm \ is open in/3m and is 
therefore a neighborhood of xa. Suppose xß G C l ^ A„ for a ^ ß. Then 
xß G Cl^m 4 , PI Cl^m Aß which must be a neighborhood of xß in the 
relative topology on Cl/3m Aß. But A^ D Cl/8m Aa H Cl/8m A^ = Aa D Aß 

is a neighborhood of x^ in Aß which has cardinality less than m, con
tradicting the choice of xß. Hence S = {xa | a G /} is a discrete collec
tion. In case m = K0 we may choose \I\ = 2 ° by [1; 6Q.1]. 

For each p G Cl^m S\S we see that S U {p} is a nondiscrete door 
space embedded in ßm. We now show that not every such S U {p } can 
be maximal door. Suppose S U {p} is maximal door for each p G C l ^ 
S\S. Consider the extension / : ßS —» CljSm S of the inclusion map of S 
into Cißm S. We shall now show that f is one-to-one and onto, and 
hence a homeomorphism. 

If p G C\ßm S\S, then p is a cluster point of the ultrafìlter S3 of the 
restrictions of its neighborhoods to S. This ultrafìlter is a z-ultrafilter, 
and so has a unique limit x in ßS, and/(x) = p. 

On the other hand, S3 is the only ultrafìlter in S of which p is a clus
ter point. For suppose ^ is a filter in S which clusters to p in S U {p}. 
Then each element of S3 intersects G, and G must be in S3 for each 
G G.^. But each x G/3S\S is the limit of an ultrafìlter in S, sof(x) = 
p for only one x G ßS\S. 

Thus Cl^m S = ßS. But |Cl0m S| ^ |/3m| < |/8n| = |/8S|. Hence there 
must exist some p G Cl)3m S\S such that S U {p} is not maximal door. 

A subset of S of ßm is said to be strongly discrete if for each s G S 
there is a neighborhood Us C ßm of 5 such that if s ^ t, then C/s Pi 
[/, H m = 0 . This definition is equivalent to that in [3]. 

THEOREM 2. A nondiscrete door space SU {p} is maximal door if 
and only if it can be embedded in some ßm in such a way that S is 
strongly discrete. 

PROOF. Kim [2] showed that every maximal door space could be 
embedded in such a way. 

Suppose, then, that S U {p} can be embedded in ßm for some m and 
that S is strongly discrete in ßm. Let / be a continuous function from 
S to [0, 1]. We shall show t h a t / c a n be extended to ßm, so that C\ßm 

S = ßS. For each s G S let 17, be a neighborhood of s so that the L//s 
illustrate that S is strongly discrete. Extend f to S U m by defining 
f(x) = f(s) if x G Us, and f(x) = 0 otherwise. Now / is a continuous 
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function on m, and hence it has a unique extension F to ßm. But m is 
dense in S U m, a n d / a n d F agree on m. T h u s / a n d F must agree on 
all of S U m and, in particular, on S. Therefore S is C* embedded in 
Cl^m S, so C l ^ S = ßS [1; 6.9]. Now p GßS\S and, since S is dis
crete, the unique z-ultrafilter ^ in S which converges to p is an ultra-
filter of open subsets of S. Thus F U {p} is open in S U {p} for each 
F Ë 9 , and ^ is exactly the restriction to S of the neighborhoods of p. 
Hence S U {p } is maximal door. 

In light of Theorem 1 it is natural to ask whether a countable non-
discrete door space which is embedded in ßm must be maximal door. 
Theorem 4 gives an affirmative answer to this question. 

LEMMA 3. Every countable discrete subset ofßm is strongly discrete. 

PROOF. Let S = {x{ \ i G N} be a countable discrete subset of ßm, 
and let Ui be an open set which contains s{ but not Sj for i ^ j . By the 
regularity ofßm, for each i there is an open set V; such that ^ G Vi C 
Cl , m V, C C/,. 

We now define a neighborhood Wj for each i so that {W{ \i Œ. N} 
illustrates that S is strongly discrete. Let Wx = Vu and for each i > 1, 
let Wf = ViXUjli Cl^m Vj. It is clear that each W{ is an open neighbor
hood of %i, and that W{ H W, = 0 when i ^ / 

THEOREM 4. Every countable nondiscrete door space which can be 
embedded in ßm is a maximal door space. 

PROOF. This follows directly from Theorem 2 and Lemma 3. 
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