ENTIRE FUNCTIONS WITH PRESCRIBED ASYMPTOTIC BEHAVIOR

GERD H. FRICKE

Abstract. A sufficient condition for a canonical product to be of bounded index is given, from which most of the well known results can be obtained as easy corollaries. Let f be an entire function of exponential type with order ρ and lower order λ. If $\rho-\lambda<1$ then there exists an entire function g of bounded index such that $\log M(r, f) \sim \log M(r, g)$. This solves a conjecture of S . M. Shah except for the extremal case of $\rho=1$ and $\lambda=0$.

1. Introduction. An entire function $f(z)$ is said to be of bounded index if there exists a non-negative integer N such that

$$
\max _{0 \leqq i \leqq N}\left\{\frac{\left|f^{(i)}(z)\right|}{i!}\right\} \geqq \frac{\left|f^{(n)}(z)\right|}{n!} \text { for all } n \text { and all } z .
$$

The least such integer N is called the index of f, (see [4]).
It is well known that a canonical product having geometrically increasing zeros is of bounded index. We now prove a strong generalization of this result.

Theorem 1. Let $f(z)=\prod_{j=1}^{\infty}\left(1+\left\{z / t_{j}\right\}^{q_{j}}\right)$ be an entire function with $t_{j} \in \mathbb{C} \backslash\{0\}, q_{j} \in N$ and $\sum_{j=1}^{\infty}\left(q_{j}| | t_{j} \mid\right)<\infty$. If $\sum_{j \neq n} 1 /\left|t_{n}-t_{j}\right|$ $=0(1)$ as $n \rightarrow \infty$, then f is of bounded index.

The condition $\sum_{j=1}^{\infty}\left(q_{j}| | t_{j} \mid\right)<\infty \quad$ can be replaced by $\lim \sup _{j \rightarrow \infty}\left(Q_{j} /\left|t_{j}\right|\right)<\infty$, where $Q_{j}=\sum_{i=1}^{j} q_{i}$, provided f is entire, i.e., the infinite product converges uniformly on every bounded region. However let us remark that the conditions in Theorem 1 are only sufficient and not necessary, (see [2], Theorem 3).

As a direct consequence we obtain the following result of B. S. Lee and S. M. Shah [3] .

Corollary 2. Let $f(z)=\prod_{n=1}^{\infty}\left(1-z / a_{n}\right)$, where $a_{n} \in R^{+}$and $\left(a_{n+1} / a_{n}\right) \geqq \alpha>1$, then f is an entire function of bounded index.

In 1970 W. J. Pugh and S. M. Shah [5] showed that for any transcendental entire function f of finite order it is always possible to

Received by the editors on June 22, 1974, and in revised form on October 3, 1974.
find an entire function g of unbounded index such that

$$
\log M(r, f) \sim \log M(r, g) \quad(r \rightarrow \infty)
$$

In [6] S. M. Shah conjectured: If f is an entire function of exponential type then there exists an entire function g of bounded index such that $\log M(r, f) \sim \log M(r, g)$. We now prove this conjecture for functions of exponential type with non-extremal asymptotic behavior.

Theorem 3. Let f be an entire function of exponential type with order ρ and lower order λ. If $\rho-\lambda<1$, then there exists an entire function g of bounded index such that

$$
N\left(r, \frac{1}{g}\right) \sim \log M(r, g) \sim \log M(r, f) \quad(r \rightarrow \infty)
$$

Theorem 4. Let $\phi(t)$ be an increasing, positive function of $t \geqq 1$ with $\lim \sup _{t \rightarrow \infty}(\phi(t) / t)<\infty$. If there exists an integer $n>0$ such that $\phi(t+1)-\phi(t) \leqq \phi(t)^{(n-1) / n}$ for t sufficiently large, then there exists an entire function f of bounded index such that

$$
N\left(r, \frac{1}{f}\right) \sim \log M(r, f) \sim \int_{1}^{r} \frac{\phi(t)}{t} d t \quad(r \rightarrow \infty)
$$

As a straightforward consequence we have
Corollary 5. Let $0 \leqq \lambda \leqq \rho \leqq 1$ be given. Then there exists an entire function fof bounded index and order ρ with lower order λ.
2. Proof of Theorem 1. Let q be a positive integer and let t be a complex number with $|t|>q$.
(i) Let $z \in \ell$ with $|z|=|t|+a, a>0$.

Then,

$$
\begin{aligned}
\frac{\left|q z^{q-1}\right|}{\left|t^{q}+z^{q}\right|} & \leqq \frac{q|z|^{q-1}}{|z|^{q}-|t|^{q}}=\frac{q}{|z|\left(1-\{|t|| | z \mid\}^{q}\right)} \\
& \left.\leqq \frac{q}{(|t|+a)\left(1-\frac{|t|^{q}}{|t|^{q}+a q|t|^{q-1}}\right.}\right) \\
& =\frac{|t|+q a}{(|t|+q) a} \leqq \frac{1}{a}+\frac{q}{|t|+a}=\frac{1}{a}+\frac{q}{|z|}
\end{aligned}
$$

(ii) Let $z \in \mathscr{C}$ with $|t|=|z|+b, b>0$.

Then,

$$
\frac{\left|q z^{q-1}\right|}{\left|t^{q}+z^{q}\right|} \leqq \frac{q|z|^{q-1}}{(|z|+b)^{q}-|z|^{q}} \leqq \frac{q|z|^{q-1}}{b q|z|^{q-1}}=\frac{1}{b} .
$$

(iii) Let $z \in \ell$ such that $|t|-1<|z| \leqq|t|+1$. Furthermore let a_{1}, \cdots, a_{q} denote the zeros of $z^{q}+t^{q}$ then

$$
\frac{q z^{q-1}}{z^{q}+t^{q}}=\sum_{n=1}^{\infty} \frac{1}{z-a_{n}} .
$$

Clearly there exists z^{\prime} such that $\left|z^{\prime}\right|+1=|t|$ and $\left|z^{\prime}-z\right| \leqq 2$. Thus, by (ii), $\left|\sum_{n=1}^{q} 1 /\left(z^{\prime}-a_{n}\right)\right| \leqq 1$.
Let $d>0$ be given and let $\left|z-a_{n}\right| \geqq d$ for $n=1,2, \cdots, q$. Obviously the length of the arc from a_{i} to a_{i+1} for the circle of radius $|t|$ is exactly $2 \pi|t| q$. The distance of two points on a circle is at least the shortest arc length between those points divided by π. Thus, by renumbering the $a_{i}{ }^{\text {' }}$ (so that a_{1} is closest to z), we have,

$$
\left|z-a_{n}\right| \geqq\left|a_{n}-a_{2}\right| \geqq \frac{(n-2) 2|t|}{q} \geqq 2(n-2) \text { for } 2<n \leqq(q+1) / 2
$$

and

$$
\left|z-a_{n}\right| \geqq\left|a_{n}-a_{q}\right| \geqq \frac{(q-n) 2|t|}{q} \geqq 2(q-n) \text { for }(q+1) / 2<n<q .
$$

The same result holds for z^{\prime} and therefore,

$$
\begin{aligned}
\left|\sum_{n=1}^{q} \frac{1}{z-a_{n}}\right| & \leqq\left|\sum_{n=1}^{q} \frac{z-z^{\prime}}{\left(z-a_{n}\right)\left(z^{\prime}-a_{n}\right)}\right|+\left|\sum_{n=1}^{q} \frac{1}{z^{\prime}-a_{n}}\right| \\
& \leqq \sum_{n=1}^{q} \frac{2}{\left|z-a_{n}\right|\left|z^{\prime}-a_{n}\right|}+1 \\
& \leqq \frac{6}{d}+\sum_{n=3}^{q-1} \frac{2}{\left|z-a_{n}\right|\left|z^{\prime}-a_{n}\right|}+1 \\
& \leqq \frac{6}{d}+\sum_{j=1}^{(q+1 / 2} \frac{4}{j^{2}}+1 \\
& \leqq \frac{6}{d}+\sum_{j=1}^{\infty} \frac{4}{j^{2}}+1=M .
\end{aligned}
$$

Obviously, $M=M(d)$ is independent of t and q.

We now proceed with the proof of Theorem 1.
For $f(z)=\prod_{j=1}^{\infty}\left(1+\left\{z / t_{j}\right\}^{q_{j}}\right)$ we have,

$$
\left|\frac{f^{\prime}(z)}{f(z)}\right|=\left|\sum_{j=1}^{\infty} \frac{q_{j} z^{q_{j}-1}}{t_{j}^{q_{j}}+z^{q_{j}}}\right| \leqq \sum_{j=1}^{\infty} \frac{q_{j}|z|^{q_{j}-1}}{\left|z^{q_{j}}+t_{j} q_{j}\right|}
$$

Let $d>0$ be given and let $z \in \ell$ such that $\left|z-b_{i}\right| \geqq d$ for $i=$ $1,2, \cdots$, where the b_{i} 's denote the zeros of f. There exists an integer $n \geqq 0$ such that $\left|t_{n}\right| \leqq|z|<\left|t_{n+1}\right|$. Since $\sum_{j=1}^{\infty} q_{j}| | t_{j} \mid<\infty$, there exists an integer $n_{0}>0$ such that $\left|t_{j}\right|>q_{j}$ for all $j \geqq n_{0}$. Let $a_{j}=\left|\left|t_{j}\right|-|z|\right|$, then, by (i), (ii), and (iii), we have, for $|z|$ sufficiently large,

$$
\begin{aligned}
\left|\frac{f^{\prime}(z)}{f(z)}\right| \leqq & \sum_{j=1}^{\infty} \frac{q_{j} \mid z^{q_{j}-1}}{\left|z^{q_{j}}+t_{j}^{q_{j}}\right|} \\
\leqq & \sum_{j=1}^{n_{0}} \frac{q_{j}|z|^{q_{j}-1}}{\left|z^{q_{j}}+t_{j}^{q_{j}}\right|}+\sum_{j=n_{0}+1}^{n-1} \frac{q_{j}|z|^{q_{j}-1}}{\left|z^{q_{j}}+t_{j}^{q_{j}}\right|} \\
& +2(M+1)+\sum_{j=n+2}^{\infty} \frac{q_{j}|z| q_{j}-1}{\left|z^{q_{j}}+t_{j}^{q_{j}}\right|} \\
\leqq & K+\sum_{j=n_{0}+1}^{n-1}\left(\frac{1}{a_{j}}+\frac{q_{j}}{\left|t_{j}\right|+a_{j}}\right)+2(M+1)+\sum_{j=n+2}^{\infty} \frac{1}{a_{j}} \\
\leqq & K+\sum_{j \neq n}\left|\frac{1}{\left|t_{n}\right|-\left|t_{j}\right|}\right|+\sum_{j=1}^{\infty} \frac{q_{j}}{\left|t_{j}\right|} \\
& +2(M+1)+\sum_{j \neq n+1}\left|\frac{1}{\left|t_{n}\right|-\left|t_{j}\right|}\right| \\
\leqq & T .
\end{aligned}
$$

Clearly $f^{\prime}(z) / f(z)$ is bounded for bounded z with $\left|z-b_{i}\right| \geqq d$ for all i.
Therefore, for each $d>0$ there exists a constant $L>0$ such that $\left|f^{\prime}(z)\right| \leqq L|f(z)|$, whenever $\left|z-b_{j}\right| \geqq d$ for all j. Hence, by [2, Theorem 2], f is of bounded index.

Suppose we replace the condition $\sum_{j=1}^{\infty}\left(q_{j}| | t_{j} \mid\right)<\infty$ by demanding the infinite product f to be entire and by $\lim \sup _{j \rightarrow \infty} Q_{j}| | t_{j} \mid<\infty$, where $Q_{j}=\sum_{n=1}^{j} q_{n}$. It is well known that $f(z)$ of bounded index implies $f(\alpha z)$ is also of bounded index for any $\alpha \in \mathscr{C}$. Thus, without loss of generality we may assume $\lim \sup _{j \rightarrow \infty} Q_{j} /\left|t_{j}\right|<1$. Hence, $a_{n} \leqq Q_{n}<\left|t_{n}\right|$ for n sufficiently large and therefore we can use the same argument to obtain the inequality (2.1). Since,

$$
\sum_{j=n_{0}+1}^{n-1} \frac{a_{j}}{\left|t_{j}\right|+a_{j}} \leqq \sum_{j=1}^{n} \frac{a_{j}}{|z|}=\frac{Q_{n}}{|z|} \leqq \frac{Q_{n}}{\left|t_{n}\right|}<1,
$$

we similarly obtain, f is of bounded index. q.e.d.
3. In this section we assume familiarity with the most elementary results and notations of Nevanlinna's theory of meromorphic functions.

For a transcendental entire function f we have,

$$
\begin{equation*}
\log M(r, f)=\log M\left(r_{0}, f\right)+\int_{r_{0}}^{r} \frac{\Psi(t)}{t} d t \quad\left(r \geqq r_{0}\right), \tag{3.1}
\end{equation*}
$$

where $r_{0}>0$ and $\Psi(t)$ is a non-negative, non-decreasing function of t.
A. Edrei and W. H. T. Fuchs [1] proved that given a positive, nondecreasing function $\boldsymbol{\Phi}(t)$ with $\int_{1}^{r} \boldsymbol{\Phi}(t) / t d t \leqq r^{K}$ (for some $K>0$ and r sufficiently large), then there exists an entire function g of finite order such that

$$
N\left(r, \frac{1}{g}\right) \sim \log M(r, g) \sim \int_{1}^{r} \frac{\Phi(t)}{t} d t \quad(r \rightarrow \infty)
$$

We will rely heavily on their construction of the function $g(z)$.
Proof of Theorem 3. Let f be an entire function satisfying the hypothesis of Theorem 3. It is easy to see that the function $\Psi(t)$ we obtain from f according to (3.1) can be replaced by the function $\boldsymbol{\Phi}(t)$ satisfying,
(i) $\boldsymbol{\Phi}(t)$ is continuous,
(ii) $\boldsymbol{\Phi}(1)=0$ and $\boldsymbol{\Phi}(t)$ is strictly increasing and unbounded,
(iii) $\log M(r, f) \sim \Lambda(r)=\int_{1}^{r} \Phi(t) / t d t(r \rightarrow \infty)$.

Let us now define the function $B(r)$ by the condition $B(r)=\Lambda(r) / \log r$ for $r>1$ and $B(1)=0$. Since $B^{\prime}(r)=\Phi(r) \log r-\Lambda(r) / r(\log r)^{2}>0$ we have $B(r)$ is continuous and strictly increasing. Furthermore, f transcendental implies $B(r)$ is unbounded.

Let η be a fixed constant with $0<\eta<1 / 2$ and define a sequence of positive numbers $\left\{r_{n}\right\}_{n=1}^{\infty}$ by

$$
n=B^{2 \eta}\left(r_{n}\right) \log r_{n} \quad \text { for } n=1,2, \cdots
$$

Since $B^{2 \eta}(x) \log x$ is continuous, strictly increasing, and unbounded and since $B^{2 \eta}(1) \log 1=0$, the sequence $\left\{r_{n}\right\}_{1}^{\infty}$ is uniquely determined, strictly increasing, and unbounded.

Now set

$$
k_{j}^{j}=\exp \left(\frac{j}{B^{\eta}\left(r_{j}\right)}\right)=\exp \left(B^{\eta}\left(r_{j}\right) \log r_{j}\right),
$$

and notice that the sequence $\left\{k_{j}^{j}\right\}_{j=1}^{\infty}$ is increasing and unbounded, whereas the sequence $\left\{k_{j}\right\}_{j=1}^{\infty}$ is decreasing and

$$
\lim _{j \rightarrow \infty} k_{j}=1
$$

Denoting by $[y]$ the greatest integer not exceeding y, we define the sequence $\left\{q_{j}\right\}^{\infty}{ }_{j=1}$ by

$$
q_{j}=\left[2 j k_{1} k_{2} k_{3} \cdots k_{j}\right]+1, \quad \text { for } j=1,2, \cdots
$$

It is easily shown that the q_{j} 's satisfy the four following relations:

$$
\begin{gather*}
q_{j}>k_{j}^{j} \geqq \exp (\sqrt{j}) \quad(j \geqq 1), \tag{3.2}\\
q_{j+1}>q_{j} \quad(j \geqq 1), \tag{3.3}\\
\lim _{j \rightarrow \infty} \frac{q_{j+1}}{q_{j}}=1, \tag{3.4}
\end{gather*}
$$

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{q_{j}}{Q_{j}}=0, \text { where } Q_{j}=\sum_{i=1}^{j} q_{i} \tag{3.5}
\end{equation*}
$$

Define the sequence $\left\{t_{j}\right\}_{j=1}^{\infty}$ of positive, strictly increasing numbers by

$$
\Phi\left(t_{j}\right)=Q_{j}=\sum_{i=1}^{j} q_{j} \quad(j=1,2, \cdots)
$$

The existence and uniqueness of $\left\{t_{j}\right\}_{1}^{\infty}$ is assured by (ii).
Set $s_{j}=t_{j}+j(j-1) / 2$ and define $n_{1}(t)$ and $n(t)$ by

$$
\begin{aligned}
n_{1}(t) & = \begin{cases}0 & \text { for } 0 \leqq t<t_{1} \\
Q_{j} & \text { for } t_{j} \leqq t<t_{j+1}, \quad j=1,2, \cdots\end{cases} \\
n(t) & = \begin{cases}0 & \text { for } 0 \leqq t<s_{1} \\
Q_{j} & \text { for } s_{j} \leqq t<s_{j+1}, j=1,2, \cdots\end{cases}
\end{aligned}
$$

Clearly,

$$
1 \leqq \frac{\Phi(t)}{n_{1}(t)}<1+\frac{q_{j+1}}{Q_{j}} \text { for } t_{j} \leqq t<t_{j+1}, j \geqq 1
$$

and therefore, by (3.4) and (3.5),

$$
\lim _{t \rightarrow \infty} \frac{\Phi(t)}{n_{1}(t)}=1
$$

Hence,

$$
\int_{1}^{r} \frac{n_{1}(t)}{t} d t \sim \Lambda(r) \quad(r \rightarrow \infty)
$$

We will now show that under the hypothesis of Theorem 3 we also have,

$$
\int_{1}^{r} \frac{n(t)}{t} d t \sim \Lambda(r) \quad(r \rightarrow \infty)
$$

Since f is of exponential type we have, for some $A>0$,

$$
\begin{equation*}
n(t) \leqq n_{1}(t) \leqq \Phi(t)<A t \text { for } t \geqq 1 \tag{3.6}
\end{equation*}
$$

Thus, $t_{j}>1 / A q_{j} \geqq 1 / A \exp (\sqrt{j})$ and for $\gamma>0$,

$$
\begin{equation*}
j^{2}=o\left(t_{j}^{\gamma}\right) \quad(j \rightarrow \infty) \tag{3.7}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\int_{t_{j}}^{t_{j}+1} \frac{n_{1}(t)}{t} d t & =\int_{s_{j}}^{s_{j+1}-j} \frac{n(t)}{t-j(j-1) / 2} \\
d t & =\{1+o(1)\} \int_{s_{j}}^{s_{j+1}-j} \frac{n(t)}{t} d t \quad(j \rightarrow \infty)
\end{aligned}
$$

Hence, for $s_{j} \leqq r<s_{j+1}$ and $j \rightarrow \infty$,

$$
\int_{1}^{r-j^{2}} \frac{n_{1}(t)}{t} d t \leqq\{1+o(1)\} \int_{1}^{r} \frac{n(t)}{t} d t \leqq\{1+o(1)\} \int_{1}^{r} \frac{n_{1}(t)}{t} d t
$$

This leaves to show,

$$
\int_{r-j^{2}}^{r} \frac{n_{1}(t)}{t} d t=o\left(\int_{1}^{r} \frac{n_{1}(t)}{t} d t\right) . \quad(j \rightarrow \infty)
$$

(a) Suppose f is of lower order $\lambda>0$ then, since $\Lambda(r) \sim$ $\int_{1}^{r} n_{1}(t) / t d t$, we have for r sufficiently large,

$$
\int_{1}^{r} \frac{n_{1}(t)}{t} d t>r^{\lambda / 2}
$$

Thus, by (3.6) and (3.7),

$$
\int_{r-j^{2}}^{r} \frac{n_{1}(t)}{t} d t \leqq j^{2} A=o\left(r^{\lambda / 2}\right)=o\left(\int_{1}^{r} \frac{n_{1}(t)}{t} d t\right)
$$

(b) Suppose f is of order $\rho<1$, then there exists $\gamma, 0<\gamma<1-\rho$ such that, for t sufficiently large,

$$
\frac{n_{1}(t)}{t} \leqq \frac{\Phi(t)}{t}<t^{-\gamma}
$$

Therefore, by (3.7), we have for $s_{j} \leqq r<s_{j+1}$

$$
\int_{r-j^{2}}^{r} \frac{n_{1}(t)}{t} d t=o(1) \quad(j \rightarrow \infty)
$$

Hence, since f is either of order $\rho<1$ or of lower order $\lambda>0$,

$$
\begin{equation*}
\int_{1}^{r} \frac{n_{1}(t)}{t} d t \sim \int_{1}^{r} \frac{n(t)}{t} d t \sim \Lambda(r) \quad(r \rightarrow \infty) . \tag{3.8}
\end{equation*}
$$

We consider next the infinite product

$$
\begin{equation*}
g(z)=\prod_{j=1}^{\infty}\left(1+\left\{\frac{z}{s_{j}}\right\}^{q_{j}}\right) \tag{3.9}
\end{equation*}
$$

Let $|z|=r$ with $r<R$ and define p by $s_{p} \leqq R<s_{p+1}$.
By (3.3), $q_{m}-q_{n} \geqq m-n$ and therefore,

$$
\begin{align*}
\sum_{s_{j}>R}\left|\frac{z}{s_{j}}\right|^{q_{j}} & \leqq \sum_{s_{j}>R}\left\{\frac{r}{R}\right\}^{q_{j}}<\sum_{j=p}^{\infty}\left\{\frac{r}{R}\right\}^{q_{j}} \tag{3.10}\\
& =\left\{\frac{r}{R}\right\}^{q_{p}} \sum_{j=p}^{\infty}\left\{\frac{r}{R}\right\}^{q_{j}-q_{p}} \leqq\left\{\frac{r}{R}\right\}^{q_{p}} \frac{R}{R-r}
\end{align*}
$$

This shows that the infinite product in (3.9) converges uniformly in every bounded region. Hence $g(z)$ is an entire function.

Now, $n(r, 1 / g)=n(r)$ and therefore by (3.8),

$$
N\left(r, \frac{1}{g}\right)=\int_{1}^{r} \frac{n(t)}{t} d t \sim \Lambda(r) \quad(r \rightarrow \infty)
$$

For $r<R$ and $s_{p} \leqq R<s_{p+1}$,

$$
\begin{aligned}
\log M(r, g)= & \sum_{s_{j} \leqq r} q_{j} \log \frac{r}{s_{j}}+\sum_{s_{j} \leqq r} \log \left(1+\left\{\frac{s_{j}}{r}\right\}^{q_{j}}\right) \\
& +\sum_{r<s_{j} \leq R} \log \left(1+\left\{\frac{r}{s_{j}}\right\}^{q_{j}}\right) \\
& +\sum_{s_{j}>R} \log \left(1+\left\{\frac{r}{s_{j}}\right\}^{q_{j}}\right) \\
\leqq & \mathrm{N}\left(r, \frac{1}{g}\right)+p \log 2+\sum_{s_{j}>R}\left\{\frac{r}{s_{j}}\right\}^{q_{j}}
\end{aligned}
$$

Hence, by (3.10) and elementary inequalities of Nevalinna's theory

$$
\begin{align*}
N\left(r, \frac{1}{g}\right) \leqq & \log M(r, g) \leqq N\left(r, \frac{1}{g}\right) \tag{3.11}\\
& +p \log 2+\left\{\frac{r}{R}\right\}^{q_{p}} \frac{R}{R-r} \quad(r<R)
\end{align*}
$$

Now, let $R=2 r$ and p defined by $s_{p} \leqq R<s_{p+1}$. Then,

$$
q_{p} \leqq Q_{p} \leqq \Phi(2 r)<\int_{2 r}^{2 e r} \frac{\Phi(t)}{t} d t<\Lambda(2 e r) \text { and }
$$

thus, $q_{p}=0(r)(p=p(2 r), r \rightarrow \infty)$.
By (3.2),

$$
q_{p}>k_{p}^{p}=\exp \left(B^{\eta}\left(r_{p}\right) \log r_{p}\right)
$$

Hence,

$$
B^{\eta}\left(r_{p}\right) \log r_{p}=0(\log r) \quad(r \rightarrow \infty)
$$

and since $B^{\eta}(x)$ is strictly increasing,

$$
r_{p}<r \text { for } r \text { sufficiently large. }
$$

Thus, since $B^{2 \eta}(x) \log x$ is strictly increasing,

$$
p=B^{2 \eta}\left(r_{p}\right) \log r_{p} \leqq B^{2 \eta}(r) \log r=\Lambda(r) B^{1-2 \eta}(r)
$$

Since $\lim _{r \rightarrow \infty} B^{1-2 \eta}(r)=0$, we have,

$$
p=o(\Lambda(r)) \quad(r \rightarrow \infty, p=p(2 r))
$$

Thus, we obtain for (3.11),

$$
N(r, 1 / g) \leqq \log M(r, g) \leqq N(r, 1 / g)+o(\Lambda(r))+o(1) \quad(r \rightarrow \infty)
$$

Hence,

$$
\log M(r, g) \sim N(r, 1 / g) \sim \Lambda(r) \sim \log M(r, f) \quad(r \rightarrow \infty)
$$

Since $s_{j+1}-s_{j} \geqq j+1$, we have

$$
\lim _{n \rightarrow \infty} \sum_{j \neq n}\left|\frac{1}{s_{n}-s_{j}}\right|=0
$$

Clearly, $\lim \sup _{j \rightarrow \infty} Q_{j} / s_{j}<\infty$ and therefore, by Theorem $1, g(z)$ is of bounded index. q.e.d.
4. Proof of Theorem 4. Without loss of generality we may assume $\Phi(1)=0, \Phi(t)$ continuous, strictly increasing and unbounded. The condition $\lim \sup _{t \rightarrow \infty} \Phi(t) / t<\infty$ assures us that the function f we are
about to construct is of exponential type. Let $B(r),\left\{q_{j}\right\}_{1}^{\infty},\left\{t_{j}\right\}_{1}^{\infty}$, and $n_{1}(t)$ be defined as in the proof of Theorem 3.

Now let $f(z)=\prod_{j=1}^{\infty}\left(1+\left\{z / t_{j}\right\}^{q_{j}}\right)$, then by the same argument as in the proof of Theorem $3, f(z)$ is an entire function and

$$
N\left(r, \frac{1}{g}\right)=\int_{1}^{r} \frac{n_{1}(t)}{t} d t \sim \log M(r, f) \sim \int_{1}^{r} \frac{\Phi(t)}{t} d t \quad(r \rightarrow \infty) .
$$

Then, for $t \geqq t_{j}$ and j sufficiently large,

$$
\begin{aligned}
\Phi(t+1)-\Phi(t) & \leqq \Phi(t)\{\Phi(t)\}^{-1 / n} \\
& \leqq Q_{j}^{-1 / n} \Phi(t) \\
& \leqq e^{-\sqrt{j / n}} \boldsymbol{\Phi}(t) \leqq 1 / j^{3} \Phi(t) .
\end{aligned}
$$

Hence, for j sufficiently large,

$$
\boldsymbol{\Phi}\left(t_{j}+j\right) \leqq\left(1+1 / j^{3}\right)^{j} \boldsymbol{\Phi}\left(t_{j}\right) \leqq(1+1 / j) \boldsymbol{\Phi}\left(t_{j}\right) .
$$

Therefore,

$$
\boldsymbol{\Phi}\left(t_{j+1}\right)-\boldsymbol{\Phi}\left(t_{j}\right)=q_{j+1}>(1 / j) Q_{j}=(1 / j) \boldsymbol{\Phi}\left(t_{j}\right), \text { and thus }
$$

$t_{j+1}-t_{j}>j$ for j sufficiently large.
Now, $\sum_{j \neq n} 1 /\left|t_{n}-t_{j}\right|=o(1)$ and, by Theorem $1, f$ is of bounded index. q.e.d.

References

1. A. Edrei and W. H. J. Fuchs, Entire and meromorphic functions with asymptotically prescribed characteristic, Canad. J. Math. 17 (1965), 383-395.
2. G. H. Fricke, Functions of bounded index and their logarithmic derivatives, Math. Ann. 206 (1973), 215-223.
3. B. S. Lee and S. M. Shah, Inequalities satisfied by entire functions and their derivatives, Trans. Amer. Math. Soc., 149 (1970), 109-114.
4. B. Lepson, Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index, Proc. Symp. in Pure Math., XI, 1968, 298-307.
5. W. J. Pugh and S. M. Shah, On the growth of entire functions of bounded index, Pacific J. of Math. 33 (1970), 191-201.
6. S. M. Shah, Analytic functions with univalent derivatives and entire functions of exponential type, Bull. Amer. Math. Soc., 78 (1972), 154-171.

Whight State University, Dayton, Ohio 45431

