
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 6, Number 2, Spring 1976 

ENTIRE FUNCTIONS WITH PRESCRIBED 
ASYMPTOTIC BEHAVIOR 

GERD H. FRICKE 

ABSTRACT. A sufficient condition for a canonical product to 
be of bounded index is given, from which most of the well 
known results can be obtained as easy corollaries. Let / be an 
entire function of exponential type with order p and lower 
order A.. If p — A < 1 then there exists an entire function g of 
bounded index such that log M{r,f) —log M(r, g). This solves 
a conjecture of S. M. Shah except for the extremal case of 
P = 1 and A = 0. 

1. Introduction. An entire function f(z) is said to be of bounded 
index if there exists a non-negative integer N such that 

o*i*N I »! J n! 

The least such integer N is called the index off (see [4] ). 
It is well known that a canonical product having geometrically in

creasing zeros is of bounded index. We now prove a strong generaliza
tion of this result. 

THEOREM 1. Let f(z) = f | °}=1 (1 + {zltj}^) be an entire function 
with tj G A{0}, qj EN and 2 % i (qM) < °° • ' / 2 i * i Wn ~ *l 
= 0(1) as n—» oo, then fis of bounded index. 

The condition ^ *.=1 (qjl\tj\) < oo can be replaced by 
limsupj_>w(Çy|fy|) < oo, where Q = S*=i 9«> provided / is entire, 
i.e., the infinite product converges uniformly on every bounded region. 
However let us remark that the conditions in Theorem 1 are only suf
ficient and not necessary, (see [2], Theorem 3). 

As a direct consequence we obtain the following result of B. S. Lee 
andS. M. Shah [3]. 

COROLLARY 2. Let f(z) = J\ £= 1 (1 — zlan), where an G R+ and 
(an+ilan) è a > 1, then fis an entire function of bounded index. 

In 1970 W. J. Pugh and S. M. Shah [5] showed that for any trans
cendental entire function f of finite order it is always possible to 
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find an entire function g of unbounded index such that 

log M(r, f) - log M(r, g) (r-» oo ). 

In [6] S. M. Shah conjectured: I f / is an entire function of exponen
tial type then there exists an entire function g of bounded index such 
that log M(r, f) ~~ log M(r, g). We now prove this conjecture for 
functions of exponential type with non-extremal asymptotic behavior. 

THEOREM 3. Let f be an entire junction of exponential type with 
order p and lower order X. If p — X < 1, then there exists an entire 
function g of bounded index such that 

N ( n — J - log M(r, g) ~ log M(r,f) (r-> » ). 

THEOREM 4. Let <f>(t) be an increasing, positive function of t ̂  1 
with lim supt_> «(<£(*)/£) < » . If there exists an integer n > 0 such that 
<f>(t - h i ) — <\>{i) ^ <f>(t){n~1)ln for t sufficiently large, then there exists 
an entire function f ofbounded index such that 

2v(r, y ) ~ l o g M ( r , / ) ~ \\ &&dt (r-»oo). 

As a straightforward consequence we have 

COROLLARY 5. Let 0 =§ X = p = 1 foe given. Then there exists an 
entire function f of bounded index and order p with lower order X. 

2. Proof of Theorem 1. Let q be a positive integer and let t be a 
complex number with \t\ > q. 

(i) Let z G 0 with \z\ = \t\ + a, a > 0. 
Then, 

Ig**-1! ^ gl*!"-1
 = <7 

|F + * | - |*f - |*|« |* | ( i - {\t\i\z\r) 

<g 2 

'"^•'(•-i.ftV) 
= |*| + qa ^ 1 t e/ = 1 t 9 

(|*| + </)a a |*| -h a a |z| ' 

(ii) Let z G 0 with |*| = |z| -h b, b > 0. 
Then, 

file://{/t/i/z/r


ASYMPTOTIC BEHAVIOR OF ENTIRE FUNCTIONS 239 

\f> + *>\~ (|z| + by- |z|" ~ bqlzl«'1 b' 

(iii) Let z G 0 such that |*| - 1 < \z\ ^ \t\ + 1. Furthermore let 
flj, • • •, aq denote the zeros of z" + f then 

g * " 1
 = f -i-

«* + f n_! « - «n' 

Clearly there exists z' such that \z'\ + 1 = |*| and |z ' — z| ^ 2. Thus, 
by(n),\2qn=iU(z'-an)\^l. 

Let d > 0 be given and let \z — an | = d for n = 1, 2, • • -, q. Ob
viously the length of the arc from a{ to ai+i for the circle of radius \t\ 
is exactly 2ir\t\lq. The distance of two points on a circle is at least the 
shortest arc length between those points divided by IT. Thus, by re
numbering the a/s (so that a1 is closest to z), we have, 

| z - a j ä \an-a2\^
 ( " ~" 2 ) 2 1 ^ S 2(n - 2) for 2 < n ^ (</ + l)/2 

and 

|z - o J S k - a J ^ ( ? " " n ) 2 | ^ S 2 ( ? - n ) for ( 9 + l)/2 < n < q. 

The same result holds for z ' and therefore, 

i * 1 „f i z- an\ 

HA
 

VII 

HA
 

HA
 

1 Y z~z' 1 
l ^ ^ - a j ^ ' - a j l 

i 2 ii 
„fi |«-o»| 1*' -a» | ' 

6 i y1 2 
d ' nf3 |z-o„| |z ' - an\ 

6 (q^,/2 4 i+ s f+1 

L?i*'-J 

+ i 

^4+ i4+ i = M-
Obviously, M = M(d) is independent off and q. 
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We now proceed with the proof of Theorem 1. 

For/(z) = I 1 J ^ I (1 + W O we have, 

ÎM \ = I y ^ " X |< f nWr\ 
f(z) I I £ ^ + ̂  I - £ |^ + *M • 

Let d > 0 be given and let z G j£ such that |z — b{\ è d for i = 
1,2, • • -, where the fo/s denote the zeros of / There exists an integer 
n ^ O such that \tn\ g |z| < |fn+1|. Since X H # J I < °°> there 
exists an integer n0 > 0 such that |^| > qj for all j=n0. Let 
aj = I fel ~~ \ZW> then, by (i)» (n)> a n ( i (ni)> w e have, for \z\ sufficiently 
large, 

- l 

(2.1) 

IM. |< v IJW 

+ 2(M+1) + 2 ,<yj|ZJ,J".1| 

"- 1 / 1 n. \ °° 1 

^ * + 2 ( - + -ÛTÎ—) +2(Af+ 1)+ 2 -

< K + y I 1 1 + y _3L 

" À I Kl-fei I À fel 
+ 2(M + 1) + S 1 

J*n + 1 « K l - fei « 

Clearly f'(z)lf(z) is bounded for bounded z with \z — b{\ ^ d for all f. 
Therefore, for each d > 0 there exists a constant L > 0 such that 

\f'(z)\^L\f(z)\, whenever I z - f e J ^ d for all j . Hence, by [2, 
Theorem 2], / is of bounded index. 

Suppose we replace the condition ^°j=i(qjl\tj\)< °° by demanding 
the infinite product / to be entire and by lim sup^ooÇyfel < °°, 
where Qj = 2 ^ = 1 9n- It is well known that f(z) of bounded index 
implies f(az) is also of bounded index for any a G fS. Thus, with
out loss of generality we may assume lim sup^wÇyfe| < 1. Hence, 
an ^ Qn < \tn\ for n sufficiently large and therefore we can use the 
same argument to obtain the inequality (2.1). Since, 
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,-£+ii*i + <%"À 1*1 \A~n ' 
we similarly obtain, f is of bounded index, q.e.d. 

3. In this section we assume familiarity with the most elementary 
results and notations of Nevanlinna's theory of meromorphic functions. 

For a transcendental entire function / we have, 

(3.1) log M(r,f) = log M(r0,f) + P ^ d t ( r è r0), 

where r0 > 0 and ty(t) is a non-negative, non-decreasing function of t. 
A. Edrei and W. H. T. Fuchs [1] proved that given a positive, non-

decreasing function <b(t) with J{®(t)ltdt?â rK (for some K> 0 and 
r sufficiently large), then there exists an entire function g of finite order 
such that 

N (r, i ) ~ log M(r, g) ~ ^ ^ dt (r-> oo ). 
o 

We will rely heavily on their construction of the function g(z). 

PROOF OF THEOREM 3. Let / be an entire function satisfying the 
hypothesis of Theorem 3. It is easy to see that the function ^(t) we 
obtain from / according to (3.1) can be replaced by the function 4>(£) 
satisfying, 

(i) 4>(f) is continuous, 
(ii) 4>(1) = 0 and4>(£) is strictly increasing and unbounded, 

(iii) log M(r, f) - A(r) = S&(t)lt dt(r^K*> ). 

Let us now define the function B(r) by the condition B(r) = A(r)/log r 
for r > 1 and B(l) = 0. Since B'(r) = *(r) log r - A(r)/r(log rf > 0 
we have B(r) is continuous and strictly increasing. Furthermore, / 
transcendental implies B(r) is unbounded. 

Let 17 be a fixed constant with 0 < j) < 1/2 and define a sequence of 
positive numbers {rn}*=1 by 

n = B2y>(rn) log rn for n = 1, 2, • • \ 

Since B2y>(x) log x is continuous, strictly increasing, and unbounded and 
since B2r>(l) log 1 = 0, the sequence {rn}™ is uniquely determined, 
strictly increasing, and unbounded. 

Now set 

* y = e x p ( " ß 4 y ) = e xp(ß"^ i og^' 
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and notice that the sequence {fc/}/Li is increasing and unbounded, 
whereas the sequence {fcj}°y=i is decreasing and 

\imkj = 1. 

Denoting by [y] the greatest integer not exceeding y, we define the se
quence {qj}"}=1 by 

qj = [2/fc1/c2fc3 • • • kj] + 1, forj = 1,2, • • •. 

It is easily shown that the qjs satisfy the four following relations: 

(3.2) <7,>fc/^exp(v5) ( | g i ) , 

(3-3) <fo+i><& O ' ^ l ) . 

(3-4) 

(3-5) 

l i m * ± i = l , 
J— 9i 

lim _2L _ 
/— Qj 

= 0, where Q, = £ 9,. 
«=i 

by 
Define the sequence {^} j=i of positive, strictly increasing numbers 

*W=Ö= Ì% (7=1,2, •••)• 
i = l 

The existence and uniqueness of {tj} " is assured by (ii). 

Set $j = fy + j( j ~~ l)/2 and define nx(f) and n(f) by 

j 0 for 0 ^ t < f ! 

^<a for tj^t<tj+li j= 1,2, • ••, 

[O f o r 0 ^ f < 5 ! 

ft. for^t<si+1,j=l,2, •••. 

nx(t) = 

n(t) = 

Clearly, 

and therefore, by (3.4) and (3.5), 

lim —— = 1. 

Hence, 

file:///imkj
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ni(t) 
P ^Mat-Mr) ( r - o o ) . 

J 1 X 

We will now show that under the hypothesis of Theorem 3 we also 
have, 

n(t) 
J 1 f 

Since/ is of exponential type we have, for some A > 0, 

(3.6) n(t) g nx(*) ^ *(t) < At for t ^ 1. 

Thus, ty > 1/A 9y ^ 1/A exp(V/) and for y > 0, 

(3.7) f=o(t>) (j-* oo). 

Therefore, 

p j + 1 "i(£) ^ = h + r J n(f) 
J «j t itj t-j(j-l)l2 

dt - { 1 + od)}]^- ' ^ * (/-.co). 
-j * 

dt. 

Hence, for Sj ^ r < si+l andj—» oo > 

r ' - f *s „•<„,£ f *a{1 + .auf, îf 
This leaves to show, 

(a) Suppose / is of lower order \ > 0 then, since A(r) ~ 
Ilni(t)lt dt, we have for r sufficiently large, 

Ji t 

Thus, by (3.6) and (3.7), 

£,.=f «/A-<^-.(JÌ=f*). 
(b) Suppose / is of order p < 1, then there exists y, 0 < y < 1 — p 

such that, for £ sufficiently large, 
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Therefore, by (3.7), we have for & ~ r < &+1 

Jr-j2 t 

Hence, s ince/ i s either of order p < 1 or of lower order X > 0, 

(3.8) r 2& dt~ r ^dt~A(r) (r-oc). 
J 1 Z J 1 X 

We consider next the infinite product 

(3-9) g(z)=li ( 1 + { f f )• 
Let |z| = r with r < R and define p by sp ̂  R < sp+ x. 

By (3.3), qm — qn^ m — n and therefore, 

Sj>R ' Sj ' ^ > f i L K J j = p L " J 

- {iri {ir-** ar«̂ -
This shows that the infinite product in (3.9) converges uniformly in 
every bounded region. Hence g(z) is an entire function. 

Now, n(r, 1/g) = n(r) and therefore by (3.8), 

" ( ' • 7 ) - l Ì f*~A(r) (r->-). 
For r < R and sp ̂  R < sp+1, 

logM(r,g)= E %log f + E l o g ( l + { f f ) 
« j = r 3 sj—r 

+ Xlog(l+{f}*) 

SN(r, i-) +plog2+ E {f f. 

Hence, by (3.10) and elementary inequalities of Nevalinna's theory 
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N ( r , i ) g l o g M ( r , g ) g ] v ( r , - 1 ) 

(3.11) g g 

+ plog2+ {-£}* ^ (r<R). 

Now, let R = 2r and p defined by sp ^ R < sp+1. Then, 

9 P â Ç p g *(2r) < J - ^ dt < A(2er) and 

thus, qp = 0(r) (p = p(2r), r -> oo ). 

By (3.2), 

qP > k/ = exp(B*(rp) log rp). 

Hence, 

B*>(rp) log rp = 0(log r) (r -* °° ), 

and since B^(x) is strictly increasing, 

rp < r for r sufficiently large. 

Thus, since B2r>(x) log x is strictly increasing, 

p = B2»(rp) log rp g B2^(r) log r = A(r) B 1 " 2 ^ ) . 

Since limr_>00B
1~2^(r) = 0, we have, 

p = o(A(r)) (r-> » , p = p(2r)). 

Thus, we obtain for (3.11), 

N(r, 1/g) S log Af (r, g) â N(r, 1/g) + o(A(r)) + o(l) (r-> oo ). 

Hence, 

log M(r, g) - N(r, 1/g) - A(f) ^ log Af(r, / ) (r -> oo J. 

Since Sj+i — «j è j + 1, we have 

lim S I - i - 1= 0. 

Clearly, lim sup,_> »Qjlsj < °o and therefore, by Theorem 1, g(z) is of 
bounded index, q.e.d. 

4. Proof of Theorem 4. Without loss of generality we may assume 
4>(1) = 0, 4>(f) continuous, strictly increasing and unbounded. The 
condition lim supt_> «,<!>( t)lt < oo assures us that the function f we are 
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about to construct is of exponential type. Let B(r), {qj}°{, {fy}", and 
r%i(t) be defined as in the proof of Theorem 3. 

Now let f(z) = Y\ j=i(l + {zltj}qi), then by the same argument as 
in the proof of Theorem 3, f(z) is an entire function and 

N( r ± ) = | ; » ^ * ~ l o g M ( r . / ) ~ f ^ ( r - > - ) . 

Then, for t = £_,• andj sufficiently large, 

* ( t + l) - *(*) ^ 4>(*){4>(e)}-1'" 

^Ç>.- i/»4>(f) 

Hence, for j sufficiently large, 

*(% + J) ^ (1 + l/?3)^(*j) ^ (1 + 1/j) *(*,)• 

Therefore, 

* f t + 1 ) - *($) = 9i+i > (I//)© = ( l / / )*(^) , and thus 

fy+i ~~ *j > j for j sufficiently large. 

Now, X/^nl/|^n ~" */l = °(1) a n d , by Theorem 1, / is of bounded 
index, q.e.d. 
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