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ENTIRE FUNCTIONS WITH PRESCRIBED
ASYMPTOTIC BEHAVIOR

GERD H. FRICKE

ApstracT. A sufficient condition for a canonical product to
be of bounded index is given, from which most of the well
known results can be obtained as easy corollaries. Let f be an
entire function of exponential type with order p and lower
order 1. If p — A < 1 then there exists an entire function g of
bounded index such that log M(r, f) ~log M(r, g). This solves
a conjecture of S. M. Shah except for the extremal case of
p=1landr = 0.

1. Introduction. An entire function f(z) is said to be of bounded
index if there exists a non-negative integer N such that

(] n)
max { 'f (z }> ( for all n and all z.
0=isN
The least such integer N is called the index of f, (see [4]).

It is well known that a canonical product having geometrically in-
creasing zeros is of bounded index. We now prove a strong generaliza-
tion of this result.

Tueorem 1. Let f(z) =[] %=1 (1 + {z/t;}%) be an entire function
with § €Z\{0}, ¢; EN and 35, (gilt)) < . If 3;u, Ult, — ¢
= 0(1) as n— o, then f is of bounded index.

The condition ¥ %5.;(gf|tj) < ® <can be replaced by
lim sup;_, o(Qj/|t;|) < *, where Q;= E’,-=1 qi, provided f is entire,
i.e., the infinite product converges uniformly on every bounded region.
However let us remark that the conditions in Theorem 1 are only suf-
ficient and not necessary, (see [2], Theorem 3).

As a direct consequence we obtain the following result of B. S. Lee
and S. M. Shah [3].

CoroLLarY 2. Let f(z) =[] 5., (1 — zla,), where a, € R* and
(@n+1la,) = a > 1, then f is an entire function of bounded index.

In 1970 W. J. Pugh and S. M. Shah [5] showed that for any trans-
cendental entire function f of finite order it is always possible to
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find an entire function g of unbounded index such that
log M(r, f) ~ log M(r, g) (r— ).

In [6] S. M. Shah conjectured: If f is an entire function of exponen-
tial type then there exists an entire function g of bounded index such
that log M(r, f) ~ log M(r,g). We now prove this conjecture for
functions of exponential type with non-extremal asymptotic behavior.

TueoREM 3. Let f be an entire function of exponential type with
order p and lower order \. If p — N < 1, then there exists an entire
function g of bounded index such that

N(r, é) ~ log M(r, g) ~ log M(r,f) (r— ).

THEOREM 4. Let ¢(t) be an increasing, positive function of t= 1
with lim sup,_,.(¢(t)/t) < «. If there exists an integer n > 0 such that
ot + 1) — ¢(t) = ¢(t)»~Vin for t sufficiently large, then there exists
an entire function f of bounded index such that

1y - [ ¢
N<r, G ) log M(r, f) Jl " dt (r— o).
As a straightforward consequence we have

CoroLLARY 5. Let 0= A= p=1 be given. Then there exists an
entire function f of bounded index and order p with lower order \.

2. Proof of Theorem 1. Let g be a positive integer and let ¢ be a
complex number with [t| > q.
(i) Letz € € with |z| = |t| + a,a > 0.

Then,
= < qkb _ g
o+ = b — R (VD)
- 9
1+ o) (1 = g o)

_ _ll+tgqe 1. _q _1, 69

= + .
(ltl+qa —a Jt|+a a [z

(ii) Letz € € with |t| = |z| + b,b > 0.
Then,
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g qRFTY g 1
tr + 27| — (&l + by — kI — bqlzl""' b’

(iii) Let 2 € € such that |t| — 1 < |z| = |t| + 1. Furthermore let
a, - * *, a, denote the zeros of 29 + t7 then

7! _ < _1
27+ ~ 2= a,

n

Clearly there exists z’ such that |z'| + 1 = |t/ and |z’ — z| = 2. Thus,
by (ii), [Ya-1 U(z' — a,) = 1.

Let d > 0 be given and let [z —ag,|=d forn=1,2, - - -,q. Ob-
viously the length of the arc from g; to a;,, for the circle of radius [¢|
is exactly 2r |t|lq. The distance of two points on a circle is at least the
shortest arc length between those points divided by 7. Thus, by re-
numbering the a;’s (so that a, is closest to z), we have,

Ik — a,| = |a, — a3 = (—[:?72—)—2—“'22(n—2)f0r2<n§(q+ 12
and

|z — a,| = |a, — a,| = (—q-——q-—n)zltlé2(q—n)for(q+ NE2<n<g.

The same result holds for z’ and therefore,

i 1 |< l ki Z'—z' l lq ].
= » +
2= el + 1255

q
= 2 +1
= 2Tl —al
<6.% 2 +1
=t Z ol -

(g+1)/2

=6, .

d ji=1 J
=6, 34 1=-n

d j=1j2

Obviously, M = M(d) is independent of t and q.
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We now proceed with the proof of Theorem 1.
For f(z) =[[;Z: (1 + {z/t;}%) we have,

'@ |- I 2‘ g2~} ,s 2”: gilzl "
f(z) St T S ]
Let d > 0 be given and let z € € such that |z — b;|= d for i =
1,2, - - -, where the b;’s denote the zeros of f. There exists an integer

nZ 0 such that [t,|= || < |t,4,] Since X %5, qjl|t;| < ®, there
exists an integer nyo > 0 such that [t;|> g; for all j= n,. Let

a; = | |tj] — |z| |, then, by (i), (ii), and (iii), we have, for |z| sufficiently
large,
| L6 = 5 k!
fla) 17 2 i+t

§ Ny g_Izlqj—l + nil E,Izlqj—l

o R+ ¢ PR R e /L]

fd zlg; —1
oM+ + Y -GEL

(2.1) j=n+2 |z + ;9
=K+ "21 <i+JL>+2(M+1)+ ii
) st 29 ltjl * % jen+2 %
1 = g
=K+ l+ 9
AR T2
1
+2M+ 1)+ 1 I
f?‘%l 'tnl - It_,l

=T

Clearly f’(z)/f(z) is bounded for bounded z with |z — b;| = d for all i.

Therefore, for each d > 0 there exists a constant L > 0 such that
|f'(z)] = L|f(z)|, whenever |z — b;]=d for all j. Hence, by [2,
Theorem 2], f is of bounded index.

Suppose we replace the condition ¥, 5_,(gj/|t;|)< ® by demanding
the infinite product f to be entire and by lim sup; Qi < e,
where Q; = g,{;lqn. It is well known that f(z) of bounded index
implies f(az) is also of bounded index for any a € €. Thus, with-
out loss of generality we may assume lim sup,_,.Qj/|t;] < 1. Hence,
a, = Q, < |t,| for n sufficiently large and therefore we can use the
same argument to obtain the inequality (2.1). Since,
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S §ii O < On
Pl 11 + g [l =l T Ital

we similarly obtain, f is of bounded index. q.e.d.

3. In this section we assume familiarity with the most elementary
results and notations of Nevanlinna’s theory of meromorphic functions.
For a transcendental entire function f we have,

(3.1) log M(r, f) = log M(ro,f) + [ ‘I'Et)dt (rZ 1),
where 7y > 0 and ¥(¢) is a non-negative, non-decreasing function of t.

A. Edrei and W. H. T. Fuchs [1] proved that given a positive, non-
decreasing function ®(t) with [{®(t)/tdt = rX (for some K> 0 and
r sufficiently large), then there exists an entire function g of finite order
such that

(D(t) dt (r— o).

- 1
N ( p ) og M(r, g) ~ f
We will rely heavily on their construction of the function g(z).

Proor oF THEOREM 3. Let f be an entire function satisfying the
hypothesis of Theorem 3. It is easy to see that the function ¥ () we
obtain from f according to (3.1) can be replaced by the function ®(t)
satisfying,

(i) ®(¢) is continuous,
(ii) ®(1) = 0 and <I>(t) is strlctly increasing and unbounded,
(iii) log M(r, f) ~ = [{®(t)ltdt (r— »).

Let us now define the function B(r) by the condition B(r) = A(r)/log r
for r> 1 and B(1) = 0. Since B'(r) = ®(r) log r — A(r)/r(log r)2 > 0
we have B(r) is continuous and strictly increasing. Furthermore, f
transcendental implies B(r) is unbounded.

Let m be a fixed constant with 0 < n < 1/2 and define a sequence of
positive numbers {r,}5_, by

n= B2(r,)logr, forn=12, -
Since B27(x) log x is continuous, strictly increasing, and unbounded and
since B27(1) logl = 0, the sequence {r,}, is uniquely determined,

strictly increasing, and unbounded.
Now set

k= o (atgy) = (Bl g,
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and notice that the sequence {kj};~, is increasing and unbounded,
whereas the sequence {k;} 7., is decreasing and

oo
Denoting by [y] the greatest integer not exceeding y, we define the se-
quence {g;}3-1 by
q; = [2kikoks - - - k] + 1, forj=1,2, -

It is easily shown that the g;’s satisfy the four following relations:

(32) g >k Z exp(V)) (= 1),
(3.3) g+1>¢q (J=1),
(3.4) lim 341 = 1,
j== qj
. q; j
(3.5) lim -2 = 0,where Q;= Y gq..
i X i=1

Define the sequence {t;}%_, of positive, strictly increasing numbers
by

) =Q= 3¢ (=12 ).
i=1
The existence and uniqueness of {t;} 7 is assured by (ii).
Sets; = t; + j(j — 1)/2 and define n,(t) and n(t) by
0 for0=t<t

ny(t) = )
Q] f0r6§t< tj+l’ ]= 1,2, tt,
0 for0=t<s,
n(t) =
Q fors;=t<s,,j=12, -
Clearly,
1= %) <1+ %—J"lfortj§ t<tnLj= 1
1 J
and therefore, by (3.4) and (3.5),
lim o) = 1.
t> 1y(t)

Hence,
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Jzﬁ@m~Mnu»wy

We will now show that under the hypothesis of Theorem 3 we also
have,

f; %t) dt~A(r) (r— »).

Since f is of exponential type we have, for some A > 0,

(3.6) n(t) = n,(t) = d(t) < Atfort= 1.
Thus, t; > 1/Aq; = 1/A exp(\/j') and fory > 0,
3.7) F=olty) (j—> )
Therefore,
tj+1 nl—(t) — [+ n(t)
L e Li t— - 2
= {1+ o)) U”“ "0 gy (jo ).

Hence, fors; = r < s;,, and j— o,

EA "1( ) = ront) rony(t)

L dt = u+an tm=u+an 7 dt.

This leaves to show,
v ny(t) v ny(t) ,
—=dt=o —=dt). (j— o).
J7—‘]‘2 t ( J'l t ) ]

(a) Suppose f is of lower order A >0 then, since A(r)~
Jin,(t)/t dt, we have for r sufficiently large,

1

dt > 2,

Thus, by (3.6) and (3.7),
M) a2 = rom(t)
If-ﬂ ” dt=jA=o(?)=o (L : dt).

(b) Suppose f is of order p < 1, then there exists y, 0 <y <1—p
such that, for ¢ sufficiently large,

m(t) - )
t ot

<t
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Therefore, by (3.7), we have for s; = r < s;,

j’ Mg = o(1) (jo ).

r—j2 t

Hence, since f is either of order p < 1 or of lower order A > 0,

) [,

@8 [ PP a~ [ Tla~an o)
We consider next the infinite product

39 =1+ {£))

(39) g = 11 {£} )

Let |z| = rwithr < Rand definep by s, = R<s,,,,.
By (3.3), gm — g, = m — n and therefore,

szl =3 &Y <2 &Y

sj>R J
= i qp had L Qj_qp S L qp _R_
{R} J§> {R} —{R R—1r’
This shows that the infinite product in (3.9) converges uniformly in

every bounded region. Hence g(z) is an entire function.
Now, n(r, 1/g) = n(r) and therefore by (3.8),

(3.10)

N<r, é) = ﬁ 2S}—t)dt’vA(r) (r— ).

Forr< Rands, = R<s,,,,

log M(r,g) = 3. qjlog—:;+ 3 log(1+ {'Sf}q>

%§r ﬁ§r
+ ,Ega log (1 + {Sij}q" ) :
+s§Rlog (1 + {Sij}qj )

= N(r, é) + plog2 + sgﬂ {SLj}qj.

Hence, by (3.10) and elementary inequalities of Nevalinna’s theory
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1)< = 1
N(r, p >_ log M(r, g) = N(r, p )
(3.11) j .
r Y%
+plog2 + {E o (r<R.
Now, let R = 2r and p defined by s, = R < s, ;. Then,
4= Q=02 < J?r @dt < A(2er) and
thus, g, = 0(r) (p = p(2r), r—> ).
By (3.2),
g, > k,» = exp(Bn(r,) log r,,).
Hence,

Bn(r,) log r, = O(logr) (r > ),
and since B7(x) is strictly increasing,

r, < rfor r sufficiently large.

Thus, since B%7(x) log « is strictly increasing,
p = B*n(r,) log r, = B*"(r) log r = A(r) B'~27(r).
Since lim,_, .B!~27(r) = 0, we have,
p = 0lA(r)) (r—>,p=p(2r)).
Thus, we obtain for (3.11),
N(r, 1/g) = log M(r, g) = N(r, 1lg) + o(A(r)) + o(1) (r— ).
Hence,
log M(r, g) ~ N(r, 1/g) ~ A(r) ~ log M(r, f) (r— ).

Since s;,, — 8= j + 1, we have

lim E l 1 l= 0.

n—® jxn Sp — S]

Clearly, lim sup;, .Q;ls; < ® and therefore, by Theorem 1, g(z) is of
bounded index. q.e.d.

4. Proof of Theorem 4. Without loss of generality we may assume
®(1) = 0, ®(¢) continuous, strictly increasing and unbounded. The
condition lim sup,_, P(t)/t < ® assures us that the function f we are
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about to construct is of exponential type. Let B(r), {g;}3, {t;}7, and
n,(t) be defined as in the proof of Theorem 3.

Now let f(z) =[] 5=1(1 + {z/t;}%), then by the same argument as
in the proof of Theorem 3, f(z) is an entire function and

N< r,é) = jl an(t)dt~logM(r,f)~ jl q)—it—)dt (r— ).

Then, for ¢ = ¢; and j sufficiently large,
D(t + 1) — O(t) = O(t) {P(t)}1m
= Q- Indb(f)
= e Vin®(t) = 13 D(¢).
Hence, for j sufficiently large,
Ot +j) = (1 + 1PYot) = (1 + 1)) O(¢).
Therefore,
O(t;,) — D) = g1 > (U))Q; = (1/j) ®(¢;), and thus
tiv1 — t; > jfor jsufficiently large.

Now, ¥, U|t, — tj| = o(1) and, by Theorem 1, f is of bounded
index. q.ed.
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