LINEAR COMBINATIONS OF CONVEX MAPPINGS

H. SILVERMAN

1. Introduction. Let S denote the class of functions of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ which are analytic and univalent in the unit disc U: |z| < 1. A function $f \in S$ is said to be *starlike of order* α , $(0 \le \alpha < 1)$, denoted $f \in S^*(\alpha)$, if

$$\operatorname{Re}\left\{z\frac{f'(z)}{f(z)}\right\} > \alpha , \qquad (z \in U)$$

and is said to be convex of order α , denoted $f \in K(\alpha)$, if

Re
$$\left\{ 1+z\frac{f''(z)}{f'(z)} \right\} > \alpha$$
, $(z \in U)$.

It is well known that $f \in K(\alpha)$ if and only if $zf' \in S^*(\alpha)$.

In [1, p. 38], the following question is considered: Suppose $f, g \in K(0)$. For 0 < t < 1, set

(1)
$$h = tf + (1 - t)g.$$

Is h starlike and univalent?

MacGregor answered this question in the negative. In [5], he showed that h need not be univalent in any disc $|z| < r, r > 1/\sqrt{2}$.

In this note, we investigate functions of the form (1) when $f, g \in K(\alpha)$. For $0 < \alpha < 1/2$, a radius of univalence is found. For $\alpha = 1/2$, we show that h is univalent and close-to-convex.

2. Radius of univalence. The development of this section will parallel that of MacGregor in [5], with the class K(0) replaced by $K(\alpha)$. For $\underline{f(z)} \in K(\alpha)$, consider the related function g(z) defined by $g(z) = \epsilon \overline{f(\epsilon \overline{z})}, |\epsilon| = 1$. Note that

(2)
$$g'(z) = \overline{f'(\epsilon \overline{z})}, g''(z) = \overline{\epsilon} f''(\epsilon \overline{z}).$$

From (2), we obtain

$$1 + z \frac{g''(z)}{g'(z)} = 1 + z\overline{\epsilon} \frac{\overline{f'(\epsilon \overline{z})}}{\overline{f'(\epsilon \overline{z})}}$$

Copyright © 1975 Rocky Mountain Mathematics Consortium

Received by the Editors March 10, 1973, and in revised form July 9, 1973.

so that

$$\operatorname{Re} \left\{ 1 + z \; \frac{g''(z)}{g'(z)} \right\} = \operatorname{Re} \left\{ 1 + \epsilon \overline{z} \; \frac{f''(\epsilon \overline{z})}{f'(\epsilon \overline{z})} \right\},$$

Hence, the functions f and g are simultaneously in $K(\alpha)$. Suppose for some z_0 , $|z_0| < 1$; we have Re $f'(z_0) = 0$. Then choosing $\epsilon = z_0/\overline{z_0} = e^{2i \arg z_0}$, it follows from (2) that $(1/2)f'(z_0) + (1/2)g'(z_0) =$ Re $f'(z_0) = 0$. Since the nonvanishing of the derivative is a necessary condition for univalence, the function h(z) = (1/2)f(z) + (1/2)g(z) is not univalent in any disc $|z| < r, r > |z_0|$.

On the other hand, Kaplan [2] has shown that for any analytic function h(z), the condition $\operatorname{Re} h'(z) > 0$, $|z| < r_0$, is a sufficient condition for h(z) to be close-to-convex and consequently univalent in $|z| < r_0$. Note that for $f, g \in K(\alpha)$, the function h = tf + (1 - t)g satisfies $\operatorname{Re} h'(z) > 0$ at all points where $\operatorname{Re} f'(z) > 0$ and $\operatorname{Re} g'(z) > 0$. Hence, as MacGregor has pointed out for the class K(0), the exact radius of univalence for functions of the form (1) $(f, g \in K(\alpha))$ is given by the supremum of the values of r for which $\operatorname{Re} f'(z) > 0$, |z| < r, where f varies over all functions in the class $K(\alpha)$.

THEOREM 1. Suppose $f, g \in K(\alpha)$, $0 \leq \alpha \leq 1/2$. Then h = tf + (1-t)g, 0 < t < 1, is univalent in the disc $|z| < \sin \pi/4(1-\alpha)$. This result is sharp.

PROOF. It suffices to find the largest disc for which $\operatorname{Re} f'(z) > 0$ for all $f \in K(\alpha)$. By a theorem of Pinchuk [6], $|\operatorname{arg} f'(z)| \leq 2(1-\alpha)\sin^{-1}|z|$, $f \in K(\alpha)$. But $\operatorname{Re} f'(z) > 0$ if and only if $|\operatorname{arg} f'(z)| < \pi/2$. The result follows upon solving $|\operatorname{arg} f'(z)| \leq 2(1-\alpha) \sin^{-1}|z| < \pi/2$. For $\alpha = 1/2$, h is univalent and close-to-convex [2] in the disc U, whereas for $\alpha = 0$ the result of MacGregor is obtained.

The functions

$$F(z) = \frac{1}{(1-2\alpha)\epsilon} \left[\frac{1}{(1-\epsilon z)^{1-2\alpha}} - 1 \right] (|\epsilon| = 1, 0 \le \alpha < 1/2)$$

are in the class $K(\alpha)$. Setting

$$f(z) = \frac{1}{1 - 2\alpha} \left[\frac{1}{(1 - z)^{1 - 2\alpha}} - 1 \right],$$

a short computation shows that $\operatorname{Re} f'(z_0) = 0$ when

$$z_0 = \sin \frac{\pi}{4(1-\alpha)} e^{i\left(\frac{\pi}{4}\left(\frac{1-2\alpha}{1-\alpha}\right)\right)}.$$

630

Thus for $h(z) = (1/2)f(z) + (1/2)\epsilon \overline{f(\epsilon \overline{z})}, \quad \epsilon = e^{i\left(\frac{\pi}{4}\left(\frac{1-2\alpha}{1-\alpha}\right)\right)}$, we have $h'(z_0) = 0$.

3. Radius of convexity. In the previous section, we showed that (1) was univalent for $f, g \in K(1/2)$ by showing that $\operatorname{Re} h'(z) > 0$ in U. We will improve upon this result in order to obtain a radius of convexity theorem. The following lemma is due to MacGregor [4].

LEMMA. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is analytic and satisfies Re f(z)/z > 1/2 in U, then f(z) is starlike in the disc $|z| < 1/\sqrt{2}$.

THEOREM 2. Suppose $h(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is analytic with Re h'(z) > 1/2 in U. Then h(z) is convex in the disc $|z| < 1/\sqrt{2}$. This result is sharp.

PROOF. By hypothesis, $\operatorname{Re} h'(z) = \operatorname{Re} zh'(z)/z > 1/2$. Then by the lemma, the function zh'(z) is starlike in the disc $|z| < 1/\sqrt{2}$. Since h is convex if and only if zh'(z) is starlike, the theorem is proved. To show sharpness, consider the function

$$h(z) = \int_0^z \frac{1 - (1/\sqrt{2})t}{1 - \sqrt{2}t + t^2} dt.$$

Setting F(z) = zh'(z), we have $F'(1/\sqrt{2}) = 0$. Therefore, F(z) is not starlike in any disc |z| < r, $r > 1/\sqrt{2}$. Consequently, h(z) is not convex in any disc |z| < r, $r > 1/\sqrt{2}$.

THEOREM 3. Suppose $f, g \in K(1/2)$. Then h = tf + (1 - t)g, 0 < t < 1, is convex in the disc $|z| < 1/\sqrt{2}$.

PROOF. Since $f, g \in K(1/2)$, the functions $zf', zg' \in S^*(1/2)$. A slight modification of an argument by Robinson [7, p. 32] shows that for $F \in S^*(1/2)$, we have Re F(z)/z > 1/2. Hence, Re $h'(z) = \operatorname{Re} zh'(z)/z = t \operatorname{Re} zf'(z)/z + (1-t) \operatorname{Re} zg'(z)/z > 1/2$. The result now follows from Theorem 2.

REMARK. Although we have shown that h-defined by (1)-is univalent when $f, g \in K(1/2)$, we are unable to determine whether h must also be starlike. If so, this would answer in the affirmative the question posed by Hayman for functions in K(1/2) instead of K(0).

References

1. W. K. Hayman, *Research Problems in Function Theory*, The Athlone Press, London, 1967.

2. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.

H. SILVERMAN

3. R. J. Libera, Some radius of convexity problems, Duke Math. J. (1964), 143-158.

4. T. H. MacGregor, The radius of convexity for starlike functions of order 1/2, Proc. Amer. Math. Soc. 14 (1963), 71-76.

5. —, The univalence of a linear combination of convex mappings, J. London Math. Soc. 44 (1969), 210-212.

6. B. Pinchuk, On starlike and convex functions of order α , Duke Math. J. 4 (1968), 721-734.

7. R. M. Robinson, Univalent Majorants, Trans. Amer. Math. Soc. 61 (1947), 1-35.

CLARK UNIVERSITY, WORCHESTER, MASSACHUSETTS 01610

Current Address: University of Delaware, Newark, Delaware 19711