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ON QUASI-COMPLETE ABELIAN p-GROUPS 

J.DOUGLAS MOORE 

1. Introduction. An Abelian p-group (henceforth the word group 
means Abelian p-group) is quasi-complete if the closure (relative to 
the p-adic topology) of every pure subgroup is again pure. Informa­
tion on quasi-complete groups (also called quasi-closed groups) may 
be found in [3], [4] and [5]. The subject of this paper is a refinement 
of the above concept. 

A subgroup H of a group G is said to be (topologically) imbedded in 
G if the natural p-adic topology on H coincides with the relative 
topology on H induced by the p-adic topology on G. Properties of 
imbedded subgroups have been studied in [6]. The following cri­
terion is easily obtained. 

CRITERION FOR IMBEDDEDNESS. H is an imbedded subgroup of G 
if and only if there exists a function & : N—» N (N denotes the non-
negative integers) satisfying H H pi(n)G C pnH for each n £ N . (H 
is then said to be£-imbedded.) 

The /-imbedded subgroups (/ is the identity function) are, simply, 
the pure subgroups. Some examples of non-pure imbedded subgroups 
are given in § 2, where the results from [6] that are required in this 
paper are summarized. 

In § 3 we derive criteria for the closure of an ^-imbedded subgroup 
to be, again, ^-imbedded. We also establish some properties of Jò-
imbedded subgroups that generalize some familiar properties of pure 
subgroups. 

We say that a reduced group is £-quasi-complete if the closure of 
every £-imbedded subgroup is, again, imbedded. The quasi-complete 
groups of [3], [4] and [5] are now the J-quasi-complete groups. 
In § 4 we give characterizations of £-quasi-complete groups that 
generalize results of [3] and [5]. 

In § 5 we establish results that lead to a conjecture on the characteri­
zation of torsion complete groups. 

2. Imbedded subgroups. The notation and terminology used in 
this paper is generally that of [1] and [2]. The reader is also re­
ferred to [ 1] for a discussion of linear topologies in Abelian groups. 
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We are concerned here only with Abelian p-groups and the p-adic 
topology of such groups. The p-adic topology on a group G (denoted 
by T(G)) is obtained by taking the set {pnG \ n G N} as a filter-base for 
the open subgroups. Then the relative topology (denoted by T(G; H)) 
induced on a subgroup H by the p-adic topology on G has the set 
{H H pnG | n £ N } as a filter-base for the open subgroups. Since 
pnH C H Pi pnG for each n £ N , it follows that T(H) is finer than 
T(G; H). In general, however, T(H) and T(G; H) do not coincide. 
For example, let G have infinite length and let H = G[p]. Then T(H) 
is discrete, but T(G; H) is not discrete. 

In order for H to be imbedded (see § 1) in G it is necessary and 
sufficient that T(G; H) be finer than T(H); that is, pnH must be open 
relative to T(G; H) for each n E N , Thus H is imbedded if and only 
if for each n ŒN there exists kn E: N such that H D pknG C pnH. 
Setting £(n) = fcn we have the criterion of § 1. We say that £ is an im­
bedding function for H in G. If £ ^ £ ' (relative to pointwise ordering) 
then evidently £ ' is also an imbedding function for H. The pointwise 
infimum of the set of imbedding functions for H is again an imbedding 
function; so each imbedded subgroup has a unique minimal imbedding 
function. 

The minimal imbedding function fails to be strictly increasing if 
and only if the reduced part of H is contained in a bounded summand 
of G. For technical reasons it is convenient to consider only imbedding 
functions that are strictly increasing. Thus if H is £-imbedded in G 
and £ is not strictly increasing, then we agree to replace £ by the func­
t i o n ^ defined inductively by £'(n) = max{£'(n — 1) + l,£(n)}. This 
convention holds also for the minimal imbedding function. Hence 
the identity function I is the smallest (relative to pointwise ordering) 
possible imbedding function. 

Since I is an imbedding function for each pure subgroup, the con­
cept of imbeddedness may be regarded as a generalization of purity, 
and the degree of "impurity" of an imbedded subgroup may be mea­
sured by the extent that its minimal imbedding function differs from 
I. Thus the difference function, 8(n) = £(n) — n, for an imbedded 
subgroup H with minimal imbedding function £ is of interest. 
Examples are given in [6] of imbedded subgroups with unbounded 
minimal difference functions. If H is imbedded in G with a bounded 
minimal difference function 8, then £(n) = k + n is an imbedding 
function for H (but not necessarily the minimal one) where k is an 
upper bound for {Ô(n) | n G N}. In this case H satisfies the condition 
H fi pk +nG C pnH for each n (EN. There is a class of imbedded sub­
groups that satisfy the stronger condition H D pk+nG C pn(H D pkG) 
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for each n £ N with k fixed. Such a subgroup is said to be regularly 
imbedded with index k. This type of imbedded subgroup is very close 
to being pure and, indeed, the pure subgroups are precisely the regular­
ly imbedded subgroups with index zero. The following characteriza­
tion of regularly imbedded subgroups is found in [6]. 

PROPOSITION 2.1. A subgroup H of the p-group G is regularly im­
bedded in G if and only if there exist a pure subgroup S of G and an 
integer m such that pmS C / / C S . 

The following results from [6] will be used in the sequel. The 
proofs are quite straightforward. 

LEMMA 2.2. Let K be l-imbedded in G and let KG H G G. Then 
K isl-imbedded in H. 

LEMMA 2.3. Let K be %x-imbedded in H and let H be %^imbedded 
in G. Then K is £2 ° ^-imbedded in G (i.e.f K Pi p*2(Mn))G ç pnK 

for each n £ N ) , 

LEMMA 2.4. Let H be i-imbedded in G and let KG H. Then HIK 
is l-imbedded in GIK. 

LEMMA 2.5. Let K be lrimbedded in G and HIK be t^imbedded in 
GIK. Then H is £2 ° li-imbedded in G 

The next items show that several elementary properties of pure sub­
groups are valid for arbitrary imbedded subgroups. 

LEMMA 2.6. If H is i-imbedded in G, then H D G1 = H1 (G1 is the 
first Ulm subgroup ofG). 

PROOF. Clearly Hl G H Pi G1, and for each nGN 

H H G1 C H PI pl^G G pnH, 

so H Pi G1 C HnGiv PnH = H\ as desired. 

COROLLARY 2.7. Let H G G1. Then H is imbedded in G if and only 
if H is divisible. 

PROOF. If H is divisible (and, hence, pure), then H is /-imbedded. 
Conversely H = H D C«,1 = H1 by 2.6, so H is divisible. 

COROLLARY 2.8. Let H be imbedded in G Then H is imbedded if 
and only if(GIH)1 is divisible. 

PROOF. Note that HI H = (G///)1 and apply 2.5 and 2.7. 
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Recall from § 1 that G is an £-quasi-complete group if the closure of 
each ^-imbedded subgroup of G is imbedded. It doesn't follow directly 
from the definition that an /-quasi-complete group is the same as a 
quasi-complete group (i.e., the closure of a pure subgroup might be 
imbedded but not pure). This problem is resolved, however, by the 
following proposition. 

PROPOSITION 2.9. Let H be l-imbedded in G. If H is imbedded in 
G, then H is again l-imbedded. 

PROOF. HIH is divisible by 2.8. Thus HIH_ is /-imbedded in G/H. 
Hence Z ° £ = £ is an imbedding function for H in G by 2.5, as desired. 

3. The closure of an imbedded subgroup. In this section we estab­
lish criteria for the closure of an ^-imbedded subgroup to be imbedded 
(and, hence, ^-imbedded). We need two definitions. 

DEFINITION 3.1. Let KG G. An £-imbedded subgroup H of G is 
said to be an £-hull of K if K C H and H does not properly contain an 
£-imbedded subgroup of G that contains K. 

It can be shown that not every subgroup has an £-hull. 

DEFINITION 3.2. Let H be £-imbedded in G. H is said to be semi-
strongly £-imbedded if for each subsocle S containing H[p] there exists 
a subsocle T satisfying 

(i) H[p] n s c r c s 
(2) T is dense in S (in the relative topology from G). 
(3) T supports an £-imbedded subgroup of G containing H. 

The objective of this section is to prove the following theorem. 

THEOREM 3.3. Let H be an l-imbedded subgroup of G. The follow­
ing are equivalent: 

(1) H is l-imbedded. 
(2) H is semi-strongly l-imbedded. 
(3) If H C K C H, then K has an l-imbedded l2-hull. 

In (3) £2 is the composite £ ° £. Clearly an £-imbedded subgroup is 
£2-imbedded since £2 i? £, but obviously the converse is false. In addi­
tion we note that an £-imbedded £2-hull of K is also an £-hull of K. 
The equivalence of (1) and (3) generalizes a result in [3] for pure sub­
groups. Condition (2) is new as far as the author knows. 

In order to establish the equivalence of (1) and (2) we need some 
facts about £-imbedded subgroups that generalize some properties of 
pure subgroups. For example, if S is dense in G[p] and N is a neat 
subgroup supported by S, then N is pure in G and dense in G. This 
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result is obtained by taking m = 0 in Proposition 3.5. 

LEMMA 3.4. If H is any subgroup of G, then clearly H[pk] H 
G[pk] C H[pk] for each k G N. If H is imbedded in G, then the other 
inclusion holds also. 

PROOF. The proof is routine upon noting that if H is £-imbedded, 
then 

(H + p^n+V~kG)[pk] C H[pk] + pnG 

for every n G N. 

PROPOSITION 3.5. Let H[p] be dense in G[p] and let ff Pi p m + 1G 
C pHfor some m G N. Then 

(1) H is regularly imbedded with index m in G. 
(2) pmG C H. 

PROOF. (1). H Pi pm + lG C pH implies that 

H H pm + lG C p(H PI (G[p] + JPG)), 

and the density of H[p] in G[p] implies that G[p] C JF/[p] + pmG. 
Thus H fi (G[p] + pmG) C H Pi (H[p] + pmG) = H[p] + ( f l f l 
pmG). Hence H fi pm + 1G C p(H Pi p^G). This shows that H fi 
ptn+nQ Q p«(ff fi p^Q) for n = i. The induction step follows similar-

(2). We show inductively that pmG[pk] C H for each k G N. The 
validity for fc = 1 follows from the density of H[p] in G[p] . Thus 
assume pmG[pk] C H and let x G pmG[pfc + 1 ] . Then px G H; so for 
each n E.N there exist h G H and g G G such that px = h + pm+" + ig. 
Now/i G H Pi pm + 1 G C p(tf fi pP»G); soit follows that x G H -h p m + n G 
-h G[p] for each n ÇzN. But G[p] C H; so we conclude that x E. H, 
as desired. 

The following results also generalize properties of pure subgroups. 

LEMMA 3.6. Let H be %-imbedded in G and let H[p] be closed in 
G[p]. ThenHDp'^^GCH. 

PROOF. The proof consists of showing inductively that H[p*] H 
pMU-iQ C H for every k G N. Now the closure of H[p] in G[p] is 
H[p] f i G [ p ] , which equals H[p] by Lemma 3.4. Thus H[p] = 
H[p]; so the case k = 1 is trivially true. Assume the validity for 
arbitrary k and let xGH[pk + l] C\p^l)~lG. Then px G H[p*] Pi 
p^^G; so p x G H P l p ^ ^ G C p H . Thus x G H + H [ p ] ; that is, 
x G H, as desired. 
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COROLLARY 3.7. If H is i-imbedded in G and H[p] is closed in 
G[p], then H is i-imbedded in G. 

PROOF. Let Hbe£-imbedded. Then 

H Hpl^G G H PI plM-lG G H. 

Thus H H pl^G G H PI p*<»>G G pnH G pnH, as desired. 

LEMMA 3.8. Let H G G1 and L an l-hull of H in G Then L is 
divisible. 

PROOF. If L is not divisible, then L = B © K, where B is non-zero, 
bounded and, hence, K1 = L1. ThusH C G I f l L = L 1 = K 1 C K C L , 
so K is an ^-imbedded subgroup (by 2.3) containing H. This contra­
dicts that L is an £-hull, so L must be divisible. 

Now we are ready for the proof of Theorem 3.3. 

(1) IMPLIES (3). By 2.8 HlH is divisible. Let LIH be the divisible 
hull of KIH in HlH. Then LIH is /-imbedded in G/H and, since H 
is £-imbedded in G, L is ^-imbedded in G by 2.5. To show that L is 
an £2-hull of K in G, let us suppose that M is an £2-imbedded subgroup 
satisfying K C M C L Then MlH is £2-imbedded in G/H and 
K/tf C MlH C L/H C (G/H)1, so M/H is, indeed, divisible by 2.7. 
Since L/H is the divisible hull of KIH, we conclude that M = L, as 
desired. 

(3) IMPLIES (1). Take K = H and let L be an ^-imbedded £2-hull of 
H. Then LIH is an ^-imbedded subgroup of G/H containing HlH. 
Suppose HlH C MlH C L/H_ where MlH is ^-imbedded. Then M 
is £2-imbedded by 2.5 and H G M G L. Thus M = L since L is an 
£j-hull of H and, hence, M/H = LIH. Therefore, UH is an £-hull of 
HlH, so L/H is divisible by 3.8. Thus HlH = (GlH)1 is divisible, so 
H is Jo-imbedded by 2.8, as desired. 

(1) IMPLIES (2). Let S be a subsocle of G containing H[p]. We wish 
to find a subsocle T that satisfies (1), (2) and (3) of Definition 3.2. Let 
J! be the collection of subgroups K of G satisfying 

(i) K is ^-imbedded. 
(ii) K[p] C S. 

(iii) H C K . 
Clearly £ is inductive, so let L be a maximal element of JL. Let T = 
L[p]. Then 3.2(3) is satisfied since T supports L. To verify 3.2(1) we 
show that H[p] D S C L[p]. Let x E H[p] Pi S. I f x Ë H , then 
x G L, as desired. Thus assume x (^ H. Let M/H be the divisible 
hull of <* + H) in (G/H)1 (clearly (x + H) C (G/H)1 and (GIH)1 is 
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divisible since H is ^-imbedded). Then MlH~Z(p°°). Now ( M + 
L)IL is a homomorphic image of MIH, so either (M -I- L)/L = 0 or 
(M + L)/L^= Z(p°°). In the first case x G L, as desired. In the 
second case, M -h L is ^-imbedded in G and (Af + L)[p] = (x) + 
L[p] C S. Thus M + L is in X, so M + L = L since L is maximal. 
Hence, again, x G L, as desired. Thus H[p] D S C L[p] , which 
establishes 3.2(1). For 3.2(2) we must show that S C L[p] D G[p]. 
But L[p] D L[p] by 3.4, so it suffices to show that S C L Let x £ S . 
If x + L G (G/L)1, then x + L G LIL. Thus x E L , as desired. If 
x + L (f: (GIL)1, then x + L has finite height, say m, in G/L. Let 
x + L = pm(t/ + L). Then <t/, L)\L is pure in G/L, so (y, L) is £-
imbedded by 2.5. Now (t/, L) [p] = <x) + L[p], so (t/, L) G jC. This 
contradicts the maximality of L, so, in fact, the case x + L (£ (GIL)1 

cannot happen. Thus S C L, as desired. 

(2) IMPLIES (1). Let S = H[p]. Let T be the corresponding subsocle 
of Def_3.2. Since H[p] D S C T, then, in fact, T = S in this case. 
Thus H[p] supports an ^-embedded subgroup L which contains H 
and H[p] is dense in L[p] (in the relative topology from L). Therefore 
pmL C H n L C H b y 3 . 5 ( m = 1(1) - 1). Since L[p] is closed in 
G[p] , L is ^-imbedded by 3.7 and jTL C_L by 3.6. Thus p2mL C H 
CL. This implies that H is imbedded in L, which is imbedded in G. 
Thus H is imbedded (and, thus, ̂ -imbedded) in G by 2.3, as desired. 

4. The global case. In this section we are concerned with the re­
duced groups in which the closure of every ^-imbedded subgroup is 
again £-imbedded. Recall that such a group is said to be £-quasi-
complete. Since 0 = G1, it follows from 2.7 that G1 = 0 if G is £-quasi-
complete. We need the following concept. 

DEFINITION 4.1. Let H be ^-imbedded in G. H is said to be strongly 
^-imbedded if every subsocle of G containing H[p] supports an l-
imbedded subgroup of G containing H. 

Note that a strongly Jo-imbedded subgroup is also semi-strongly 
^-imbedded. Note also that this concept coincides with the strong 
purification property of [5] when £ = I. The following characteriza­
tion of the £-quasi-complete groups generalizes Theorem 1 of [5]. 

THEOREM 4.2. Let G be an abelian p-group. The following are 
equivalent: 

(1) Gisi-quasi-complete. 
(2) Every i-imbedded subgroup of G is strongly Z-imbedded. 
(3) If H is %-imbedded in G and H G KG H, then K has an £-

imbedded Z2-hull in G. 
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PROOF. The equivalence of (1) and (3) follows immediately from 
Theorem 3.3. It is also a consequence of 3.3 that (2) implies (1), since 
a strongly ^-imbedded subgroup is semi-strongly £-imbedded. Thus we 
must show that (1) implies (2). Let H be ^-imbedded in G and let 
H[p] C S C G[p]. We must show that S supports an ^-imbedded 
subgroup containing H. Since H is Jo-imbedded (G is ^-quasi-complete), 
H is semi-strongly ^-imbedded by 3.3. Let T be the subsocle of Def. 3.2, 
and let L be the Jo-imbedded subgroup supported by T and containing 
H. Now L is Jo-imbedded and S is dense in L[p]. Let M be a neat sub­
group of L supported by S. Then M is pure (/-imbedded) in L by 
3.5. Thus M is ^-imbedded in G by 2.3. Since M may be chosen such 
that H C M , the proof is now complete. 

5. A conjecture on torsion-complete groups. Let C(£) denote the 
class of £-quasi-complete groups for arbitrary £. We note that C(ii) C 
C(£2) if and only if i2 = &i- I*1 particular C(I) contains every £-quasi-
complete group for every £. Let Ö denote the class of torsion-complete 
p-groups. It is known that Ö C C(I) (see [2], for example). Our 
main theorem in this section is the rather interesting result that ¥ C 
C(£) for every I. 

THEOREM 5.1. Let G be torsion complete. Then G is i-quasi-
completefor every I. 

PROOF. Let H be ^-imbedded in G. We show that H D pl^G C 
pnH for each n G N. _Thus let xEH D pl^G. Then x E H[pl] for 
some t E N. By 3.4, H [p<]. C H[pl] . Thus x is the limit of a Cauchy 
sequence in H[pl]. Let {xk} (Z H[pf] be a subsequence of that se­
quence satisfying 

(1) xx Gp*<n)G 
(2) xk+l - xkEp^n+k^GforkEN. 

Since H is Jo-imbedded, x1 E pnH and xk + i — xk E pn+kH. Let xY = 
pnyx and xk+l — xk = pn+kwk, where yx E H and {wk} C H. Let 
yk = yi + ^ki = ipil^i for fc > 1. Then {yk} is a bounded Cauchy 
sequence in H ({yk} C. H[pn+t]), so there exists y EH such that 
lim yk = y, since G is torsion complete. Now lim xk = x and, since 
*fc = pnyic> n m xfc = Vny- But limits are unique since G1 = 0. Thus 
x = pnt/ G p n / / , as desired. Hence H is £-imbedded and G is £-quasi-
complete. 

Let C = f \C(£) . Then every group in C has the property that the 
closure of an ^-imbedded subgroup is again £-imbedded for every £. 
Let us call such a group a totally quasi-complete group. Then the 
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preceding theorem says that a torsion complete group is totally quasi-
complete. There exist examples of /-quasi-complete groups that are 
not torsion complete (see [4] ). The author has attempted to construct 
totally quasi-complete groups that are not torsion complete. His 
failure to do so has prompted the following conjecture on the charac­
terization of torsion complete groups. 

CONJECTURE 5.2. An Abelian p-group is torsion complete if and 
only if it is totally quasi-complete. 
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