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SOME OSCILLATION CRITERIA FOR FOURTH 
ORDER DIFFERENTIAL EQUATIONS 

DAVID LOWELL LOVELADY 

1. Introduction. In [2, Theorem 11.4, p. 374], W. Leighton and Z. 
Nehari showed that if q is a continuous function from R+ = [0, oo ) to 
(0, oo ), and if 

(1) j\2q(t)dt = oo, 

then every solution of 

(2) u"" + qu = 0 

is oscillatory. (We call a continuous function / from R+ to R = 
(— oo 9 oo ) oscillatory if and only if the set {t : t is in R+ and f(t) = 0} 
is unbounded. See the book of C. A. Swanson [4] for an excellent 
discussion of the work of Leighton and Nehari and many other authors). 
We shall give herein an oscillation criterion for 

(3) (p3(p2(Plu')')')' + qu=0 

which includes [2, Theorem 11.4]. In particular, with respect to 

(4) (ru")" + qu= 0, 

our results generalize [2, Theorem 11.4] by showing that if 

(5) I"" r(s)~lds= oo 
Jo 

and 

(6) Jo" ( j ' o (t - *)!<*)-> ds )q(t) dt=°o, 

then every solution of (4) is oscillatory. 

We shall also show that (6) can be weakened to 

(7) J" (J* (* - s)sr(s)- » ds ^q(t) dt = » , 
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if we hypothesize the existence of a bounded solution of (4). In par­
ticular, this says that (1) can be weakened to 

(8) J" t3q(t)dt = oo 

and still ensure oscillation for (2) if we hypothesize the existence of a 
bounded solution of (2). Finally, we shall point out that results of 
Leighton and Nehari can be coupled with work of the present author 
[3] to obtain a condition ensuring that every solution of (2) is un­
bounded and nonoscillatory. 

2. Results. Let q be a continuous function from R+ to R+, and if 
k is in {1, 2, 3} let pk be a continuous function from R+ to (0, oo ) with 

(9) {J ;*(*)-!<&= oo. 
By a solution of (3) we mean a differentiable function u from R + 

to R such that pxu' is differentiable, p 2 (P i w ' ) ' *s differentiable, 
PÀPÀPiu')')' is differentiable, and (3) is true. 

THEOREM 1. Suppose that each of (HI), (H2), and (H3) is true. 

(HI): 

Jo" ( Jo ( Vm~l Jo ( ^(<r)_1 l Pl(T)_1 d r ) d a ) #)?(*) dS = °° • 
(H2): If 

(10) J " q(s)ds< oo, 

and if 

(11) £ (p3(r'f </W^)dl<«, 

trietl Çao/ r oo / fee \ \ 

j o ( ^ ( s ) _ 1 L ( P 3 ^ " 1 Jt ^ ^ ) # ) d s = o ° -

(H3): Jo" ( £ ( p ! ^ ) - 1 fo p2(«r)- i^ )d f )?(«)& = »• 

77i£n eüßrt/ solution of (3) is oscillatory. 
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COROLLARY 1. Suppose that (H3) holds and 

(12) | J ( £ (pa t é ) " 1 £ P ^ ) - 1 ^ )tt )q(s)ds = «>. 

Then every solution of (3) is oscillatory. 

COROLLARY 2. Suppose that r is a continuous function from R+ to 
(0, oo ) such that (5) and (6) hold. Then every solution of (A) is oscilla­
tory. 

THEOREM 2. Suppose that r is a continuous function from R+ to 
(0, oo ) such that (5) and (7) hold, and suppose that q has only positive 
values. Suppose also thai there exists a hounded nontrivial solution 
of (4). Then every solution of (4) is oscillatory. 

COROLLARY 3. Suppose (8) holds, q has only positive values, and 
there exists a hounded nontrivial solution of (2). Then every solution 
of (2) is oscillatory. 

THEOREM 3. If 

(13) Urn sup t4q(t) < 1, 

and (8) holds, then every nontrivial solution of (2) is unbounded and 
nonoscillatory. 

COROLLARY 4. If (IS) holds and 

lim inf t4q(t) > 0, 
f-*oo 

then every nontrivial solution of (2) is unbounded and nonoscillatory. 

The proof of Theorem 1 is our longest and most involved proof, so 
we shall defer it to the end of the paper. Note that if (10) fails, or if 
(10) holds and (11) fails, then (H2) is trivially satisfied. Also, if (10) 
fails, then (HI) and (H3) follow immediately from (9), so we have an 
extension of a classical conclusion of W. B. Fite [1]. If (10) and (11) 
hold, and t is in R+, then two successive applications of integration-
by-parts give 

L ( P2ÌS)~1 is ( P a t é ) - 1 / " ^ ) ^ ) d€)ds 



596 D. L. LOVELADY 

= ( £ p2(s)-i<k) ( J " (p 3 ( | ) - i jf°° 9(a) der ) di) 

+ \'0 (\S
oP2(i)-1di )p3(s)-1 (l"q(€)d€)ds 

- I I ( f o P 2 ^ " 1 ^ )P3(s)_1 (J," 9 ( « * ) d s 

= (fo ( PaW-1}^ ^(f)"1« ) &)(},"</(*)# ) 

+ £ ( £ (^(f)-1 £ P2^)-1da ) d{)q(s)ds 

- Il ( I l (P3^"1 fo ^ a ) " 1 < i T ) * )*«*• 
Thus (12) implies (H2). Now (9) and two applications of L'HôpitaFs 
Rule say that 

F« ( P ^ ) - 1 fl pa(a)->da)«if 
lim ^ ^ ^ '- = 0, 

""Jo (P3^ )_1fo ( P2(<T)_1fo ^ T ) " l d T ) d a ) # 
so there is c in R+ such that 

Io (P^-'Il (p.^-'foPi«-1* ) * ) # 

- Il (P3^"1 II P^)-ld^)dÌ 

whenever s ^ c, and we see that (12) implies (HI), and Corollary 1 
is immediate. Note that if px = p3 then (12). is the same as (H3), so, 
in this case, (12) implies that every solution of (3) is oscillatory. If 
r is as in Corollary 2, then let px = p3 = 1 and p2 = r. Now (9) follows 
from (5) and (12) is the same as (6), so Corollary 2 is immediate from 
the above observations. 

Note that Corollary 2 says that if a < 1 and 

(14) J°° t2-°q(t)dt= oo, 
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then every solution of (t?u"(t))" + q(t)u(t) = 0 on (0, oo ) is oscillatory. 
To see this let a > 0 and put r(t) = œ if 0 g t g a and r(t) = 1? if 
£ > a. Now (6) and (14) are clearly equivalent. In particular, this 
says that if p is a number and p ^ a - 3 , then every solution of 
{Fu"(t))" + tPu(t) = 0 on (0, oo ) is oscillatory. 

In Theorem 2 and Corollary 3 it is possible that there are no 
bounded solutions; compare Theorem 3 and Corollary 4. In particular, 
if there is a > 0 such that q(t) = ßt~4 whenever t^ a, where 0 < ß 
< 1, then (8) holds and all nontrivial solutions of (2) are nonoscilla-
tory and unbounded. On the other hand, as is evidenced by u"" + u 
= 0, it is certainly not the case that the hypotheses of Theorem 2 and 
Corollary 3 preclude the existence of bounded nontrivial solutions. 

PROOF OF THEOREM 2. It follows from [3, Theorem 1] and the 
hypotheses of Theorem 2 that every bounded solution of (4) is oscilla­
tory. Since there exists a bounded nontrivial solution of (4), we thus 
see that there exists a nontrivial oscillatory solution of (4). But [2, 
Corollary 9.10, p. 367] says that if one nontrivial solution of (4) is 
oscillatory then every nontrivial solution of (4) is oscillatory, and the 
proof is complete. 

Corollary 3 is an obvious consequence of Theorem 2. 

PROOF OF THEOREM 3. According to (13) and [2, Theorem 11.1, p. 
371], (2) has no oscillatory solutions. But according to (8) and [3, 
Theorem 1], every bounded solution of (2) is oscillatory. Thus every 
nontrivial solution of (2) is not only unbounded but also nonoscillatory, 
and the proof is complete. 

Corollary 4 is now obvious. It remains to prove Theorem 1. 

PROOF OF THEOREM 1. Let u be a nonoscillatory solution. If u is 
eventually negative, we can replace u by — u, so we assume that u is 
eventually positive. Find a ̂  0 such that u(t) > 0 if t â a. On [a, » ), 
let vx = u, v2 = piVx ', t?3 = p2v2 'y and v4 = p3v3 '. Now the system 

p i ' = »dpi 

(15) J 3H 

1 ü3 ' = Vjp3 

L V = -qvi 

is satisfied. Clearly v4 is nonincreasing. If there is b ^ a such that 
v4(b) < 0, then 
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(16) vk_!(t) = v^a) + r (vk(s)lpk^(s)) ds 
J a 

and (9) say that v3(t)-+— » , v2(t)-> — °°, and üi(f)-* ~"°° a s 

f—». + oo9 a contradiction. Thus t ) 4 ^ 0 on [a, °° ), so Ü4(OO) = 
\imt^ooV4(t) exists and t>4(oo)é 0. Also, v4(b) > 0 if b is in [a, oo). 
For if v4(b) = 0, then v4(t) = 0 whenever t é fo. Thus, from (15), 
ü4'(£) = 0 and q(t) = 0 whenever t^b. But this violates (HI), so 
v4 > 0 on [a, oo ). Thus t?3 is increasing on [a, oo ). Now we take 
cases. Suppose t>3 < 0 on [a, oo ). Now D3(OO ) ^ 0, and if €3(oo ) < 0 
then (16) again gives a contradiction, so t>3(oo) = 0. Now v2 is de­
creasing on [a, oo ), and v2(

co ) < 0 is impossible, so v2(<
x> ) = 0. If 

s é t è a , t h e n 

so 

v4(°°)-v4(t)= - J " 9 ( * ) u « ) # , 

c 4 (# )^ J"qf(f)«(«df. 

Since v2> 0,u is increasing, so 

v4(t) é fi(a) J " 9(f) d{ 

whenever t é a. If (10) fails, this is a contradiction, so assume (10) 
holds. Since D3( oo ) = 0, 

»aW = ~ J t Milpzis)) ds 

whenever f é a. But the preceding inequality says that if (11) fails 
this is a contradiction, so assume (11) holds. If t é a, then 

v2(t)-v2(a)= P (v3(€)lp2(Q)dt 
J a 

= - \ \ (patf )" 1 J " (c4(a)/p3(<r))d(F)df, 
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so 

-v2(a)^ - £ (pi(€)-1 £° (v4(a)lp3(a)) àa ) # , 

e 2 ( a ) £ £ (p 2 ( f ) - 1 £ " {v4(a)lp3(a))Ar )d{ 

£ «(a) £ (patf)-1 £" ( p » - 1 £"9(T)* )*r)#. 

This contradicts (H2), and we are through with the case "Ü3 < 0 on 

Since t>3 is increasing, the case "t>3 < 0 is false" ensures that there 
is a number b^ a with v3 positive in [&, °°). Now v2 is increasing 
on [b, » ). If t>2 g 0 on [fo, oo )? then u is bounded. But (HI) and [3, 
Theorem 1] say that every bounded solution of (3) is oscillatory, so 
there is c â b with v2 positive on [c, oo ). Now, if t è e, 

u(t) = u(c) + (t>2(*)/pi(s)) ds 

è f (v2(s)lPl(s)) ds 
J c 

= £ P l ( s ) - i ( ü 2 ( c ) + £ (v3(Ç)lp2(t)) di) ds 

- \\ (^l(s)_1 \\ ^Ç)lvM)dÇ )ds 

^v3(c) £ (Pl(*)-i £ pM-ldi)ds. 

If t^c, 

0 < u4(t) = Ü4(C) + P c4 '(«) ds 

= Ü4(C) - q(s)u(s) ds, 
J c 

SO 
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Ü4(C) ^ q(s)u(s) ds 

(i7) ; 

But, according to L/Hopital's Rule, 

r (pitf)-1 r P2H-ida)di 
l i m ^ — ^ ^ ^ = 1, 

"' Ïo (Pl(l)_1 fo P ^ ) - 1 ^ ) ^ 
so (H3) implies the divergence of the integral in (17) as t-* <», we 
have a contradiction, and the proof is complete. 
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