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UNIQUENESS OF SOLUTIONS OF AN INFINITE SYSTEM 
OF EQUATIONS 

CHIN-HUNG CHING AND CHARLES K. CHUI 

1. Introduction and Results. Let A = (aitj), i,j = 1, 2, • • -, be an 
infinite non-zero matrix of complex numbers such that for each i, the 
sequence {(hj} where j = 1,2, • • • is in £2, the space of all square 
summable sequences. In this note, we will discuss some uniqueness 
theorems on the i2 solutions of the following system of linear equa
tions: 

00 

(i) 2 aijxj= y* t = 1,2, • • •. 
i = i 

Let {ei) be an orthonormal basis of a Hilbert space H. Then the 
uniqueness of the solutions of the system (1) is equivalent to the com
pleteness of the system {A^}, 

00 

M= S aueP t = 1,2, • • -, 
i - i 

in H. It is a rule of thumb that a perturbed basis is still a basis pro
vided that the perturbation is sufficiently small. Thus, it is also a 
purpose of this note to give some limit on the size of a perturbation A 
so that {Aßi} is again a basis of H. We obtain the following results. 

THEOREM 1. Let An = (thj)* l = i,j=n, be the n X n matrices ob
tained from A. Either one of the following conditions is sufficient for 
the uniqueness of the solutions of the system (1): 

n ( i M» ) 
IdetAJs (i) lim inf , = 1 J2 A |2 < °° ' 

( S S M2 )( n [ S M»l ) 
(ii) liminf < = 1 ^ " + 1 <=1 L ^ ' — < o o . 

ldetA.12 
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There is a vast literature on estimating lower bounds of determin
ants. We mention only Brenner [1, 2] , Ostrowski [6], and Price 
[7]. Using some of these bounds, we may get some other more work
able sufficient conditions from (i) or (ii) for the uniqueness of £2 solu
tions of the system (1). We also wish to mention that some similar, but 
somewhat different, results can be found in Hilding [3] and Kato [4]. 
In the following section, we will compare our above result with theirs. 

For upper triangular matrices, we have a better result: 

THEOREM 2. Let a^ = 0 whenever] < i. Then the condition 

(2) I M =§(1 + 8)1^0 
j>i 

with 8 = 0 for all i = 1, 2, • • • is sufficient for the uniqueness of the 
solutions of the system (1). But for each 8 > 0, there exists an upper 
triangular matrix satisfying (2) such that the solutions for the system 
(1) are not unique. (We remark that Theorem 2 is well-known for 
-l<8<0). 

2. Proof of Theorem 1. Let {hi} be an £2 solution of the system (1) 
with all t/i = 0. We have to prove that h{ = 0 for all i. We write 

N » 

(3) eN,i = S aiJbj = - 2 aiJbr 
3=1 j=N+l 

Hence, if det AN ^ 0, we have, from Cramer's rule, that 

€ N,1 #1,2 * * " al,N j 

€N,2 fl2,2 * * * a2,N 

€NJ* aN,2 * * ' aN,N I 

If all but a finite number of the b{ are zero, then it is clear that all the 
bi are zero. Otherwise, we set 

X k=N+l ' 

which gives 

bY = i 
det AN 
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( i |fc*l2) 
1/2 

8tf , l #1,2 ' * ' #1,N 

8 N , 2 #2,2 * ' * a 2 , N 

det AN 

&NJJ a N , 2 * * aN,N 

By the Hadamard determinant theorem (cf. [5] ) we have 

(4) |bl|2-fcidetXAN|2 J\ (IVi|2 + K'2'2 + * " + ' ^ 
and 

S |6» 

Also, from (3) using the Schwarz inequality, we have 

(6) !ViP= j " " 1 ' ^ È M2-
k=N+ì 

Then (4) and (5) yield 

(7) 

and 

' ^ i & n ( S K i 2 ) 

S l̂ l2 

(8) 
N 

^sa3Swr[n((?,w)] U X ^ 
E l^l2 

fc=N+l 
N / N 

\detAN\*\ S |aup] 
L i = l J 

respectively. 

[ n ( E M")l [ S '2 l«d2l. 
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Now since 

lim S |b fc |2=0, 

and since det AN ^ 0 for infinitely many N, we have for all j , 

S l«ul2>o. 
i = l 

Thus, by the hypothesis (i) or (ii), we have proved that bx = 0, and by 
a similar proof, we can conclude that all the b{ are zero. This com
pletes the proof of Theorem 1. 

As a consequence of this theorem, we have the following 

COROLLARY 1. Let {e^, i = 1, 2, • • -, be an orthonormal basis of a 
Hilbert space H, and let A be a linear operator in H. Then {A^}, 
i = 1, 2, • • -, is complete in H if 

(9> ;™Än||Ae',<0°' 
The following result can be found in [4], page 266: 

THEOREM A. Let {e,} be a complete orthonormal family in a Hilbert 
space H. Then a sequence {f} of non-zero vectors of H is a basis of 
H if 

(10) S ( Wfj-ejW*- U]^/iW )<! • 

We now compare (10) and our Corollary 1 for the sequence {J^} 
such that 

00 

fj = S a3,kek , 
k=j 

where ajyj are real and | | /J = 1 for all j . By (10), we know that 
{fj } is complete if 

î ( i - k , i ) < i , 
i = i 

but by (9), we can conclude that {fj} is complete if 
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which is equivalent to 

n K>I > ». 

2(1-K;I)<". 

As another consequence of Theorem 1, we have the following results: 

COROLLARY 2. Let A^ = (aifj), 1 ^ i, j ^ n, be nX n matrices of 
complex numbers. Then the following conditions are sufficient for the 
uniqueness of the solutions of the system (1): 

(i) 2K\2^i , 

for all i = 1,2, • • • and 

(ii) lim sup |det An\> 0. 
n-+ °° 

COROLLARY 3. If {erf is a complete orthonormal sequence and the 
fi = 5)j aijejare orthonormal, then {fi} is complete if 

L = lim sup |det AJ > 0, 

or equivalently, 

lim sup |det«J5, e i » , 1 g i,j g n| > 0. 

We remark that Theorem 1 shows that certain perturbed bases are 
still bases even when the perturbation is large. For example, the rows 
of 

0 1 0 0 0 0 

1 0 0 0 0 0 

0 0 0 1 0 0 

0 0 1 0 0 0 

0 0 0 0 0 1 
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are complete. Also, Theorem 1 (i) and Corollary 3 are equivalent, 
since the rows of A are complete if and only if their Gram-Schmidt 
orthogonalizations are complete. But orthonormalization only im
proves the hypothesis of Theorem 1 (i). 

3. Proof of Theorem 2. For 0 = 0 , let {b»} be an £2 solution of 
the system (1) with all y{ = 0. We have to show that all b{ = 0. Since 
bi —> 0 as i —> oo, we can find a k such that 

\bk\ = max(|b<| : i = M , * * *)• 

We assume, on the contrary, that bk ^ 0. Then by the hypothesis, we 
have 

00 

ak>kbk = — 2 ak,sK 
s=k + l 

Since bs —> 0, \bs\ < \bk\ for large s, and hence, from (2) we have 

00 

\ a k > k \ \ b k \ ^ ] £ \ak>s\ \bs\ 
s=fc + l 

< Kfcl \bk\, 

which is a contradiction. As for ô > 0, we let ai{ = 1, ai>i+l = 1 + 8 
for all i = 1, 2, * • *, and let ai}j = 0 otherwise. Then 

2 |au|^(l + ôH, , 

for each i = 1, 2, • • •. However, the sequence 

(i -=i i = i ) 

\ (1 + 8 ) ' (1 + 8) 2 ' (1 + 8 ) 3 ' / 

is clearly anil2 solution of the system 
oo 

2 auXj= 0 , i = 1,2, • • \ 

The above example is an "analytic Toeplitz matrix", that is, 

di j = 0 if i > j , a{j = bi_j if i =î j , 

where 

i |fo„i2<°°-
n=0 
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It is well-known that a necessary and sufficient condition for the 
completeness of the rows of A is that 

f(z) = 2 KZ" 

is an outer function in H2. Although the proof of Theorem 2 is quite 
simple, this theorem has some interesting consequences. 

COROLLARY 4. Let f(z) = ^ £= 0a nz n be a junction of the Hardy 
class H2 on \z\ < 1, such that 

di) S k i ^ K i ^ o . 
n=2 

Then the space generated by the functions 1, f(z), f(z2), • • • is dense 
inH2. 

By a similar proof, we can also conclude that Corollary 4 holds for 
any Hardy space Hp with 1 ^ p < oo. However, we remark that this 
corollary does not hold for the Banach space A of functions continuous 
on \z\ â 1 and holomorphic in \z\ < 1 with the supremum norm. This 
can be seen from the following: 

EXAMPLE. Let f(z) = z — z3. Then / £ A and (11) is satisfied. 
But f(l) = /(—1) = 0, so that any function g that can be approxi
mated uniformly on |%| = 1 by linear combinations of 1, f(z), f(z2), 
• • • must satisfy g(l) = g ( ~ l ) . 

ACKNOWLEDGMENT. We wish to thank the referee for his helpful sug
gestions. 

REFERENCES 

1. J. L. Brenner, A bound for a determinant with dominant main diagonal, 
Proc. Amer. Math. Soc. 5 (1954), 631-634. 

2. , Bounds for classical polynomials derivable by matrix methods, Proc. 
Amer. Math. Soc. 30 (1971), 353-362. 

3. S. H. Hilding, On the closure of disturbed complete orthonormal sets in 
Hilbert space, Ark. Mat. Astr. Fys. 32B, No. 7 (1946). 

4. T. Kato, Perturbation theory for linear operators, Springer-Verlag, New 
York, 1966. 

5. M. Marcus and H. Mine, A survey of matrix theory and matrix inequalities, 
Allyn and Bacon, Inc., Boston, 1964. 



642 C.-H. CHING AND C. K. CHUI 

6. A. M. Ostrowski, Note on bounds for determinants with dominant principal 
diagonal, Proc. Amer. Math. Soc. 3 (1952), 26-30. 

7. G. B. Price, Bounds for determinants with dominant principal diagonal, 
Proc. Amer. Math. Soc. 2 (1951), 497-502. 

TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843 


