UNIQUENESS OF SOLUTIONS OF AN INFINITE SYSTEM OF EQUATIONS

CHIN-HUNG CHING AND CHARLES K. CHUI

1. Introduction and Results. Let $A=\left(a_{i, j}\right), i, j=1,2, \cdots$, be an infinite non-zero matrix of complex numbers such that for each i, the sequence $\left\{a_{i, j}\right\}$ where $j=1,2, \cdots$ is in ℓ^{2}, the space of all square summable sequences. In this note, we will discuss some uniqueness theorems on the ℓ^{2} solutions of the following system of linear equations:

$$
\begin{equation*}
\sum_{j=1}^{\infty} a_{i, j} x_{j}=y_{i}, \quad i=1,2, \cdots \tag{1}
\end{equation*}
$$

Let $\left\{e_{i}\right\}$ be an orthonormal basis of a Hilbert space H. Then the uniqueness of the solutions of the system (1) is equivalent to the completeness of the system $\left\{A e_{i}\right\}$,

$$
A e_{i}=\sum_{j=1}^{\infty} a_{i, j} e_{j}, i=1,2, \cdots
$$

in H. It is a rule of thumb that a perturbed basis is still a basis provided that the perturbation is sufficiently small. Thus, it is also a purpose of this note to give some limit on the size of a perturbation A so that $\left\{A e_{i}\right\}$ is again a basis of H. We obtain the following results.

Theorem 1. Let $A_{n}=\left(a_{i, j}\right), 1 \leqq i, j \leqq n$, be the $n \times n$ matrices obtained from A. Either one of the following conditions is sufficient for the uniqueness of the solutions of the system (1):

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\prod_{i=1}^{n}\left(\sum_{j=1}^{\infty}\left|a_{i, j}\right|^{2}\right)}{\left|\operatorname{det} A_{n}\right|^{2}}<\infty \tag{i}
\end{equation*}
$$

$$
\liminf _{n \rightarrow \infty} \frac{\left(\sum_{i=1}^{n} \sum_{j=n+1}^{\infty}\left|a_{i, j}\right|^{2}\right)\left(\prod_{i=1}^{n}\left[\sum_{j=1}^{n}\left|a_{i, j}\right|^{2}\right]\right)}{\left|\operatorname{det} A_{n}\right|^{2}}<\infty
$$

Received by the editors December 3, 1971 and, in revised form, April 28, 1972. AMS 1970 subject classifications. Primary 15A06, 46-00.

There is a vast literature on estimating lower bounds of determinants. We mention only Brenner [1, 2], Ostrowski [6], and Price [7]. Using some of these bounds, we may get some other more workable sufficient conditions from (i) or (ii) for the uniqueness of ℓ^{2} solutions of the system (1). We also wish to mention that some similar, but somewhat different, results can be found in Hilding [3] and Kato [4]. In the following section, we will compare our above result with theirs.

For upper triangular matrices, we have a better result:
Theorem 2. Let $a_{i, j}=0$ whenever $j<i$. Then the condition

$$
\begin{equation*}
\sum_{j>i}\left|a_{i, j}\right| \leqq(1+\delta)\left|a_{i, i}\right| \neq 0 \tag{2}
\end{equation*}
$$

with $\delta=0$ for all $i=1,2, \cdots$ is sufficient for the uniqueness of the solutions of the system (1). But for each $\delta>0$, there exists an upper triangular matrix satisfying (2) such that the solutions for the system (1) are not unique. (We remark that Theorem 2 is well-known for $-1<\delta<0$).
2. Proof of Theorem 1. Let $\left\{b_{i}\right\}$ be an ℓ^{2} solution of the system (1) with all $y_{i}=0$. We have to prove that $b_{i}=0$ for all i. We write

$$
\begin{equation*}
\epsilon_{N, i}=\sum_{j=1}^{N} a_{i, j} b_{j}=-\sum_{j=N+1}^{\infty} a_{i, j} b_{j} \tag{3}
\end{equation*}
$$

Hence, if $\operatorname{det} A_{N} \neq 0$, we have, from Cramer's rule, that

$$
b_{1}=\frac{1}{\operatorname{det} A_{N}}\left|\begin{array}{ccccc}
\boldsymbol{\epsilon}_{N, 1} & a_{1,2} & \cdots & a_{1, N} \\
\boldsymbol{\epsilon}_{N, 2} & a_{2,2} & \cdots & a_{2, N} \\
\cdots & \cdots & \cdots & \cdot \\
\boldsymbol{\epsilon}_{N, N} & a_{N, 2} & \cdots & a_{N, N}
\end{array}\right|
$$

If all but a finite number of the b_{i} are zero, then it is clear that all the b_{i} are zero. Otherwise, we set

$$
\delta_{N, i}=\epsilon_{N, i} /\left(\sum_{k=N+1}^{\infty}\left|b_{k}\right|^{2}\right)^{1 / 2}
$$

which gives

$$
b_{1}=\frac{\left(\sum_{k=N+1}^{\infty}\left|b_{k}\right|^{2}\right)^{1 / 2}}{\operatorname{det} A_{N}}\left|\begin{array}{cccc}
\delta_{N, 1} & a_{1,2} & \cdots & a_{1, N} \\
\delta_{N, 2} & a_{2,2} & \cdots & a_{2, N} \\
\cdots & \cdots & \cdots & \\
\delta_{N, N} & a_{N, 2} & \cdots & a_{N, N}
\end{array}\right|
$$

By the Hadamard determinant theorem (cf. [5]) we have
(4) $\quad\left|b_{1}\right|^{2} \leqq \frac{\sum_{k=N+1}^{\infty}\left|b_{k}\right|^{2}}{\left|\operatorname{det} A_{N}\right|^{2}} \prod_{i=1}^{N}\left(\left|\delta_{N, i}\right|^{2}+\left|a_{i, 2}\right|^{2}+\cdots+\left|a_{i, N}\right|^{2}\right)$
and
(5) $\left|b_{1}\right|^{2} \leqq \frac{\sum_{k=N+1}^{\infty}\left|b_{k}\right|^{2}}{\left|\operatorname{det} A_{N}\right|^{2}}\left[\prod_{j=2}^{N}\left(\sum_{i=1}^{N}\left|a_{i, j}\right|^{2}\right)\right]\left[\sum_{i=1}^{N}\left|\delta_{N, i}\right|^{2}\right]$.

Also, from (3) using the Schwarz inequality, we have

$$
\begin{equation*}
\left|\delta_{N, i}\right|^{2}=\frac{\left|\epsilon_{N, i}\right|^{2}}{\sum_{k=N+1}^{\infty}\left|b_{k}\right|^{2}} \leqq \sum_{j=N+1}^{\infty}\left|a_{i, j}\right|^{2} \tag{6}
\end{equation*}
$$

Then (4) and (5) yield

$$
\begin{equation*}
\left|b_{1}\right|^{2} \leqq \frac{\sum_{k=N+1}^{\infty}\left|b_{k}\right|^{2}}{\left|\operatorname{det} A_{N}\right|^{2}} \prod_{i=1}^{N}\left(\sum_{j=1}^{\infty}\left|a_{i, j}\right|^{2}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{aligned}
& \text { (8) }\left|b_{1}\right|^{2} \leqq \frac{\sum_{k=N+1}^{\infty}\left|b_{k}\right|^{2}}{\left|\operatorname{det} A_{N}\right|^{2}}\left[\prod_{j=2}^{N}\left(\sum_{i=1}^{N}\left|a_{i, j}\right|^{2}\right)\right]\left[\sum_{i=1}^{N} \sum_{j=N+1}^{\infty}\left|a_{i, j}\right|^{2}\right] \\
& \leqq \frac{\sum_{k=N+1}^{\infty}\left|b_{k}\right|^{2}}{\left|\operatorname{det} A_{N}\right|^{2}\left[\sum_{i=1}^{N}\left|a_{i, 1}\right|^{2}\right]}\left[\prod_{j=1}^{N}\left(\sum_{i=1}^{N}\left|a_{i, j}\right|^{2}\right)\right]\left[\sum_{i=1}^{N} \sum_{j=N+1}^{\infty}\left|a_{i, j}\right|^{2}\right],
\end{aligned}
$$

respectively.

Now since

$$
\lim _{N \rightarrow \infty} \sum_{k=N+1}^{\infty}\left|b_{k}\right|^{2}=0,
$$

and since $\operatorname{det} A_{N} \neq 0$ for infinitely many N, we have for all j,

$$
\sum_{i=1}^{\infty}\left|a_{i, j}\right|^{2}>0 .
$$

Thus, by the hypothesis (i) or (ii), we have proved that $b_{1}=0$, and by a similar proof, we can conclude that all the b_{i} are zero. This completes the proof of Theorem 1.
As a consequence of this theorem, we have the following
Corollary 1. Let $\left\{e_{i}\right\}, i=1,2, \cdots$, be an orthonormal basis of a Hilbert space H, and let A be a linear operator in H. Then $\left\{A e_{i}\right\}$, $i=1,2, \cdots$, is complete in H if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\left|\operatorname{det} A_{n}\right|} \prod_{i=1}^{n}\left\|A e_{i}\right\|<\infty . \tag{9}
\end{equation*}
$$

The following result can be found in [4], page 266:
Theorem A. Let $\left\{e_{j}\right\}$ be a complete orthonormal family in a Hilbert space H. Then a sequence $\left\{f_{j}\right\}$ of non-zero vectors of H is a basis of H if

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left(\left\|f_{j}-e_{j}\right\|^{2}-\frac{\left|\left(f_{j}-e_{j}, f_{j}\right)\right|^{2}}{\left\|f_{j}\right\|^{2}}\right)<1 \tag{10}
\end{equation*}
$$

We now compare (10) and our Corollary 1 for the sequence $\left\{f_{j}\right\}$ such that

$$
f_{j}=\sum_{k=j}^{\infty} a_{j, k} e_{k},
$$

where $a_{j, j}$ are real and $\left\|f_{j}\right\|=1$ for all j. By (10), we know that $\left\{f_{j}\right\}$ is complete if

$$
\sum_{j=1}^{\infty}\left(1-\left|a_{j, j}\right|\right)<1,
$$

but by (9), we can conclude that $\left\{f_{j}\right\}$ is complete if

$$
\prod_{j=1}^{\infty}\left|a_{j, j}\right|>0
$$

which is equivalent to

$$
\sum_{j=1}^{\infty}\left(1-\left|a_{j, j}\right|\right)<\infty .
$$

As another consequence of Theorem 1, we have the following results:
Corollary 2. Let $A_{n}=\left(a_{i, j}\right), 1 \leqq i, j \leqq n$, be $n \times n$ matrices of complex numbers. Then the following conditions are sufficient for the uniqueness of the solutions of the system (1):

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|a_{i, j}\right|^{2} \leqq 1 \tag{i}
\end{equation*}
$$

for all $i=1,2, \cdots$ and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|\operatorname{det} A_{n}\right|>0 . \tag{ii}
\end{equation*}
$$

Corollary 3. If $\left\{e_{j}\right\}$ is a complete orthonormal sequence and the $f_{i}=\sum_{j} a_{i j} e_{j}$ are orthonormal, then $\left\{f_{i}\right\}$ is complete if

$$
L=\lim _{n \rightarrow \infty} \sup \left|\operatorname{det} A_{n}\right|>0,
$$

or equivalently,

$$
\limsup _{n \rightarrow \infty}\left|\operatorname{det}\left(\left\langle f_{i}, e_{j}\right\rangle\right), 1 \leqq i, j \leqq n\right|>0 .
$$

We remark that Theorem 1 shows that certain perturbed bases are still bases even when the perturbation is large. For example, the rows of

0	1	0	0	0	0
1	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	0	0	0	1

are complete. Also, Theorem 1 (i) and Corollary 3 are equivalent, since the rows of A are complete if and only if their Gram-Schmidt orthogonalizations are complete. But orthonormalization only improves the hypothesis of Theorem 1 (i).
3. Proof of Theorem 2. For $\delta=0$, let $\left\{b_{i}\right\}$ be an ℓ^{2} solution of the system (1) with all $y_{i}=0$. We have to show that all $b_{i}=0$. Since $b_{i} \rightarrow 0$ as $i \rightarrow \infty$, we can find a k such that

$$
\left|b_{k}\right|=\max \left(\left|b_{i}\right|: i=1,2, \cdots\right)
$$

We assume, on the contrary, that $b_{k} \neq 0$. Then by the hypothesis, we have

$$
a_{k, k} b_{k}=-\sum_{s=k+1}^{\infty} a_{k, s} b_{s}
$$

Since $b_{s} \rightarrow 0,\left|b_{s}\right|<\left|b_{k}\right|$ for large s, and hence, from (2) we have

$$
\begin{aligned}
\left|a_{k, k}\right|\left|b_{k}\right| & \leqq \sum_{s=k+1}^{\infty}\left|a_{k, s}\right|\left|b_{s}\right| \\
& <\left|a_{k, k}\right|\left|b_{k}\right|
\end{aligned}
$$

which is a contradiction. As for $\delta>0$, we let $a_{i, i}=1, a_{i, i+1}=1+\delta$ for all $i=1,2, \cdots$, and let $a_{i, j}=0$ otherwise. Then

$$
\sum_{j=i+1}^{\infty}\left|a_{i, j}\right| \leqq(1+\delta) a_{i, i}
$$

for each $i=1,2, \cdots$. However, the sequence

$$
\left(1, \frac{-1}{(1+\delta)}, \frac{1}{(1+\delta)^{2}}, \frac{-1}{(1+\delta)^{3}}, \cdots\right)
$$

is clearly an ℓ^{2} solution of the system

$$
\sum_{j=1}^{\infty} a_{i, j} x_{j}=0, i=1,2, \cdots
$$

The above example is an "analytic Toeplitz matrix", that is,

$$
a_{i, j}=0 \text { if } i>j, a_{i j}=b_{i-j} \text { if } i \leqq j,
$$

where

$$
\sum_{n=0}^{\infty}\left|b_{n}\right|^{2}<\infty
$$

It is well-known that a necessary and sufficient condition for the completeness of the rows of A is that

$$
f(z)=\sum_{n=0}^{\infty} b_{n} z^{n}
$$

is an outer function in H^{2}. Although the proof of Theorem 2 is quite simple, this theorem has some interesting consequences.

Corollary 4. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a function of the Hardy class H^{2} on $|z|<1$, such that

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left|a_{n}\right| \leqq\left|a_{1}\right| \neq 0 . \tag{11}
\end{equation*}
$$

Then the space generated by the functions $1, f(z), f\left(z^{2}\right), \cdots$ is dense in H^{2}.

By a similar proof, we can also conclude that Corollary 4 holds for any Hardy space H^{p} with $1 \leqq p<\infty$. However, we remark that this corollary does not hold for the Banach space A of functions continuous on $|z| \leqq 1$ and holomorphic in $|z|<1$ with the supremum norm. This can be seen from the following:

Example. Let $f(z)=z-z^{3}$. Then $f \in A$ and (ll) is satisfied. But $f(1)=f(-1)=0$, so that any function g that can be approximated uniformly on $|z| \leqq 1$ by linear combinations of $1, f(z), f\left(z^{2}\right)$, \cdots must satisfy $g(1)=g(-1)$.
Acknowledgment. We wish to thank the referee for his helpful suggestions.

References

1. J. L. Brenner, A bound for a determinant with dominant main diagonal, Proc. Amer. Math. Soc. 5 (1954), 631-634.
2. \quad, Bounds for classical polynomials derivable by matrix methods, Proc. Amer. Math. Soc. 30 (1971), 353-362.
3. S. H. Hilding, On the closure of disturbed complete orthonormal sets in Hilbert space, Ark. Mat. Astr. Fys. 32B, No. 7 (1946).
4. T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966.
5. M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Inc., Boston, 1964.
6. A. M. Ostrowski, Note on bounds for determinants with dominant principal diagonal, Proc. Amer. Math. Soc. 3 (1952), 26-30.
7. G. B. Price, Bounds for determinants with dominant principal diagonal, Proc. Amer. Math. Soc. 2 (1951), 497-502.

Texas A\&M University, College Station, Texas 77843

