UNIQUENESS OF SOLUTIONS OF AN INFINITE SYSTEM OF EQUATIONS

CHIN-HUNG CHING AND CHARLES K. CHUI

1. Introduction and Results. Let $A = (a_{i,j})$, $i, j = 1, 2, \cdots$, be an infinite non-zero matrix of complex numbers such that for each *i*, the sequence $\{a_{i,j}\}$ where $j = 1, 2, \cdots$ is in ℓ^2 , the space of all square summable sequences. In this note, we will discuss some uniqueness theorems on the ℓ^2 solutions of the following system of linear equations:

(1)
$$\sum_{j=1}^{\infty} a_{i,j} x_j = y_i, \ i = 1, 2, \cdots.$$

Let $\{e_i\}$ be an orthonormal basis of a Hilbert space H. Then the uniqueness of the solutions of the system (1) is equivalent to the completeness of the system $\{Ae_i\}$,

$$Ae_i = \sum_{j=1}^{\infty} a_{i,j}e_j, \ i = 1, 2, \cdots,$$

in *H*. It is a rule of thumb that a perturbed basis is still a basis provided that the perturbation is sufficiently small. Thus, it is also a purpose of this note to give some limit on the size of a perturbation *A* so that $\{Ae_i\}$ is again a basis of *H*. We obtain the following results.

THEOREM 1. Let $A_n = (a_{i,j}), 1 \leq i, j \leq n$, be the $n \times n$ matrices obtained from A. Either one of the following conditions is sufficient for the uniqueness of the solutions of the system (1):

(i)
$$\liminf_{n \to \infty} \frac{\prod_{i=1}^{n} \left(\sum_{j=1}^{\infty} |a_{i,j}|^{2}\right)}{|\det A_{n}|^{2}} < \infty.$$

(ii)
$$\liminf_{n \to \infty} \frac{\left(\sum_{i=1}^{n} \sum_{j=n+1}^{\infty} |a_{i,j}|^2\right) \left(\prod_{i=1}^{n} \left[\sum_{j=1}^{n} |a_{i,j}|^2\right]\right)}{|\det A_n|^2} < \infty.$$

Received by the editors December 3, 1971 and, in revised form, April 28, 1972. AMS 1970 subject classifications. Primary 15A06, 46-00.

There is a vast literature on estimating lower bounds of determinants. We mention only Brenner [1, 2], Ostrowski [6], and Price [7]. Using some of these bounds, we may get some other more workable sufficient conditions from (i) or (ii) for the uniqueness of l^2 solutions of the system (1). We also wish to mention that some similar, but somewhat different, results can be found in Hilding [3] and Kato [4]. In the following section, we will compare our above result with theirs.

For upper triangular matrices, we have a better result:

THEOREM 2. Let $a_{i,j} = 0$ whenever j < i. Then the condition

(2)
$$\sum_{j>i} |a_{i,j}| \leq (1+\delta)|a_{i,i}| \neq 0$$

with $\delta = 0$ for all $i = 1, 2, \cdots$ is sufficient for the uniqueness of the solutions of the system (1). But for each $\delta > 0$, there exists an upper triangular matrix satisfying (2) such that the solutions for the system (1) are not unique. (We remark that Theorem 2 is well-known for $-1 < \delta < 0$).

2. Proof of Theorem 1. Let $\{b_i\}$ be an l^2 solution of the system (1) with all $y_i = 0$. We have to prove that $b_i = 0$ for all *i*. We write

(3)
$$\boldsymbol{\epsilon}_{N,i} = \sum_{j=1}^{N} a_{i,j} b_j = -\sum_{j=N+1}^{\infty} a_{i,j} b_j.$$

Hence, if det $A_N \neq 0$, we have, from Cramer's rule, that

$$b_{1} = \frac{1}{\det A_{N}} \begin{vmatrix} \epsilon_{N,1} & a_{1,2} & \cdots & a_{1,N} \\ \epsilon_{N,2} & a_{2,2} & \cdots & a_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ \epsilon_{N,N} & a_{N,2} & \cdots & a_{N,N} \end{vmatrix}$$

If all but a finite number of the b_i are zero, then it is clear that all the b_i are zero. Otherwise, we set

$$\delta_{N,i} = \epsilon_{N,i} / \left(\sum_{k=N+1}^{\infty} |b_k|^2 \right)^{1/2},$$

which gives

$$b_{1} = \frac{\left(\sum_{k=N+1}^{\infty} |b_{k}|^{2}\right)^{1/2}}{\det A_{N}} \begin{vmatrix} \delta_{N,1} & a_{1,2} & \cdots & a_{1,N} \\ \delta_{N,2} & a_{2,2} & \cdots & a_{2,N} \\ \vdots & \vdots & \vdots & \vdots \\ \delta_{N,N} & a_{N,2} & \cdots & a_{N,N} \end{vmatrix}$$

By the Hadamard determinant theorem (cf. [5]) we have

(4)
$$|b_1|^2 \leq \frac{\sum_{k=N+1}^{\infty} |b_k|^2}{|\det A_N|^2} \prod_{i=1}^N (|\delta_{N,i}|^2 + |a_{i,2}|^2 + \dots + |a_{i,N}|^2)$$

and

(5)
$$|b_1|^2 \leq \frac{\sum_{k=N+1}^{\infty} |b_k|^2}{|\det A_N|^2} \left[\prod_{j=2}^{N} \left(\sum_{i=1}^{N} |a_{i,j}|^2 \right) \right] \left[\sum_{i=1}^{N} |\delta_{N,i}|^2 \right]$$

Also, from (3) using the Schwarz inequality, we have

(6)
$$|\delta_{N,i}|^2 = \frac{|\epsilon_{N,i}|^2}{\sum\limits_{k=N+1}^{\infty} |b_k|^2} \leq \sum_{j=N+1}^{\infty} |a_{i,j}|^2.$$

Then (4) and (5) yield

(7)
$$|b_1|^2 \leq \frac{\sum_{k=N+1}^{\infty} |b_k|^2}{|\det A_N|^2} \prod_{i=1}^N \left(\sum_{j=1}^{\infty} |a_{i,j}|^2\right)$$

and

$$(8) |b_1|^2 \leq \frac{\sum_{k=N+1}^{\infty} |b_k|^2}{|\det A_N|^2} \left[\prod_{j=2}^N \left(\sum_{i=1}^N |a_{i,j}|^2 \right) \right] \left[\sum_{i=1}^N \sum_{j=N+1}^{\infty} |a_{i,j}|^2 \right]$$
$$\leq \frac{\sum_{k=N+1}^{\infty} |b_k|^2}{|\det A_N|^2 \left[\sum_{i=1}^N |a_{i,1}|^2 \right]} \left[\prod_{j=1}^N \left(\sum_{i=1}^N |a_{i,j}|^2 \right) \right] \left[\sum_{i=1}^N \sum_{j=N+1}^{\infty} |a_{i,j}|^2 \right],$$

respectively.

Now since

$$\lim_{N\to\infty}\sum_{k=N+1}^{\infty}|b_k|^2=0,$$

and since det $A_N \neq 0$ for infinitely many *N*, we have for all *j*,

$$\sum_{i=1}^{\infty} |a_{i,j}|^2 > 0.$$

Thus, by the hypothesis (i) or (ii), we have proved that $b_1 = 0$, and by a similar proof, we can conclude that all the b_i are zero. This completes the proof of Theorem 1.

As a consequence of this theorem, we have the following

COROLLARY 1. Let $\{e_i\}$, $i = 1, 2, \dots$, be an orthonormal basis of a Hilbert space H, and let A be a linear operator in H. Then $\{Ae_i\}$, $i = 1, 2, \dots$, is complete in H if

(9)
$$\lim_{n \to \infty} \frac{1}{|\det A_n|} \prod_{i=1}^n ||Ae_i|| < \infty.$$

The following result can be found in [4], page 266:

THEOREM A. Let $\{e_j\}$ be a complete orthonormal family in a Hilbert space H. Then a sequence $\{f_j\}$ of non-zero vectors of H is a basis of H if

(10)
$$\sum_{j=1}^{\infty} \left(\|f_j - e_j\|^2 - \frac{\|(f_j - e_j, f_j)\|^2}{\|f_j\|^2} \right) < 1.$$

We now compare (10) and our Corollary 1 for the sequence $\{f_j\}$ such that

$$f_j = \sum_{k=j}^{\infty} a_{j,k} e_k$$

where $a_{j,j}$ are real and $||f_j|| = 1$ for all j. By (10), we know that $\{f_i\}$ is complete if

$$\sum_{j=1}^{\infty} (1 - |a_{j,j}|) < 1,$$

but by (9), we can conclude that $\{f_j\}$ is complete if

638

$$\prod_{j=1}^{\infty} |a_{j,j}| > 0,$$

which is equivalent to

$$\sum_{j=1}^{\infty} (1-|a_{j,j}|) < \infty.$$

As another consequence of Theorem 1, we have the following results:

COROLLARY 2. Let $A_n = (a_{i,j}), 1 \leq i, j \leq n$, be $n \times n$ matrices of complex numbers. Then the following conditions are sufficient for the uniqueness of the solutions of the system (1):

(i)
$$\sum_{j=1}^{\infty} |a_{i,j}|^2 \leq 1$$
,

for all $i = 1, 2, \cdots$ and

(ii)
$$\limsup_{n \to \infty} |\det A_n| > 0.$$

COROLLARY 3. If $\{e_j\}$ is a complete orthonormal sequence and the $f_i = \sum_j a_{ij}e_j$ are orthonormal, then $\{f_i\}$ is complete if

$$L = \limsup_{n \to \infty} |\det A_n| > 0,$$

or equivalently,

$$\limsup_{n \to \infty} |\det(\langle f_i, e_j \rangle), 1 \leq i, j \leq n | > 0.$$

We remark that Theorem 1 shows that certain perturbed bases are still bases even when the perturbation is large. For example, the rows of

0	1	0	0	0	0	•	•	•
1	0	0	0	0	0	•	•	•
0	0	0	1	0	0	•	•	•
0	0	1	0	0	0	•	•	•
0	0	0	0	0	1	•	•	•
				•				
				•				

are complete. Also, Theorem 1 (i) and Corollary 3 are equivalent, since the rows of A are complete if and only if their Gram-Schmidt orthogonalizations are complete. But orthonormalization only improves the hypothesis of Theorem 1 (i).

3. **Proof of Theorem 2.** For $\delta = 0$, let $\{b_i\}$ be an ℓ^2 solution of the system (1) with all $y_i = 0$. We have to show that all $b_i = 0$. Since $b_i \to 0$ as $i \to \infty$, we can find a k such that

$$|b_k| = \max(|b_i|: i = 1, 2, \cdots).$$

We assume, on the contrary, that $b_k \neq 0$. Then by the hypothesis, we have

$$a_{k,k}b_k = -\sum_{s=k+1}^{\infty} a_{k,s}b_s.$$

Since $b_s \rightarrow 0$, $|b_s| < |b_k|$ for large *s*, and hence, from (2) we have

$$egin{aligned} |a_{k,k}| \; |b_k| &\leq \; \sum_{s=k+1}^\infty \; |a_{k,s}| \; |b_s| \ &< |a_{k,k}| \; |b_k|, \end{aligned}$$

which is a contradiction. As for $\delta > 0$, we let $a_{i,i} = 1$, $a_{i,i+1} = 1 + \delta$ for all $i = 1, 2, \cdots$, and let $a_{i,j} = 0$ otherwise. Then

$$\sum_{j=i+1}^{\infty} |a_{i,j}| \leq (1+\delta)a_{i,i} ,$$

for each $i = 1, 2, \cdots$. However, the sequence

$$\left(1, \frac{-1}{(1+\delta)}, \frac{1}{(1+\delta)^2}, \frac{-1}{(1+\delta)^3}, \cdots\right)$$

is clearly an L^2 solution of the system

$$\sum_{j=1}^{\infty} a_{i,j} x_j = 0, i = 1, 2, \cdots$$

The above example is an "analytic Toeplitz matrix", that is,

$$a_{i,j} = 0 \text{ if } i > j, a_{ij} = b_{i-j} \text{ if } i \leq j,$$

where

$$\sum_{n=0}^{\infty} |b_n|^2 < \infty.$$

640

It is well-known that a necessary and sufficient condition for the completeness of the rows of A is that

$$f(z) = \sum_{n=0}^{\infty} b_n z^n$$

is an outer function in H^2 . Although the proof of Theorem 2 is quite simple, this theorem has some interesting consequences.

COROLLARY 4. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a function of the Hardy class H^2 on |z| < 1, such that

(11)
$$\sum_{n=2}^{\infty} |a_n| \le |a_1| \ne 0.$$

Then the space generated by the functions 1, f(z), $f(z^2)$, \cdots is dense in H^2 .

By a similar proof, we can also conclude that Corollary 4 holds for any Hardy space H^p with $1 \leq p < \infty$. However, we remark that this corollary does not hold for the Banach space A of functions continuous on $|z| \leq 1$ and holomorphic in |z| < 1 with the supremum norm. This can be seen from the following:

EXAMPLE. Let $f(z) = z - z^3$. Then $f \in A$ and (11) is satisfied. But f(1) = f(-1) = 0, so that any function g that can be approximated uniformly on $|z| \le 1$ by linear combinations of 1, f(z), $f(z^2)$, \cdots must satisfy g(1) = g(-1).

ACKNOWLEDGMENT. We wish to thank the referee for his helpful suggestions.

References

1. J. L. Brenner, A bound for a determinant with dominant main diagonal, Proc. Amer. Math. Soc. 5 (1954), 631-634.

2. —, Bounds for classical polynomials derivable by matrix methods, Proc. Amer. Math. Soc. 30 (1971), 353-362.

3. S. H. Hilding, On the closure of disturbed complete orthonormal sets in Hilbert space, Ark. Mat. Astr. Fys. 32B, No. 7 (1946).

4. T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966.

5. M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Inc., Boston, 1964.

6. A. M. Ostrowski, Note on bounds for determinants with dominant principal diagonal, Proc. Amer. Math. Soc. 3 (1952), 26-30.

7. G. B. Price, Bounds for determinants with dominant principal diagonal, Proc. Amer. Math. Soc. 2 (1951), 497-502.

TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843