REMARKS ON BASIC CLASSES OF C ~-FUNCTIONS r. b. darst

Relationships between analytic functions, basic classes of infinitely differentiable functions, Fourier series, moment problems, and asymptotic series have been investigated for many years (e.g. [1, p. 95]). Recently I established a new relationship [2] which will be described below.

Let \mathcal{B}_S denote the set of Borel subsets of a Borel subset S of the set R of real numbers. Recall that $f: I = [0, 2\pi] \rightarrow R$ is a Borel function if $f^{-1}(\mathcal{B}_R) = \{f^{-1}(S): S \in \mathcal{B}_R\} \subset \mathcal{B}_I$. A Borel function f is bimeasurable if $f(\mathcal{B}_I) \subset \mathcal{B}_R$. Let \mathcal{P}_S denote the set of probability measures μ defined on \mathcal{B}_S , let \mathcal{M}_{μ} denote the set of μ -measurable subsets of S, and set $\mathcal{U}_S = \bigcap \{\mathcal{M}_{\mu}: \mu \in \mathcal{P}_S\}$.

The set C^{∞} of infinitely differentiable functions defined on I is decomposed into basic classes $C\{M_n\}$ by putting the following growth conditions on successive derivatives: $M_n = (\prod_{j=1}^n \mu_j)^{-1}$, where $1 \ge \mu_1$ $> \mu_2 > \cdots \rightarrow 0$, and $f \in C\{M_n\}$ if there exists $F \in R$ such that $\|f\|_{\infty} \le F$ and $\|f^{(k)}\|_{\infty} \le F^k M_k$, $k = 1, 2, \cdots$. For instance, let C_p denote the class obtained by setting $\mu_n = n^{-p}$, 0 . Then it $is well known that <math>C_1$ is the class of analytic functions on I and S. Mandelbrojt showed [4] that $e^{-1/x^2} \in C_2$.

A basic class $C\{M_n\}$ is quasi-analytic if $f \in C\{M_n\}$ implies $f \equiv 0$ when there is a point $x \in I$ such that $0 = f(x) = f^{(k)}(x), k \ge 1$.

The Denjoy-Carleman theorem asserts that a basic class is quasianalytic if, and only if, $\sum \mu_k = \infty$; and [2] shows that a basic class is quasi-analytic if, and only if, every function in the class is bimeasurable. Thus, [3] implies (i) if f belongs to a quasi-analytic class, then $f(\mathcal{U}_I) \subset \mathcal{U}_R$ and (ii) assuming the continuum hypothesis $C\{M_n\}$ is quasi-analytic if $f(\mathcal{U}_I) \subset \mathcal{U}_R$ for each $f \in C\{M_n\}$.

For constructing examples it is convenient to have functions f in $C\{M_n\}$ called blips: there exists an interval [a, b] such that f(x) > 0 if $x \in (a, b)$ and f(x) = 0 otherwise; [a, b] is called the support of f. Clearly no blips with small support exist in a quasi-analytic class. A construction of H. E. Bray [4] can be used to show [2] that every non-quasi-analytic class contains blips with small support; however, the functions so constructed are not analytic blips: they are not analytic on the interiors of their supports. Since it is useful to have analytic blips available, we were led to show that $e^{-1/x^k} \in C_{(1+(1/k))}$, $k = 1, 2, \cdots$.

From this latter result it is easy to infer that C_p contains small analytic blips if p > 1.

The author wishes to acknowledge the fact that Gerald Maclane very kindly suggested that an examination of [4] might be helpful in dealing with these problems.

References

1. T. Carleman, Les functions quasi-analytiques, Gauthiers-Villars, Paris, 1926.

2. R. B. Darst, A new characterization of quasi-analytic classes of C[∞]-functions, Proc. Nat. Acad. Sci. U. S. A. 69 (1972), 1429.

3. —, A characterization of bimeasurable functions in terms of universally measurable sets, Proc. Amer. Math. Soc. 27 (1971), 566-571.

4. S. Mandelbrojt, Analytic functions and infinitely differentiable functions, The Rice Institute Pamphlet 29, Houston, Texas, 1942.

COLORADO STATE UNIVERSITY, FORT COLLINS, COLORADO 80521