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BOUNDS FOR MATRIX MOMENTS 
GENE H. GOLUB* 

1. Introduction. Let A be a real symmetric positive definite n X n 
matrix with 

Aui = KiUi, (i = 1, 2, • • -, n) 

ujuj = dij9 and 0 < Ax = X2 = * * * = K> L e t ro be an arbitrary 
vector and consider the Krylov sequence 

ri+l = Arh for i = 0 ,1 , • • - , £ - 1, 

so that 

r . = AVO ( i = 0 , l , • - • , * ) . 

Let 

Mp* = rp
Trq = (A%) T A% 

= r0^A^+% 

Thusifr0 = Sl-iû^Ui, 

Mm = E a ^ V 1 - Xmda(X) (m = 0,1 , • • -,2fc) 
i = i 

where a(A) = 0 for A ê A.!, 

= V + • • • + a? ^ < A S U 

= « ! 2 + • • • + o„2 A n < A. 

Thus, {jLtm}m=i are a set of moments associated with the distribution 
function a(A). 

In certain applications (cf. [1]) we are interested in determining 
bounds for /LLS where s is a positive integer greater than 2k or a negative 
integer. We shall construct algorithms for computing bounds on [is 

where we have an upper bound on the largest eigenvalue and a posi­
tive lower bound on the smallest eigenvalue, e.g., 
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0 < f l g \ i § 6 i = 1, • • -, n. 

Note that when the eigenvalues are known precisely linear pro­
gramming may be used for determining upper and lower bounds on 
M»(cf. [1]). 

2. Construction of bounds. Suppose we are given { t̂i}f=0 and a 
function <p(k), (a = k = b) and we wish to determine (L, U) so that 

L § f <p(k) doik) ^ U. 
Ja 

We can determine a Gauss-Radau quadrature rule so that 

k 

Mr= 2 Atf forr=0,l, ••-,2fc 
i=0 

where {Af}^=0 and {ti}\=i are unknown and t0 is specified. Then 

k 

i=0 
\h <p(k)da(k) = 2 Ai<p(ti) + R[<p) 

Ja i=o 

where 

0(2k+l)(v) rb r k 1 2 

R[<p] = ^ + i ' , Jfl (X - «6) [ I l (x - *) J do(x),fl < il < b. 

Thus if <p(k) = Xs, 

fiM=(2;+ih+i)x 

\\ ( ^ - * o ) [ n (k-ti)yda(k\a<ri<b. 

Hence, if s > 2k and t0 = a, then R[A*] = 0 and hence the Gauss-
Radau rule yields an upper bound and if t0= b, a lower bound. 
However if s < 0 and t0 = a, then R[ks] = 0 and hence the Gauss-
Radau rule yields an upper bound and if t0 = b, a lower bound. It 
can be shown that these bounds are attainable (cf. [2] ). 

Unfortunately, using the moments for computing the quadrature 
rules is a very ill-conditioned numerical problem [3]. We can avoid 
this difficulty by working with orthogonal polynomials which are 
defined by the distribution function a(k). 
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3. The Lanczos algorithm. Associated with the distribution func­
tion a(X), there is a set of orthogonal polynomials {pj(k)} such that 

pm(X)pi (X) da(k) = 0 when m ^ £. 

It is well known that these polynomials satisfy the relationship 

(3.1) pJ+l(k) = (€J+l - X)ft(A) - I J V I W 

with p_i(X) = 0, po(k) = 1. The zeros of pk(k) are the nodes of the 
Gauss quadrature rule associated with a(X) and {fy}?^1; e.g., pk(t{) 
= 0 (i = 1, 2, • • -, fc), J* A'da(X) = "ZU Hï (i = O/I, • • -, 2fc - 1). 
The coefficients of (3.1) can be calculated directly from the moments 
but this is also a numerically unstable process. 

The coefficients {§}jLi, { T ? / } / ^ 1 can be computed directly using 
the Lanczos algorithm [4]. We generate a sequence of vectors 
{Zj}kj±i such that 

2 r z = / ° fori^J 
* * ' 1 1 f o r i = j . 

Let s0 = 'o X ( N I ) " 1 ( N I = (V'o)1 '2)- Then for j = 0 ,1 , 

o>i+1 = Azj - Cj+1Zj - n ^ _ i , (ito = 0), 

ty+i = H + i l l 
zj+i — ty+i* u? i + 1 . 

For numerical stability, one must reorthogonalize zj+l with respect 
to all the previous z/s (cf. [5] ). It is well known (cf. [6] ) that the 
eigenvalues of the symmetric tridiagonal matrix Jk= {r)j_l, ipty} 
are the roots of the polynomial p*(X) and that the square of the first 
component of the orthonormalized eigenvectors is the associated 
weight of the quadrature rule when /Lt0 = 1. The eigenvalues of Jk 

and the first component of the eigenvectors can be efficiently and 
accurately computed by the QR method of Francis ( [7] ). 
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Let 

Jk+i — 

We wish to compute the element £k+i so that pk+i(tQ) — 0, and thus 
the eigenvalues and eigenvectors of Jk+l yield the Gauss-Radau rule. 
Now 

0 = pk+i(to) = (to - ¥k+i)pk(to) - Vk^k-iihl 

and hence, 

ffc+i = h - Vk^k-iitoilpkito). 

The quantity pk_x = pk(t0)lpk-i(to) c a n D e easily computed. Defining 
Pj = Pj+i(t0)IPj(t0) (j = 0 ,1 , • • -, k - 1), then Pj = (*0 - €J+i) -
7fi

2lpJ_lwiÛipl = (* 0 - fi). 
It is not necessary to compute the eigenvalues and eigenvectors of 

Jk+i to compute upper and lower bounds on p,s. Let 

/fc+1 = ç>rçr,ççr=/fc+1, 

where T is the diagonal matrix of eigenvalues of Jk+i and Ç is the 
matrix of eigenvectors. The vector w0 = QTei, (^ i T = (1,0, • • -, 0)) 
consists of the first element of each eigenvector ofJk+l. Hence 

k 

£ A<V= *i r /*+ i*i . 

If * = 2p (say), then £ U M ! = ( e i 7 £ + 1 ) ( / L i ei)- A n d i f s i s 

negative it is only necessary to repeatedly solve the tri diagonal system 
of equations Jk + x f = ev 

4. A numerical example. Let A be the tridiagonal matrix A = 
{ -1 , 2, - 1 } so that a = 2 - 2 cos(7r/(n + 1)), b = 2 4- 2 cos(;r/(n + 
1)). The vector r0 is a random vector with ||r0|| = 1.07188. We wish to 
construct upper and lower bounds for s = —2 when n = 25. The exact 

fi Vi 

Vi €2 V2 

V2 

Vk 
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solution is fi_2 = 1.0. Using the Lanczos algorithm we have the fol­
lowing bounds. 

k 

1 
2 
3 
4 
5 

23 
24 

lower bound 

.36834 

.43465 

.46049 

.47367 

.49212 

.999820503726357 

.999999999914178 

upper bound 

18.99795 
9.62961 
4.51138 
2.76067 
2.11169 
1.00000054223912 
1.00000000000003 
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