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1. Introduction. The first half of this article gives a unified inclusion 
theorem for FK spaces. These spaces arose in the theory of summability 
(see [ 11] ). In that context it was natural to assume that every such space 
includes c, the set of convergent (complex) sequences. Throwing off the 
connection with matrices, the theory became more general and more 
satisfactory, [2], [6], with topological methods replacing classical matrix 
arguments. However, it now appears that these methods depend 
crucially on a weaker property than inclusion of c, the property which 
we call semiconservative. With this hypothesis the classical results are 
obtained, often in a more natural and simple way. 

2. Acknowledgement. The results of this article were obtained in the 
course of three years of seminars held at Lehigh University. Many of 
them are due to or are inspired by Grahame Bennett and Nigel Kalton; 
in particular the methods of §8 were suggested by them. Theorem 7 was 
also obtained by W. H. Ruckle (using different methods). Part of 
Theorem 10 was announced in [5]. Professors G. W. Goes, F. P. A. Cass, 
and Mr. J. H. Hampson made useful suggestions. 

3. FK spaces. An FK space X is a vector space of complex sequences 
which is also a Fréchet space (linear, complete metric) with continuous 
coordinates. We shall also assume that X D E00 the set of all finitely 
nonzero sequences. A BK space is a normed FK space. An introduction 
to FK spaces is given in [8, §§11.3 and 12.4]. Our results can easily be 
extended to function spaces which are FH spaces [8, §11.3], replacing 
E °° by the set of functions with compact support or any other dense 
subspace. 

We shall call X o-conservative if X D c0, the space of null sequences, 
and semiconservative if ^ 8k is weakly Cauchy, i.e. ^f(8k) is 
convergent for a l l / G X '. Here 8k is the sequence x with xk = 1, xn = 0 
for n jF k. An o-conservative space is semiconservative by the general 
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theorem [8, §11.3, Corollary 1], that is, if Y C X the inclusion map must 
be continuous. The difference between these two properties is shown 
by Corollary 5. If X C Y and X is semiconservative, so is Y; if X is a 
closed subspace of Y and Y is semiconservative and locally convex, so is 
X. "Locally convex" and "closed" can be omitted if X has finite 
codimension, or more generally, is complemented in Y. (See [9, p. 78].) 

4. Inclusion theorems. We give generic inclusion theorems which 
unify many known results and have some new special cases. By the 
general theorem mentioned in §3, the sufficient conditions given are 
also necessary. This remains true for all our inclusion theorems and we 
shall state them all as sufficient conditions for inclusion, omitting the 
trivial converse in some cases. 

THEOREM 1 Let X, Y be FK spaces with E °° dense in Y. Suppose that 
on E°° the topology induced by Y is larger than that induced by X. 
Then X D Y. 

Let y G Y. There exists a sequence {un} of points in E °° with un—» y. 
Then {un} is Cauchy in X, say wn—» x in X. Then un —> x and y in s (the 
space of all sequences), i.e., i*kn—» Xk and y^ for each k. Thus x = y and 
so y G X. 

More generally Theorem 1 holds if X is a sequentially complete K 
space and Y is a metrizable K space; or X is a complete K space and 
Y is a K space. (A K space is a topological vector sequence space with 
continuous coordinates.) More generally Y may be closure sequential 
(see [10, p. 30] and [3, p. 19]). 

THEOREM 2. Let X, Y be FK spaces with E °° dense in Y. Suppose that 
every subset of E °° which is a bounded subset of Y is also a bounded 
subset ofX. Then X D Y. 

Let A, B be E °° with, respectively, the relative topology of X, Y. The 
identity map from A to B is bounded, hence continuous by [8, §10.5, 
Example 4 and Theorem 4]. The result follows from Theorem 1. 

Theorem 2 is extended in the same way as Theorem 1; in the second 
case add the assumption that every bornivore in X is a neighborhood 
of 0 (bornological, in the locally convex case). 

THEOREM 3. Let Y be a BK space with E °° dense. Let D be the inter
section of £ °° with the unit disc of Y. If X is an FK space and D is 
bounded in X, then X D Y. 

This is immediate from Theorem 2. 
Now let P be the familiar FK space {x : ̂  \xn\

p < » }, p > 0. For I1 

we write I. 
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COROLLARY 1. An FK space X includes I if and only if the absolutely 
convex hull of {8n} is bounded in X. A locally convex FK space X 
includes I if and only if {dn} is bounded in X. 

The first part follows from Theorem 3 since D is precisely the set 
mentioned. Local convexity cannot be omitted in the second half as is 
shown by Z1/z. 

Let an = 5)fc«i 8k, bv = {x : ]£ K ~ xn+i\ < °° }, bv0 = bv H c0. 
Then bv C c and bv is a BK space with \\x\\bv

 == |lim x\ + ^\xn — xn+i\. 

COROLLARY 2. An FK space X includes bvo if and only if the 
absolutely convex hull of {<rn} is bounded in X. A locally convex FK 
space X includes bv0 if and only if {an} is bounded in X. 

Again D, in Theorem 3, is precisely the set mentioned. 

COROLLARY 3. Every locally convex semiconservative FK space 
includes bv0. 

The hypothesis implies that {<rn} is weakly bounded, hence bounded 
[8, §12.3, Theorem 1]. 

Note however that bv0 is not semiconservative; consider 

/(*) = S ("I)"*»-
The above arguments yield the following result. Let Z be the set of 

sequences in E °° all of whose nonzero terms are ± 1. 

COROLLARY 4. An FK space X is o-conservative if and only if the 
absolutely convex hull ofZ is bounded in X. A locally convex FK space 
X is o-conservative if and only ifZ is bounded in X. 

5. Inclusion for locally convex spaces. With each FK space X we 
associate the sequence space X^ consisting of all sequences of the 
form {f(8k)}> fE. X'. Note that X is semiconservative if and only if 
X^C cs, the set of convergent series. From X D Y it follows that 
X ' C Y/ 

THEOREM 4. Let Y be an FK space with E °° dense. Let Xbea locally 
convex FK space with Xf C Ŷ . Then X D Y. 

Let S C E00 be a bounded subset of Y. L e t / G X' . By hypothesis 
there exists g 6 Y ' w i t h / = g on E00. Then g[S] , and s o / [ S ] too, is 
bounded. Thus S is a weakly bounded subset of X, hence bounded. 
The result follows from Theorem 2. 

If Y is an AK space (i.e. {8n} is a basis), Y* may be replaced by 
Yß == W : X unyn is convergent for all y GY}, for these sets are 
equal if (and only if) Y is an AK space. 
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From Theorem 4 we obtain for a locally convex FK space the fol
lowing results (the second and third of which are equivalent to the 
second part of Corollaries 1 and 2): XD cs, XZ) I, XD bv0, X D lp, 
X = s if and only if X> C bv0, XfCZm (the set of bounded sequences), 
X-f C bs (the set of bounded series), X^C V* (p + q = pq), X*T= E00. 
(The last result may be new.) We also obtain the following new result 
which is actually equivalent to the second part of Corollary 4. 

COROLLARY 5. A locally convex space X is o-conservative if and only 

ifZWk)\<°°forallf£X'-
For the condition is precisely XfCZ I = Cç/. 
The Silverman-Toeplitz conditions can be deduced from Corollary 5. 
In Theorem 4 it is not sufficient to assume X^ C Yf. To see this, let q 

be the closure in m of the periodic sequences. It is shown in [1, p. 367, 
Corollary 2] , that qß = I. Now let X be any FK space including q and 
E °°. Then Xß (Z qß = I but X need not include c0> for example we may 
take X = I + q. 

COROLLARY 6. Let Xbe a locally convex FK space with {8n} as basis. 
Then X is the largest subset of Xßß which is an FK space in which 
£ °° is dense. 

Let Y be any such space. Then Y O Yß D Xßßß = X" = X* By 
Theorem 4, X D Y. 

For example c0 is the largest subset of m which is an FK space in 
which E °° is dense. 

For completeness we mention two inclusion results not related to 
the above theorems, (a) Any FK space which contains every sequence of 
zeros and ones must include m. (b) Any o-conservative FK space which 
is weakly sequentially complete (for example, semireflexive) must 
include m. 

The proof of (a) is given for BK spaces in [4, Theorem 3.3c]. It 
can be extended to FK spaces. (This was pointed out to us by Nigel 
Kalton.) To prove (b), if x G m, ^xk8

k is weakly Cauchy in c0 by 
Corollary 5, hence weakly convergent in X. It can only converge to x. 

6. Semiconservative matrices. Given an infinite matrix A, let 
cA = {x \ Ax EL c}. In [8, §12.4, Theorem 2], it is shown that cA is a 
locally convex FK space. We call A semiconservative, o-conservative, or 
conservative if CA has the corresponding property. The following 
theorem is well known. 

THEOREM 5. For a matrix A, cA ~Z) bvo if and only if 
(i) limn ank = ak exists for each k, 
(ii) sup m > n |X"=i^ l< °°-
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Condition (i) states that cA D E00. Using [8, §12.1, Theorem 2 and 
§12.4, Theorem 2], it is easy to check that (ii) is equivalent to bounded-
ness of {an} and Corollary 2 applies. 

Consider the following conditions on a matrix A which obeys (i) 
(Theorem 5): 

(iii) Vfc ank converges for each n, 
(iv) 2 öjt converges. 

THEOREM 6. A matrix A is semiconservative if and only if conditions 
(i), (ii), (iii) and (iv) hold, that is, if and only ifCA 3 bvo and conditions 
(iii) and (iv) hold. 

If A is semiconservative, CA O bv0 by Corollary 3. Conditions (iii) and 
(iv) follow by consideration of the functions x~» lim Ax and x—> (Ax)n 
= 2 a"k Xk anc^ t n e ddiïmtion of semiconservative. Conversely, if the 
conditions hold, l e t / G CA '• The facts now to be used are contained in 
[8, §12.4, Theorem 6] . We have f(dk) = aak + £ r trark + ßk where 
]£ |£ r |< oo and ^ßkxk converges for all x such that Ax exists. 
Condition (iii) implies that Al exists, hence ^ßk converges. Since 
^ ak converges, the proof is concluded by showing the convergence 
of ]£* ]£r tr 0**- N o w ^=1^ tr ark = ^ r tr ]? f c ark - ^ r tr brm 

where brm = ^k=mark. The two series on the right converge by (ii); 
the second series is uniformly convergent by the Weierstrass M-test 
and so we may let m -» oo inside the summation. 

It is easy to see that the intersection of countably many locally convex 
semiconservative spaces is semiconservative. This is false for inter
sections in general. 

THEOREM 7. The intersection of all locally convex semiconservative 
FK spaces is bvç>. 

It is sufficient to show that bv is the intersection of all those spaces 
of the specified type which include it, for bv0 — bv H c0 and c0 is 
semiconservative. Let x fé bv. There exists y with ^ yi convergent, 
]j£ Xit/i divergent. Then {z : ̂  yiZi is convergent} is semiconservative, 
excludes x, and includes bv. (See [8, §12.4, Lemma 1].) 

7. Coregular and conull spaces. We shall now use the word space 
as an abbreviation for locally convex semiconservative FK space. A 
conull (coregular) space is a space in which ^ Sfc is (not) weakly con
vergent. Thus every conull space contains 1 and so includes bv. The 
proof of Theorem 7 shows that the intersection of all conull spaces is 
bv. If 1 ÇÊ X, X is automatically coregular. Any space which includes a 
conull space is conull and any closed subspace of a conull space is 
conull. The intersection of countably many conull spaces is conull. 
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Consideration of Theorem 7 and spaces of the form X fi m shows that 
the intersection of all coregular spaces is bv0. Since m is coregular, a 
conull space must contain unbounded sequences. 

A classical application of these remarks is the fact that if ^k ank is 
convergent for all n, there exists an unbounded x with ^k ank xk con
vergent for all n. To see this let En = {x : ̂  ank xk is convergent}. 
Each En, hence f i En, is conull, thus contains an unbounded sequence. 

If a semiconservative space X is weakly sequentially complete it must 
be conull. (Compare §5, Remark (b).) This shows again that bv0 is not 
semiconservative since norm and weak sequential convergence coincide. 
Also bv, having bvo as a closed subspace, is not semiconservative either. 

We now extend some results known for conservative spaces. Let X be 
a space and assume that 1 E X. F o r / G X' let tfß(f) = / ( l ) - *2f(ôk). 
For a matrix A with E°° G cA and l £ c A ) let X(A) = ^(limA) 
where limA x = lim Ax. In the following theorem a is the number 
given in the proof of Theorem 6. 

THEOREM 8. Let A be a semiconservative matrix with 1 G cA, and let 
fGcA'. Thenifß{f) = aX(A). 

The proof is similar to that given in Theorem 6 and [8, §12.4, 
Problem 25]. 

COROLLARY 7. Let Abe a semiconservative matrix with 1 G cA. Then 
CA is conull if and only if X(A) = 0. 

If CA is conull, X(A) = limAl — ^ \imA8k = 0 since ^ 8k converges 
weakly to 1. Conversely, if X(A) = 0, Theorem 8 implies that \fß(f) = 0 
for a l l / G CA ' ; that is, ̂  8k converges weakly to 1. 

The condition X(A) = 0 is not sufficient that CA be conull; for 
example, let ann = n, an,n-i = — n, ank = 0 otherwise. 

8. Two-norm criteria. We now generalize, with a more elementary 
proof, a result of the first author [ 6, Theorem 1]. We use the notation 
||x||oo = sup |xn[, and \\x\\bv = Xl** ~" x*+i\ + |l™x|. For a space X 
we say x is in the two -norm » closure of S C X if there is a sequence {sn} 
in S with sn—»x in X and ||sn||oo bounded. The two-norm^ closure 
is defined similarly. It is possible, in a conservative coregular space, 
to have 1 in the closure of E00. This shows the role of the extra 
conditions in the next two theorems. 

THEOREM 9. Let X be conservative. Then X is conull if and only if 
1 is in the two-norm* closure ofE™. 

THEOREM 10. Let X be semiconservative. Then X is conull if and 
only if 1 G X and 1 is in the two-normbv closure of E °°. 
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To prove sufficiency in Theorem 9, let / G X', and sn G E00 with 
sn-» 1 in X, \\sn\\ « < M. Then 

(1) /(^) = S^/(8fe)^S/(8fe) 

since the series is uniformly convergent by comparison with 
]£ M\f(8k)\, and sk

n~* 1 for each k by definition of FK spaces. But also 
f(sn)-*f(l) so X is co null. Necessity in Theorem 9 follows from 
Theorem 10 since ||x|| * Ŝ ||*||iw To prove sufficiency in Theorem 10, let 
/ G X' andsn G E°°wi th s n ^ l inX, \\sn\\bv < M. Again (1) holds imply
ing that X is cornili; this is seen from the fact that the matrix (sk

n) is 
series-sequence regular. See for example [ 12, p. 58], or [ 7, Theorem 3.6]. 
Finally let X be conull. By definition, an = ^ ? = i 8k—> 1 weakly so that 
1 lies in the weak closure of 2, the absolutely convex hull of {crn}. 
Hence 1 lies in the closure of X; that is, there exists sn G X with 
s n -* 1, sn = 2 tk

na\ ]£fc \tk
n\ ^ 1 for each n. It follows that \\sn\\bv ^ 

Theorems 9 and 10 are best possible in the sense that conservative 
cannot be replaced by semiconservative in Theorem 9 and semi-
conservative cannot be omitted in Theorem 10. The relevant examples 
follow. 

EXAMPLE 1. Let ]£ bk be a conditionally convergent series of nonzero 
numbers and A = (ank) where an>2k-i = bk for 2k — 1 ^ n; an2k = 1 
for n = 2k and n = 2k + 1; ank = 0 otherwise. By Theorem 6 and 
Corollary 7, cA is coregular. Let e > 0. Choose N and P> N such that 
l X r = A | < € for m > n > N, | £ L N |&*| - 1| < €. Let ak = sgn bfc 

and define xfc = 0 for fc < 2 N - 1 , and for fc = 2 N - 1 , 2N, 2N + 1, • • 
define Xfc to be, respectively, — aN> |&N|, "~ «N+I , |&N| + |&N+I|> 

- <*N+2> I M + I^N+II + I&N+2I, - «N+3, • • -, continuing this until 
— atp is reached. For all larger k let xk = 1. It may now be checked 

| « = 1 + € and || AJC|| « = 2e. Now CA is a Banach space with 
Ax || » [7, §5.2, Problem 9] so if we set s = 1 — x we shall have 

5 G E00, ll̂ lloo ë 2 + €, ||1 - s\\ ^ 2e. Thus 1 is in the two-norm« 
closure of E °°. 

EXAMPLE 2. Let u(x) = AJC where A = (anfe) is defined by 
«n,2n = "" ön>2n+i = ^» anfc ==: 0 otherwise. Then X = u~l[l] is a 
locally convex FK space [8, §12.4, Theorem 1] which is not semicon-
servative as is shown by f(x) = ]j£ (x2fc — x2k+i). However, with 
sn = 2*-7***> ^ - > 1 in X and ||^||foü = 1. 

For the space ii(r) we refer to [6]. 

THEOREM 11. Let X be a locally convex FK space such that 1 is in 
the two-norm oo closure ofE°°. Then X + c 0 D Q(r)for some r. 

that ||x 
llxll = |j 
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We make X + Co into an FK space in the standard way. See, for 
example, [8, p. 39, Theorem 7.3]. It is conservative; moreover, by 
Theorem 9 it is conull. The result follows from [6, Theorem 2]. 

For example, with A as in Example 1, cA + CQ Z) fl(r) for some r. 

COROLLARY 8. Let X be a locally convex conull FK space. Then 
X H misanonseparablesubspaceofm. 

More generally "conull" may be replaced by the assumption that 1 
is in the two-norm« closure of E °°. By Theorem 11, (X + Co) fi m is not 
separable. If D is dense in X Pi ra and D\ is dense in Co, then D + D\ is 
dense in (X + c0) H m. 

9. Remarks. A matrix A is conservative if and only if it maps c into 
itself. It is an attractive conjecture that there exists a space X such that 
a matrix of the above type is semiconservative if and only if it maps 
X into itself. That no such X exists is an immediate consequence of 
the fact that there exists a matrix A with l £ c A such that A is, and 
A2 is not semiconservative. Such a matrix is (anfc) with ank = 
(_ i)n-fcn-y4 for fc ^ n, anfc = 0 for k> n. The first column of A2 is 
unbounded. 

10. Questions. 1. The referee has suggested that there might exist a 
space E such that {x : Ax €î E} is semiconservative if and only if it 
includes E. Such a space E would have to be semiconservative as the 
identity matrix shows. 

2. Does Corollary 5 hold without the assumption of local convexity? 
3. Is there a smallest FK space in which {8n} is bounded? (Corollary 1 

shows that there is a smallest locally convex one.) 
4. Must the following be semiconservative? (a) A closed subspace 

of a semiconservative space? (b) The intersection of two semicon-
servative spaces? 
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