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UNIFORM L1 BEHAVIOR IN CLASSES 
OF INTEGRODIFFERENTIAL EQUATIONS 

WITH CONVEX KERNELS 

RICHARD NOREN 

Introduction. We consider families 1Z of functions such that each a 
in 7Z satisfies 

/ a(s)ds 
Jo 

(1.1) / a(s)ds < oc, 
Jo 

a is nonconstant, nonegative, nonincreasing, convex, and — a' is convex. 

We will show, for certain such families, that 

/»OO 

(1.2) / sup \u(t', a)\dt < oo, 
Jo aen 

where u(t) — u(t; a) is the solution of the scalar problem 

(1.3) u'{t) + / a(t- r)u(r)dr = 0, u(0) = 1, t > 0, a G K. 
Jo 

When 71 — {Aa0(£) : 0 < A0 < A < oo}, (1.2) is true. These and similar 
results were proved in [1, 2, 4, 5, 10 and 11]. The technique of proof 
relies on the methods of Shea and Wainger [13]. 

The estimate (1.2) was used in [1, 4, 5 and 11] to estimate the 
resolvent kernel 

/»OO 

U(t)= / u(t;\a0)dEx, 
JXo 

of the problem 

(1.4) y'(t) + / a0(t - s) Ly(s)ds = f(t), y(0) = y0, 
Jo 

in a Hilbert space TL. The operator L is a densely defined self-adjoint 
linear operator with spectrum contained in [Ao,oo) (Ao > 0), yo and 
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f(t) are prescribed elements of Ti, and {E\} is the spectral family 
corresponding to L. 

Since (1.2) implies that 

/»OO 

(1.5) / | |£/(t) | |dt<oo, 
Jo 

the resolvent formula 

(1.6) y(t) = U(t)yo + / U(t- s)f{s)ds, 
Jo 

for (1.4) gives information about the asymptotic behavior of y(t) as 
t —» oo. 

For more general classes 1Z = {a(t; A) : — oo < À < oo}, (1.2) implies 
that (1.5) holds for the resolvent 

/

oo 
u(t;a(;X))dEx 

-oo 

for the problem 

(1.8) y'(t) + [ L(t- s)y(s)ds = f(t), y(0) = y0,t> 0, 
Jo 

with 

/

oo 
a(t;\)dEx, 

-oo 

where {^A} is a fixed resolution of the indentity in TL. 

Our results for (1.8) include some operators of the form 

n 

(1.10) L(t) = J2ak(t)Lk, 
k=0 

and generalizes some of the results in [7]. The requirement that the 
Lfc, k = 0 , . . . , n, have spectral decompositions with respect to a com
mon resolution of the identity { £ A } greatly restricts the applicability of 
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the result (1.5) with L as in (1.10), but see [7] for applications, includ
ing a linear model for heat flow in a rectangular, orthotropic material 
with memory in which the axes of orthotropy are parallel to the edges 
of the rectangle. 

For families 1Z — {ao(t) + c : 0 < c < 1}, where ao is a fixed function 
satisfying (1.1), Hannsgen and Wheeler show in [6] that ao £ Ll(l, oo) 
is necessary for (1.2) to hold. They also show that (1.2) does not even 
hold for a0(t) = (1 - e - t ) / £ (which behaves like 1/t as t —• oo). In [12], 
it is shown that the condition 

<U1) f l0g*' :d„< 
u Aao(u) 

where 

(1.12) Aao(u) = / a0{s)ds, u > 0, 
Jo 

along with (1.1) implies (1.2). In [6], (1.2) is shown to follow when ao is 
completely nonotonic (( —l)na0 (£) > 0, n = 0,1, 2, 3 , . . . , t > 0) and 
satisfies a growth condition at oo that is similar to (1.11). Thus (1.11) 
and the condition used in [6] both allow functions ao that behave like 
(\ogpt)/t as t —> oo, for p > 1 and rule out functions ao that behave 
like (logp t)/t as t —> oo, for 0 < p < 1. As a corollary to our main 
result, Theorem 1, we show that (1.2) holds if ao satisfies (1.1) and 

r°° i 
(1.13) / ———-du < oo. 

Jx uAao{u) 

This improvement of the growth condition at oo allows functions ao 
that behave like (logp t)/t as t —> oo, even for 0 < p < 1. 

The conditions on the family 1Z that we will use are 

(1.14) / sup — du < oo, 
J\ aeiiuAa{u) 

there exists a constant L > 0 such that 

(1.15) inf / 
aenj0 

ta(t)dt > 10, 
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and a condition stated in terms of the Fourier transform. Each a 
satisfying (1.1) has a Fourier transform 

a(r) = ^ ^ + f°°[a{t) - a(oo)]e-lTtdt, r real,r # 0, 

which we separate into real and imaginary parts as 

(1.16) â(r) = (j)a(T)-iT0a(T). 

By [1, Lemma 4.1], each 0a(r) is nonnegative, continuous and strictly 
decreasing, with 

(1.17) \AUT~1) < 0a{T) < 12Ala(T~1), r > 0, 

where 

(1.18) Aia(u) = / sa(s)ds, u > 0, a G 71. 
Jo 

Note that (1.17) was originally proved for a(t) with a(oo) = 0. To see 
that (1.17) holds even with a(oo) > 0, define b(t) = a(t) — a(oo). Then 
0a(r) = 6>ò(r) + a(oo)r-2 , so 

6a(r) < \2Alh(r-1) + a(oo)r~2 < \2Alh{T~l) + 6a(oo)r~2 

= UA^ir'1) 

0a(r) > \Alb{r~l) + a(oo)r~2 > ^ ( r " 1 ) + ^-a^r'2 

o 5 1U 

- \Ma(r-1). 

For each a in 1Z, we define UJ — Co (a) by 9a(uj) = 1. Since (1.14) implies 
that for each a in 7£, J^° a(t)dt — oo, it follows that J0°° ta(t)dt — oo. 
Thus (1.17) shows that #a(0+) = oc and 0a(oc) = 0, so UJ is well defined. 
Now define LJ = u(a) by LU = UJ for J) > 2e and u; = 2e otherwise, where 
e is the positive constant given in (2.9) below. 

Our last condition on the family 1Z can now be given as 

(1.19) sup < oo. 

file:///aUt~1
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A similar assumption is also used by Hannsgen and Wheeler [7, (2.6)]. 
Both (1.19) and [7, (2.6)] rule out the family 11 = {a0(t) + c : 1 < c 
< oo}, where a^ satisfies (1.1). Tha t (1.2) does not hold for such 
families is shown in [7]. 

THEOREM 1. If1Z is a family of functions satisfying (1.14), (1.15) 
and (1.19), where each a in 71 satisfies (1.1), then (1.2) holds. 

COROLLARY. If 11 = {a0(t) + c : 0 < c < 1}, where a0 satisfies (1.1) 
and (1.13), then (1.2) holds. 

We give the proofs in §2. 

In [7] it is shown that , for certain families 1Z of completely monotonie 
functions, 

/•OO 

(1.20) / p(t) sup \u{t; a)\ dt < oo 
Jo aen 

where p is a weight function. Theorem 1 generalizes and improves 
their results for p(t) = 1. In particular the growth condition that they 
use [7, (2.5)] rules out functions a in 1Z tha t behave like {\ogvt)/t as 
t —• oo, 0 < p < 1. 

The condition (1.15) is used to obtain (2.11) below. In its place, 
Hannsgen and Wheeler use a similar type of condition [7, (2.10)] (p = 
1). Although (1.15) allows for example the function a(t) = 11/(t + l ) 2 

and (1.14) rules it out, (1.15) does not in general follows from (1.14). 
For example, let 1Z = {ar{t) : T > 1}, where 

rjfhr, o<t<r, 
aT{t)= { bT(t), T < t < T + 3, 

^ (T+2)2 ' T + 3 < t, 

and br is chosen arbitrarily except tha t it is required that each a^ 
satisfies (1.1). Then (1.15) holds as long as L is chosen so large that 
log(L + 1) + 1/(L + 1) > 11. Then we have 

pL pL rL ± 

inf / ta(t)dt = inf / taT(t)dt = / —^dt 

= log(L + 1) + - ^ - 1 > 10. 
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But an easy calculation shows that, for each u > 1 

1 1 = I A + 1 

aenuAaT(u) ~ uAau(u) u2 

so (1.14) does not hold. I do not know if (1.2) holds for this family. 

For families of the form 

n 

1l={j2XMt) ' Ai > 1, i = 0,l,2,...,n}, 
i=0 

where all ai(t) satisfy (1.1), it is not clear that the assumptions (1.14) 
and (1.15) are needed to prove (1.2). Also when n = 0, as already 
mentioned, if ao satisfies (1.1), then (1.2) holds (note that (1.1) implies 
(1.19) in this case.). Thus we finish the introduction with a conjecture. 

CONJECTURE. Even for n > 0, if allai satisfy (1.1), then (1.2) holds. 

2. a. Proof of Theorem 1. Throughout this paper we will use 
M to denote a constant that is independent of the functions in 7£, but 
whose value may change each time that it appears. To prove that (1.2) 
holds, we will find a constant k > 0 and a function h(t) such that 

(2.1) \u(t;a)\<h(t), t>k,ae1l 

and 

/»OO 

(2.2) / h(t) dt < oo. 
Jk 

To do this we will use the representation 

/* OO 7 T f 

(2.3) 7Tu(t;a)= R e ( - ^ -) dr, t>0,ae1l, 
Jo ^D(r;a)J 

(See (4.29) of [1]) where D(r; a) = a(r) + ir. Then (1.2) will follow by 
the estimate 

(2.4) \u(t;a)\ < 1, t > 0, a € H, 
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which is due to Levin [9]. (See [3, Theorem 2]. The number y/2 appears 
in [3, Theorem 2], instead of the number 1 because of an error.) In our 
proof we will need the estimates 

(2.5) - i ^ T " 1 ) < \â(r)\ < 4Aa(T~l), r > 0, 

(Aa(u) is defined in (1.12)) and 

(2.6) |â '(r) | < AOA^ÌT-1), T > 0 , 

from [13, Lemma 1], as well as the estimate 

(2.7) \BaiT~1) < 4>a{r) < 12 Ba{T~l), T>0 

from [8, p. 236], where 

(2.8) Ba{u) = / -sa'(s) ds, u > 0, a e U. 
Jo 

Note that (2.5) and (2.6) originally were shown for a(t) with a(oo) = 0. 
An easy check shows that the proofs of (2.5) and (2.6) still are valid 
when a(oo) > 0. 

We define e by 

(2.9) e = 1/L. 

Then, for 0 < r < e, we use (1.17) and (1.15) to obtain 

(2.10) 0a(r) > \Ala{T~l) > ^ ( e " 1 ) > 2. 

This gives us the first inequality in the estimate 

\D(T;a)\2 = \â(r) + ir\2 = ^ ( r ) + r\9a(r) - 1)' 

(2.11) ><Pl(T) + \T*6a(Tf>\\â(T)\2 

>à^(r-x), 0<T<e, 32 

file:///BaiT~1
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where the last inequality follows from (2.5). 

Now, for t > 1/e, we use (2.11) to obtain 
(2.12) 

fl/t irt . . rl/t j fl/t > 

Jo I D ( T ; O ) J I J0 \D(T;O)\ J0 Aa{T~l) 

4^2 -A/of0" dU < 4 V 2 

Now we integrate by parts to obtain 

poo Art 

(2.13) 

[°° elTt _ T 1 ( -el f°° elTtDT{T-a)J } 
ReJl/tW^)~t\D(t^;a)+Jt-l DHr;a) dli 

= I m - { ß 1 + / 1 } . 

By (2.11) we have 

(2.14) 
\ * 

< 
4s/2 

tAa{ty 

Combining (2.12)-(2.14) with (2.3), we obtain 

(2.15) 
. , ,. 8v/2 llm/il 

<4»(*) 

To estimate |Im£ 1 / i | , we first integrate by parts. This yields 
(2.16) 

Ô"(T) , 2D2
T(r;a) 

/•OO 

= R e ^ 2 ( 5 2 + / J d r ) 
Jt-1 

lD2(r;a) D*(r;a) 
dr\ 

By (2.11), (2.6), (2.10) and the inequalities t > 1/e and Ala(t) < 
tAa(t), we have 

\t~2B2\ < 
32(40^ia(^) + 1) 1280 

(2.17) 
t2Al(t) 

< + 
32 

tAa{t) tAa{t)Ala(t) 

< 
1284 

tAa(t)' 
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To estimate the integral term in (2.16) we begin with 

- T - M ^ T - 1 ) , (1 + AUT-1)) <-1>\^L dr 
A2(r-i) A3(r- i) 

where the first inequality follows from (2.11), (2.6) and the inequality 

rl/r 

(2.19) |â"(r)l < 6000 / r2a(r)dr < 6000 T ^ I ^ T - 1 ) , T > 0, 
Jo 

(See [1, Lemma 5.1]; (2.19) holds even when a(oo) < 0), the next two 
inequalities use Aia{r~l) < T~1Aa(r~l) and (2.10), and the equality 
follows by a change of variables. Note that 

1 /•' du 1 f* 1 , 
sup — / < — / sup ——-—du, 

therefore, by the Fubini theorem (1.14), and (2.18) we have 
(2.20) 

left < M / \rz / sup \-r--T 
1/e L «/!/€ aG^ L A i ( ^ j 

/ sup t - 2 / Jdridt <M it"2 / s 
A / e ae-R I J t - 1 ' Jl/e ^ Jl/e a 

- r \ i f 
Jl/e LaenAa(u) Ju 

f°° 1 
- / S U P A t 

Jx aEnuAa(u 

du dt 

r2dt 

du < oo. 

du 

We will need the inequalities 

(2.21) 24,000|£>(r;a)| > rA^r'1), e < T < ^ , a e 11, 

and 

(2.22) 144,000|L>(r;a)| > \r - u\, - < r, a G ft. 

file:///-r--T
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These are essentially the inequalities in [1; Lemma 5.2]. The proof, 
except for very minor changes is identical with the one given in [1] (see 
also §8 on [2] for the correction of an error in part of the proof of [1; 
Lemma 5.2]), and we will omit it. The main point is that we were 
able to choose the constants (24,000 and 144,000) in (2.21) and (2.22) 
independently of a in ft. 

We use (2.19), (2.6), (2.21), (1.17) and the definition of a; to obtain 
(2.23) 

r^<-^rm^+m± dr 

ru/2 
< Mt~2 I r-3dr + Ala(«,-i) AU«*-1) 

(Note that if a in ft is such that e = CJ/2, then clearly t 2 | / Jdr\ 

< Mit2). 

Next we use (2.22), (2.19), (2.6), (1.17) and the definition of a; to 
obtain 

puj — e /»oo "j 

/ + / \Jo 

Jui/2 Juj+e J 

t2 Uu/2 Ju>+el L l r - w | 2 | r - w | 3 
dr 

,2.24, <« ,_ (» ) r r%r i i dT 
ti2 ™'Uu,/2 Ju+el\T-u\2 

r r 21 i r r^-6
 P°° i i 

+ Mt-2\A2
la - + 1 / + / h prdr 

< M r 
"PL 

M 
T~z + T~ódr < -r-, a in ft. 

tz 

r2x 
(Note that Aia(2x) < 4Aia(x), x > 0, a in ft, since Jx

x sa(s) ds 

< a(x) Jx
x sds = 3a(x) J* sds < 3Ai(x).) 
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Next we use (2.6), (2.19), ReD(r;a) = </>a(r), (1.17), the definition 
of UJ and (2.7) to obtain 
(2.25) 

/^+€ I M r^ 
y j d T \ - ¥ 
Juj — e I v Jix) — e 

r - M l a ( r - 1 ) + <(r-1) + l 

4>l(r) 4>1(T) 
dT 

M 

M 

1 1 
• + B f l(ü;-i)2 B a (ü ; - i )3 

1 1 
+ • 

hi»)2 M")3 
M 

Thus (2.25), (2.24), (2.23), (2.18), (see (2.20)), (2.17), (2.16), (2.15) 
and (2.4) prove that (1.2) holds. 

Finally, to see that the corollary follows from Theorem 1, let 72. = 
{ao(t) + c : 0 < c < 1} where ao satisfies (1.1) and (1.13). Then clearly 

1 1 
sup = ———-, 
aenuAa(u) uAao(u) 

so (1.13) implies (1.14). The assumption (1.15) is used in the proof of 
Theorem 1 to obtain inequality (2.11). However (2.11) holds for this 
family 72, without the additional assumption (1.15) as is proved in [12]. 
Finally, to show (1.19), we note that 

c 
à(r) = <j>a{r) - irea(r) = â0(r) + — 

Thus it follows that 

= </>ao(r) - iT0ao(r) - ir 1c. 

l = 0a(Có) = 0ao(ù) + cu-2, 

C = ü> 2 ( l -0 a o (u)) . 

Since 6ao(oo) — 0, by (1.17), and 0 < c < 1, clearly UJ is bounded from 
above, thus so is UJ (say UJ = uj(a) < Mi). Then, by (2.7) and the fact 
that a'(t) = a'0(t), we have 

5 5 1 < — * < 
0„(W(O)) - ß a ^ " 1 ) - ßaCMf1) Bao(M^) 

M < oo. 
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The corollary now follows by applying Theorem 1. 
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