UNIFORM L^{1} BEHAVIOR IN CLASSES OF INTEGRODIFFERENTIAL EQUATIONS WITH CONVEX KERNELS

RICHARD NOREN

Introduction. We consider families \mathcal{R} of functions such that each a in \mathcal{R} satisfies

$$
\begin{equation*}
\int_{0}^{1} a(s) d s<\infty \tag{1.1}
\end{equation*}
$$

a is nonconstant, nonegative, nonincreasing, convex, and $-a^{\prime}$ is convex.
We will show, for certain such families, that

$$
\begin{equation*}
\int_{0}^{\infty} \sup _{a \in \mathcal{R}}|u(t ; a)| d t<\infty \tag{1.2}
\end{equation*}
$$

where $u(t)=u(t ; a)$ is the solution of the scalar problem

$$
\begin{equation*}
u^{\prime}(t)+\int_{0}^{t} a(t-\tau) u(\tau) d \tau=0, \quad u(0)=1, t \geq 0, a \in \mathcal{R} \tag{1.3}
\end{equation*}
$$

When $\mathcal{R}=\left\{\lambda a_{0}(t): 0<\lambda_{0} \leq \lambda<\infty\right\},(1.2)$ is true. These and similar results were proved in $[\mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{5}, 10$ and $\mathbf{1 1}]$. The technique of proof relies on the methods of Shea and Wainger [13].
The estimate (1.2) was used in $[\mathbf{1}, \mathbf{4}, \mathbf{5}$ and 11] to estimate the resolvent kernel

$$
U(t)=\int_{\lambda_{0}}^{\infty} u\left(t ; \lambda a_{0}\right) d E_{\lambda}
$$

of the problem

$$
\begin{equation*}
y^{\prime}(t)+\int_{0}^{t} a_{0}(t-s) L y(s) d s=f(t), \quad y(0)=y_{0} \tag{1.4}
\end{equation*}
$$

in a Hilbert space \mathcal{H}. The operator L is a densely defined self-adjoint linear operator with spectrum contained in $\left[\lambda_{0}, \infty\right)\left(\lambda_{0}>0\right), y_{0}$ and
$f(t)$ are prescribed elements of \mathcal{H}, and $\left\{E_{\lambda}\right\}$ is the spectral family corresponding to L.
Since (1.2) implies that

$$
\begin{equation*}
\int_{0}^{\infty}\|U(t)\| d t<\infty \tag{1.5}
\end{equation*}
$$

the resolvent formula

$$
\begin{equation*}
y(t)=U(t) y_{0}+\int_{0}^{t} U(t-s) f(s) d s \tag{1.6}
\end{equation*}
$$

for (1.4) gives information about the asymptotic behavior of $y(t)$ as $t \rightarrow \infty$.
For more general classes $\mathcal{R}=\{a(t ; \lambda):-\infty<\lambda<\infty\}$, (1.2) implies that (1.5) holds for the resolvent

$$
\begin{equation*}
U(t)=\int_{-\infty}^{\infty} u(t ; a(\cdot, \lambda)) d E_{\lambda} \tag{1.7}
\end{equation*}
$$

for the problem

$$
\begin{equation*}
y^{\prime}(t)+\int_{0}^{t} L(t-s) y(s) d s=f(t), \quad y(0)=y_{0}, t \geq 0 \tag{1.8}
\end{equation*}
$$

with

$$
\begin{equation*}
L(t)=\int_{-\infty}^{\infty} a(t ; \lambda) d E_{\lambda}, \tag{1.9}
\end{equation*}
$$

where $\left\{E_{\lambda}\right\}$ is a fixed resolution of the indentity in \mathcal{H}.
Our results for (1.8) include some operators of the form

$$
\begin{equation*}
L(t)=\sum_{k=0}^{n} a_{k}(t) L_{k}, \tag{1.10}
\end{equation*}
$$

and generalizes some of the results in [7]. The requirement that the $L_{k}, k=0, \ldots, n$, have spectral decompositions with respect to a common resolution of the identity $\left\{E_{\lambda}\right\}$ greatly restricts the applicability of
the result (1.5) with L as in (1.10), but see [7] for applications, including a linear model for heat flow in a rectangular, orthotropic material with memory in which the axes of orthotropy are parallel to the edges of the rectangle.

For families $\mathcal{R}=\left\{a_{0}(t)+c: 0 \leq c \leq 1\right\}$, where a_{0} is a fixed function satisfying (1.1), Hannsgen and Wheeler show in [6] that $a_{0} \in L^{1}(1, \infty)$ is necessary for (1.2) to hold. They also show that (1.2) does not even hold for $a_{0}(t)=\left(1-e^{-t}\right) / t$ (which behaves like $1 / t$ as $t \rightarrow \infty$). In [12], it is shown that the condition

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\log u}{u A_{a_{0}}(u)} d u<\infty \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{a_{0}}(u) \equiv \int_{0}^{u} a_{0}(s) d s, u>0 \tag{1.12}
\end{equation*}
$$

along with (1.1) implies (1.2). In [$\mathbf{6}],(1.2)$ is shown to follow when a_{0} is completely nonotonic $\left((-1)^{n} a_{0}^{(n)}(t) \geq 0, n=0,1,2,3, \ldots, t \geq 0\right)$ and satisfies a growth condition at ∞ that is similar to (1.11). Thus (1.11) and the condition used in $[\mathbf{6}]$ both allow functions a_{0} that behave like $\left(\log ^{p} t\right) / t$ as $t \rightarrow \infty$, for $p>1$ and rule out functions a_{0} that behave like $\left(\log ^{p} t\right) / t$ as $t \rightarrow \infty$, for $0<p \leq 1$. As a corollary to our main result, Theorem 1, we show that (1.2) holds if a_{0} satisfies (1.1) and

$$
\begin{equation*}
\int_{1}^{\infty} \frac{1}{u A_{a_{0}}(u)} d u<\infty \tag{1.13}
\end{equation*}
$$

This improvement of the growth condition at ∞ allows functions a_{0} that behave like $\left(\log ^{p} t\right) / t$ as $t \rightarrow \infty$, even for $0<p \leq 1$.

The conditions on the family \mathcal{R} that we will use are

$$
\begin{equation*}
\int_{1}^{\infty} \sup _{a \in \mathcal{R}} \frac{1}{u A_{a}(u)} d u<\infty \tag{1.14}
\end{equation*}
$$

there exists a constant $L>0$ such that

$$
\begin{equation*}
\inf _{a \in \mathcal{R}} \int_{0}^{L} t a(t) d t \geq 10 \tag{1.15}
\end{equation*}
$$

and a condition stated in terms of the Fourier transform. Each a satisfying (1.1) has a Fourier transform

$$
\hat{a}(\tau)=\frac{a(\infty)}{i \tau}+\int_{0}^{\infty}[a(t)-a(\infty)] e^{-i \tau t} d t, \tau \operatorname{real}, \tau \frac{\perp}{\tau} 0
$$

which we separate into real and imaginary parts as

$$
\begin{equation*}
\hat{a}(\tau)=\phi_{a}(\tau)-i \tau \theta_{a}(\tau) \tag{1.16}
\end{equation*}
$$

By [1, Lemma 4.1], each $\theta_{a}(\tau)$ is nonnegative, continuous and strictly decreasing, with

$$
\begin{equation*}
\frac{1}{5} A_{1 a}\left(\tau^{-1}\right) \leq \theta_{a}(\tau) \leq 12 A_{1 a}\left(\tau^{-1}\right), \tau>0 \tag{1.17}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{1 a}(u)=\int_{0}^{u} s a(s) d s, u>0, a \in \mathcal{R} \tag{1.18}
\end{equation*}
$$

Note that (1.17) was originally proved for $a(t)$ with $a(\infty)=0$. To see that (1.17) holds even with $a(\infty)>0$, define $b(t)=a(t)-a(\infty)$. Then $\theta_{a}(\tau)=\theta_{b}(\tau)+a(\infty) \tau^{-2}$, so

$$
\begin{aligned}
\theta_{a}(\tau) \leq 12 A_{1 b}\left(\tau^{-1}\right)+a(\infty) \tau^{-2} & \leq 12 A_{1 b}\left(\tau^{-1}\right)+6 a(\infty) \tau^{-2} \\
& =12 A_{1 a}\left(\tau^{-1}\right) \\
\theta_{a}(\tau) \geq \frac{1}{5} A_{1 b}\left(\tau^{-1}\right)+a(\infty) \tau^{-2} & \geq \frac{1}{5} A_{1 b}\left(\tau^{-1}\right)+\frac{1}{10} a(\infty) \tau^{-2} \\
& =\frac{1}{5} A_{1 a}\left(\tau^{-1}\right)
\end{aligned}
$$

For each a in \mathcal{R}, we define $\tilde{\omega}=\tilde{\omega}(a)$ by $\theta_{a}(\tilde{\omega})=1$. Since (1.14) implies that for each a in $\mathcal{R}, \int_{1}^{\infty} a(t) d t=\infty$, it follows that $\int_{0}^{\infty} t a(t) d t=\infty$. Thus (1.17) shows that $\theta_{a}(0+)=\infty$ and $\theta_{a}(\infty)=0$, so $\tilde{\omega}$ is well defined. Now define $\omega=\omega(a)$ by $\omega=\tilde{\omega}$ for $\tilde{\omega} \geq 2 \epsilon$ and $\omega=2 \epsilon$ otherwise, where ϵ is the positive constant given in (2.9) below.

Our last condition on the family \mathcal{R} can now be given as

$$
\begin{equation*}
\sup _{a \in \mathcal{R}} \frac{1}{\phi_{a}(\omega(a))}<\infty \tag{1.19}
\end{equation*}
$$

A similar assumption is also used by Hannsgen and Wheeler [7, (2.6)]. Both (1.19) and [7, (2.6)] rule out the family $\mathcal{R}=\left\{a_{0}(t)+c: 1 \leq c\right.$ $<\infty\}$, where a_{0} satisfies (1.1). That (1.2) does not hold for such families is shown in [7].

THEOREM 1. If \mathcal{R} is a family of functions satisfying (1.14), (1.15) and (1.19), where each a in \mathcal{R} satisfies (1.1), then (1.2) holds.

Corollary. If $\mathcal{R}=\left\{a_{0}(t)+c: 0 \leq c \leq 1\right\}$, where a_{0} satisfies (1.1) and (1.13), then (1.2) holds.

We give the proofs in $\S 2$.
In $[\mathbf{7}]$ it is shown that, for certain families \mathcal{R} of completely monotonic functions,

$$
\begin{equation*}
\int_{0}^{\infty} \rho(t) \sup _{a \in \mathcal{R}}|u(t ; a)| d t<\infty \tag{1.20}
\end{equation*}
$$

where ρ is a weight function. Theorem 1 generalizes and improves their results for $\rho(t) \equiv 1$. In particular the growth condition that they use $[\mathbf{7},(2.5)]$ rules out functions a in \mathcal{R} that behave like $\left(\log ^{p} t\right) / t$ as $t \rightarrow \infty, 0<p \leq 1$.

The condition (1.15) is used to obtain (2.11) below. In its place, Hannsgen and Wheeler use a similar type of condition [7, (2.10)] ($\rho \equiv$ 1). Although (1.15) allows for example the function $a(t)=11 /(t+1)^{2}$ and (1.14) rules it out, (1.15) does not in general follows from (1.14). For example, let $\mathcal{R}=\left\{a_{T}(t): T \geq 1\right\}$, where

$$
a_{T}(t)=\left\{\begin{array}{lc}
\frac{1}{(t+1)^{2}}, & 0 \leq t \leq T \\
b_{T}(t), & T \leq t \leq T+3, \\
\frac{1}{(T+2)^{2}}, & T+3 \leq t
\end{array}\right.
$$

and b_{T} is chosen arbitrarily except that it is required that each a_{T} satisfies (1.1). Then (1.15) holds as long as L is chosen so large that $\log (L+1)+1 /(L+1) \geq 11$. Then we have

$$
\begin{aligned}
\inf _{a \in \mathcal{R}} \int_{0}^{L} t a(t) d t & =\inf _{T \geq 1} \int_{0}^{L} t a_{T}(t) d t=\int_{0}^{L} \frac{t}{(t+1)^{2}} d t \\
& =\log (L+1)+\frac{1}{L+1}-1 \geq 10
\end{aligned}
$$

But an easy calculation shows that, for each $u \geq 1$

$$
\sup _{a \in \mathcal{R}} \frac{1}{u A_{a_{T}}(u)} \geq \frac{1}{u A_{a_{u}}(u)}=\frac{u+1}{u^{2}}
$$

so (1.14) does not hold. I do not know if (1.2) holds for this family.
For families of the form

$$
\mathcal{R}=\left\{\sum_{i=0}^{n} \lambda_{i} a_{i}(t): \lambda_{i} \geq 1, i=0,1,2, \ldots, n\right\}
$$

where all $a_{i}(t)$ satisfy (1.1), it is not clear that the assumptions (1.14) and (1.15) are needed to prove (1.2). Also when $n=0$, as already mentioned, if a_{0} satisfies (1.1), then (1.2) holds (note that (1.1) implies (1.19) in this case.). Thus we finish the introduction with a conjecture.

CONJECTURE. Even for $n>0$, if all a_{i} satisfy (1.1), then (1.2) holds.
2. a. Proof of Theorem 1. Throughout this paper we will use M to denote a constant that is independent of the functions in \mathcal{R}, but whose value may change each time that it appears. To prove that (1.2) holds, we will find a constant $k>0$ and a function $h(t)$ such that

$$
\begin{equation*}
|u(t ; a)| \leq h(t), \quad t \geq k, a \in \mathcal{R} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{k}^{\infty} h(t) d t<\infty \tag{2.2}
\end{equation*}
$$

To do this we will use the representation

$$
\begin{equation*}
\pi u(t ; a)=\int_{0}^{\infty} \operatorname{Re}\left\{\frac{e^{i \tau t}}{D(\tau ; a)}\right\} d \tau, \quad t>0, a \in \mathcal{R} \tag{2.3}
\end{equation*}
$$

(See (4.29) of $[\mathbf{1}]$) where $D(\tau ; a) \equiv \hat{a}(\tau)+i \tau$. Then (1.2) will follow by the estimate

$$
\begin{equation*}
|u(t ; a)| \leq 1, \quad t \geq 0, a \in \mathcal{R} \tag{2.4}
\end{equation*}
$$

which is due to Levin [9]. (See [3, Theorem 2]. The number $\sqrt{2}$ appears in [3, Theorem 2], instead of the number 1 because of an error.) In our proof we will need the estimates

$$
\begin{equation*}
\frac{1}{2 \sqrt{2}} A_{a}\left(\tau^{-1}\right) \leq|\hat{a}(\tau)| \leq 4 A_{a}\left(\tau^{-1}\right), \quad \tau>0 \tag{2.5}
\end{equation*}
$$

$\left(A_{a}(u)\right.$ is defined in (1.12)) and

$$
\begin{equation*}
\left|\hat{a}^{\prime}(\tau)\right| \leq 40 A_{1 a}\left(\tau^{-1}\right), \quad \tau>0 \tag{2.6}
\end{equation*}
$$

from [13, Lemma 1], as well as the estimate

$$
\begin{equation*}
\frac{1}{5} B_{a}\left(\tau^{-1}\right) \leq \phi_{a}(\tau) \leq 12 B_{a}\left(\tau^{-1}\right), \quad \tau>0 \tag{2.7}
\end{equation*}
$$

from $[8$, p. 236] , where

$$
\begin{equation*}
B_{a}(u)=\int_{0}^{u}-s a^{\prime}(s) d s, \quad u>0, a \in \mathcal{R} \tag{2.8}
\end{equation*}
$$

Note that (2.5) and (2.6) originally were shown for $a(t)$ with $a(\infty)=0$. An easy check shows that the proofs of (2.5) and (2.6) still are valid when $a(\infty)>0$.
We define ϵ by

$$
\begin{equation*}
\epsilon=1 / L . \tag{2.9}
\end{equation*}
$$

Then, for $0<\tau \leq \epsilon$, we use (1.17) and (1.15) to obtain

$$
\begin{equation*}
\theta_{a}(\tau) \geq \frac{1}{5} A_{1 a}\left(\tau^{-1}\right) \geq \frac{1}{5} A_{1 a}\left(\epsilon^{-1}\right) \geq 2 \tag{2.10}
\end{equation*}
$$

This gives us the first inequality in the estimate

$$
\begin{align*}
|D(\tau ; a)|^{2} & =|\hat{a}(\tau)+i \tau|^{2}=\phi_{a}^{2}(\tau)+\tau^{2}\left(\theta_{a}(\tau)-1\right)^{2} \\
& \geq \phi_{a}^{2}(\tau)+\frac{1}{4} \tau^{2} \theta_{a}(\tau)^{2} \geq \frac{1}{4}|\hat{a}(\tau)|^{2} \tag{2.11}\\
& \geq \frac{1}{32} A_{a}^{2}\left(\tau^{-1}\right), \quad 0<\tau \leq \epsilon
\end{align*}
$$

where the last inequality follows from (2.5).
Now, for $t \geq 1 / \epsilon$, we use (2.11) to obtain

$$
\begin{align*}
\left|\int_{0}^{1 / t} \operatorname{Re}\left\{\frac{e^{i \tau t}}{D(\tau ; a)}\right\} d \tau\right| & \leq \int_{0}^{1 / t} \frac{d \tau}{|D(\tau ; a)|} \leq 4 \sqrt{2} \int_{0}^{1 / t} \frac{d \tau}{A_{a}\left(\tau^{-1}\right)} \tag{2.12}\\
& =4 \sqrt{2} \int_{t}^{\infty} \frac{d u}{u^{2} A_{a}(u)} \leq \frac{4 \sqrt{2}}{t A_{a}(t)}
\end{align*}
$$

Now we integrate by parts to obtain

$$
\begin{align*}
\operatorname{Re} \int_{1 / t}^{\infty} \frac{e^{i \tau t}}{D(\tau ; a)} & =\operatorname{Im} \frac{1}{t}\left\{\frac{-e^{i}}{D\left(t^{-1} ; a\right)}+\int_{t^{-1}}^{\infty} \frac{e^{i \tau t} D_{\tau}(\tau ; a)}{D^{2}(\tau ; a)} d \tau\right\} \tag{2.13}\\
& \equiv \operatorname{Im} \frac{1}{t}\left\{B_{1}+I_{1}\right\}
\end{align*}
$$

By (2.11) we have

$$
\begin{equation*}
\left|\frac{1}{t} B_{1}\right| \leq \frac{4 \sqrt{2}}{t A_{a}(t)} \tag{2.14}
\end{equation*}
$$

Combining (2.12)-(2.14) with (2.3), we obtain

$$
\begin{equation*}
\pi|u(t ; a)| \leq \frac{8 \sqrt{2}}{t A_{a}(t)}+\frac{\left|\operatorname{Im} I_{1}\right|}{t} \tag{2.15}
\end{equation*}
$$

To estimate $\left|\operatorname{Im} t^{-1} I_{1}\right|$, we first integrate by parts. This yields

$$
\begin{align*}
\operatorname{Im} t^{-1} I_{1} & =\operatorname{Re} t^{-2}\left(\frac{e^{i} D_{\tau}\left(t^{-1} ; a\right)}{D^{2}\left(t^{-1} ; a\right)}+\int_{t^{-1}}^{\infty} e^{i \tau t}\left[\frac{\hat{a}^{\prime \prime}(\tau)}{D^{2}(\tau ; a)}+\frac{2 D_{\tau}^{2}(\tau ; a)}{D^{3}(\tau ; a)}\right] d \tau\right) \tag{2.16}\\
& \equiv \operatorname{Re} t^{-2}\left(B_{2}+\int_{t^{-1}}^{\infty} J d \tau\right)
\end{align*}
$$

By (2.11), (2.6), (2.10) and the inequalities $t \geq 1 / \epsilon$ and $A_{1 a}(t) \leq$ $t A_{a}(t)$, we have

$$
\begin{align*}
\left|t^{-2} B_{2}\right| & \leq \frac{32\left(40 A_{1 a}(t)+1\right)}{t^{2} A_{a}^{2}(t)} \leq \frac{1280}{t A_{a}(t)}+\frac{32}{t A_{a}(t) A_{1 a}(t)} \tag{2.17}\\
& <\frac{1284}{t A_{a}(t)}
\end{align*}
$$

To estimate the integral term in (2.16) we begin with

$$
\begin{align*}
\left|t^{-2} \int_{t^{-1}}^{\epsilon} J d \tau\right| & \leq \frac{M}{t^{2}} \int_{t^{-1}}^{\epsilon}\left[\frac{\tau^{-1} A_{1 a}\left(\tau^{-1}\right)}{A_{a}^{2}\left(\tau^{-1}\right)}+\frac{\left(1+A_{1 a}^{2}\left(\tau^{-1}\right)\right)}{A_{a}^{3}\left(\tau^{-1}\right)}\right] d \tau \\
& \leq \frac{M}{t^{2}} \int_{t^{-1}}^{\epsilon} \frac{\tau^{-1} A_{1 a}\left(\tau^{-1}\right)}{A_{a}^{2}\left(\tau^{-1}\right)} d \tau \tag{2.18}\\
& \leq \frac{M}{t^{2}} \int_{t^{-1}}^{\epsilon} \frac{\tau^{-2}}{A_{a}\left(\tau^{-1}\right)} d \tau=\frac{M}{t^{2}} \int_{1 / \epsilon}^{t} \frac{d u}{A_{a}(u)}
\end{align*}
$$

where the first inequality follows from (2.11), (2.6) and the inequality

$$
\begin{equation*}
\left|\hat{a}^{\prime \prime}(\tau)\right| \leq 6000 \int_{0}^{1 / \tau} r^{2} a(r) d \tau \leq 6000 \tau^{-1} A_{1 a}\left(\tau^{-1}\right), \tau>0 \tag{2.19}
\end{equation*}
$$

(See [1, Lemma 5.1]; (2.19) holds even when $a(\infty)<0$), the next two inequalities use $A_{1 a}\left(\tau^{-1}\right) \leq \tau^{-1} A_{a}\left(\tau^{-1}\right)$ and (2.10), and the equality follows by a change of variables. Note that

$$
\sup _{a \in R} \frac{1}{t^{2}} \int_{1 / \epsilon}^{t} \frac{d u}{A_{a}(u)} \leq \frac{1}{t^{2}} \int_{1 / \in}^{t} \sup _{a \in R} \frac{1}{A_{a}(u)} d u
$$

therefore, by the Fubini theorem (1.14), and (2.18) we have (2.20)

$$
\begin{aligned}
\int_{1 / \epsilon}^{\infty} \sup _{a \in \mathcal{R}}\left|t^{-2} \int_{t^{-1}}^{\epsilon} J d \tau\right| d t & \leq M \int_{1 / \epsilon}^{\infty}\left[t^{-2} \int_{1 / \in}^{t} \sup _{a \in \mathcal{R}}\left[\frac{1}{A_{a}(u)} d u\right] d t\right. \\
& =\int_{1 / \epsilon}^{\infty}\left[\sup _{a \in \mathcal{R}} \frac{1}{A_{a}(u)} \int_{u}^{\infty} t^{-2} d t\right] d u \\
& \leq \int_{1}^{\infty} \sup _{a \in \mathcal{R}} \frac{1}{u A_{a}(u)} d u<\infty
\end{aligned}
$$

We will need the inequalities

$$
\begin{equation*}
24,000|D(\tau ; a)| \geq \tau A_{1 a}\left(\tau^{-1}\right), \quad \epsilon \leq \tau \leq \frac{\omega}{2}, a \in \mathcal{R} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
144,000|D(\tau ; a)| \geq|\tau-\omega|, \quad \frac{\omega}{2} \leq \tau, a \in \mathcal{R} \tag{2.22}
\end{equation*}
$$

These are essentially the inequalities in [1; Lemma 5.2]. The proof, except for very minor changes is identical with the one given in $[\mathbf{1}]$ (see also $\S 8$ on [2] for the correction of an error in part of the proof of $[\mathbf{1}$; Lemma 5.2]), and we will omit it. The main point is that we were able to choose the constants (24,000 and 144,000) in (2.21) and (2.22) independently of a in \mathcal{R}.

We use (2.19), (2.6), (2.21), (1.17) and the definition of ω to obtain (2.23)

$$
\begin{aligned}
t^{-2}\left|\int_{\varepsilon}^{\omega / 2} J d \tau\right| & \leq M t^{-2} \int_{\epsilon}^{\omega / 2}\left[\frac{\tau^{-1} A_{1 a}\left(\tau^{-1}\right)}{\left(\tau A_{1 a}\left(\tau^{-1}\right)\right)^{2}}+\frac{A_{1 a}^{2}\left(\tau^{-1}\right)+1}{\left(\tau A_{1 a}\left(\tau^{-1}\right)\right)^{3}}\right] d \tau \\
& \leq M t^{-2} \int_{\epsilon}^{\omega / 2} \tau^{-3} d \tau\left[\frac{1}{A_{1 a}\left(\omega^{-1}\right)}+\frac{1}{A_{1 a}^{3}\left(\omega^{-1}\right)}\right] \\
& \leq \frac{M}{t^{2}}(a \in \mathcal{R})
\end{aligned}
$$

(Note that if a in \mathcal{R} is such that $\epsilon=\omega / 2$, then clearly $t^{-2}\left|\int_{\epsilon}^{\omega / 2} J d \tau\right|$

$$
\left.\leq M / t^{2}\right)
$$

Next we use $(2.22),(2.19),(2.6),(1.17)$ and the definition of ω to obtain

$$
\begin{align*}
& t^{-2}\left|\left[\int_{\omega / 2}^{\omega-\epsilon}+\int_{\omega+\epsilon}^{\infty}\right] J d \tau\right| \\
& \leq \frac{M}{t^{2}}\left[\int_{\omega / 2}^{\omega-\epsilon}+\int_{\omega+\varepsilon}^{\infty}\right]\left[\frac{\tau^{-1} A_{1 a}\left(\tau^{-1}\right)}{|\tau-\omega|^{2}}+\frac{A_{1 a}^{2}\left(\tau^{-1}\right)+1}{|\tau-\omega|^{3}}\right] d \tau \\
& \leq \frac{M}{\epsilon t^{2}} A_{1 a}\left(\frac{2}{\omega}\right)\left[\int_{\omega / 2}^{\omega-\epsilon}+\int_{\omega+\epsilon}^{\infty}\right] \frac{1}{|\tau-\omega|^{2}} d \tau \tag{2.24}\\
& \quad+M t^{-2}\left[A_{1 a}^{2}\left[\frac{2}{\omega}\right]+1\right]\left[\int_{\omega / 2}^{\omega-\epsilon}+\int_{\omega+\epsilon}^{\infty}\right] \frac{1}{|\tau-\omega|^{3}} d \tau \\
& \leq \\
& \quad \frac{M}{t^{2}} \int_{\epsilon}^{\infty} \tau^{-2}+\tau^{-3} d \tau \leq \frac{M}{t^{2}}, \quad a \text { in } \mathcal{R}
\end{align*}
$$

(Note that $A_{1 a}(2 x) \leq 4 A_{1 a}(x), x>0, a$ in \mathcal{R}, since $\int_{x}^{2 x} s a(s) d s$ $\leq a(x) \int_{x}^{2 x} s d s=3 a(x) \int_{0}^{x} s d s \leq 3 A_{1}(x)$.)

Next we use $(2.6),(2.19), \operatorname{Re} D(\tau ; a)=\phi_{a}(\tau),(1.17)$, the definition of ω and (2.7) to obtain

$$
\begin{align*}
\left|t^{-2} \int_{\omega-\epsilon}^{\omega+\epsilon} J d \tau\right| & \leq \frac{M}{t^{2}} \int_{\omega-\epsilon}^{\omega+\epsilon}\left[\frac{\tau^{-1} A_{1 a}\left(\tau^{-1}\right)}{\phi_{a}^{2}(\tau)}+\frac{A_{1 a}^{2}\left(\tau^{-1}\right)+1}{\phi_{a}^{3}(\tau)}\right] d \tau \tag{2.25}\\
& \leq \frac{M}{t^{2}}\left[\frac{1}{B_{a}\left(\omega^{-1}\right)^{2}}+\frac{1}{B_{a}\left(\omega^{-1}\right)^{3}}\right] \\
& \leq \frac{M}{t^{2}}\left[\frac{1}{\phi_{a}(\omega)^{2}}+\frac{1}{\phi_{a}(\omega)^{3}}\right] \leq \frac{M}{t^{2}}
\end{align*}
$$

Thus (2.25), (2.24), (2.23), (2.18), (see (2.20)), (2.17), (2.16), (2.15) and (2.4) prove that (1.2) holds.
Finally, to see that the corollary follows from Theorem 1 , let $\mathcal{R}=$ $\left\{a_{0}(t)+c: 0 \leq c \leq 1\right\}$ where a_{0} satisfies (1.1) and (1.13). Then clearly

$$
\sup _{a \in \mathcal{R}} \frac{1}{u A_{a}(u)}=\frac{1}{u A_{a_{0}}(u)},
$$

so (1.13) implies (1.14). The assumption (1.15) is used in the proof of Theorem 1 to obtain inequality (2.11). However (2.11) holds for this family \mathcal{R}, without the additional assumption (1.15) as is proved in [12]. Finally, to show (1.19), we note that

$$
\begin{aligned}
\hat{a}(\tau) & =\phi_{a}(\tau)-i \tau \theta_{a}(\tau)=\hat{a}_{0}(\tau)+\frac{c}{i \tau} \\
& =\phi_{a_{0}}(\tau)-i \tau \theta_{a_{0}}(\tau)-i \tau^{-1} c
\end{aligned}
$$

Thus it follows that

$$
1=\theta_{a}(\tilde{\omega})=\theta_{a_{0}}(\tilde{\omega})+c \tilde{\omega}^{-2}
$$

or

$$
c=\tilde{\omega}^{2}\left(1-\theta_{a_{0}}(\tilde{\omega})\right)
$$

Since $\theta_{a_{0}}(\infty)=0$, by (1.17), and $0 \leq c \leq 1$, clearly $\tilde{\omega}$ is bounded from above, thus so is ω (say $\left.\omega=\omega(a) \leq M_{1}\right)$. Then, by (2.7) and the fact that $a^{\prime}(t)=a_{0}^{\prime}(t)$, we have

$$
\frac{1}{\phi_{a}(\omega(a))} \leq \frac{5}{B_{a}\left(\omega^{-1}\right)} \leq \frac{5}{B_{a}\left(M_{1}^{-1}\right)}=\frac{5}{B_{a_{0}}\left(M_{1}^{-1}\right)} \equiv M<\infty
$$

The corollary now follows by applying Theorem 1.

REFERENCES

1. R.W. Carr and K.B. Hannsgen, A nonhomoegeneous integrodifferential equation in Hilbert space, SIAM J. Math. Anal. 10 (1979), 961-984.
2. - Resolvent formulas for a Volterra equation in Hilbert space, SIAM J. Math. Anal. 13 (1982), 459-483.
3. K.B. Hannsgen, A Volterra equation with parameter, SIAM J. Math. Anal. 4 (1973), 22-30.
4. - The resolvent kernel of an integrodifferential equation in Hilbert space, SIAM J. Math. Anal. 7 (1976), 481-490.
5. - A linear integrodifferential equation for viscoelastic rods and plates, Quart. Appl. Math. 41 (1983), 75-84.
6. K.B. Hannsgen and R.L. Wheeler, A singular limit problem for an integrodifferential equation, J. Integral Equations 5 (1983), 199-209.
7. - Uniform L^{1} behavior in classes of integrodifferential equations with completely monotonic kernels, SIAM J. Math. Anal. 15 (1984), 579-594.
8. - Behavior of the solution of a Volterra equation as a parameter tends to infinity, J. Integral Equations 7 (1984), 229-237.
9. J.J. Levin, The asymptotic behavior of the solution of a Volterra equation, Proc. Amer. Math. Soc. 14 (1963), 534-541.
10. R.D. Noren, Uniform L^{1} behavior for the solution of a Volterra equation with a parameter, SIAM J. Math. Anal. 19 (1988), 270-286.
11. -, A linear Volterra integrodifferential equation for viscoelastic rods and plates, Quart. Appl. Math. 45 (1987), 503-514.
12. \quad A singular limit problem for a Volterra equation, SIAM J. Math. Anal. 19 (1988).
13. D.F. Shea and S. Wainger, Variants of the Wiener-Levy theorem, with applications to stability problems for some Volterra integral equations, Amer. J. Math. 97 (1975), 312-343.

Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23529-0077

