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ON FUNCTION COMPOSITIONS
THAT ARE POLYNOMIALS

ERHARD AICHINGER

ABSTRACT. For a polynomial map f : kn → km (k a
field), we investigate those polynomials g ∈ k[t1, . . . , tn] that
can be written as a composition g = h ◦ f , where h : km → k
is an arbitrary function. In the case that k is algebraically
closed of characteristic 0 and f is surjective, we will show
that g = h ◦ f implies that h is a polynomial.

1. Introduction. In the present note, we investigate the situation
where the value of a polynomial depends only on the value of certain
given polynomials. To be precise, let k be a field, m,n ∈ N, and
let g, f1, . . . , fm ∈ k[t1, . . . , tn]. We say that g is determined by
f = (f1, . . . , fm) if, for all a , b ∈ kn with f1(a) = f1(b), . . . , fm(a) =
fm(b), we have g(a) = g(b). In other words, g is determined by f if
and only if there is a function h : km → k such that

g(a) = h(f1(a), . . . , fm(a)) for all a ∈ kn.

For given f1, . . . , fm ∈ k[t1, . . . , tn], the set of all elements of k[t1, . . . , tn]
that are determined by (f1, . . . , fm) is a k-subalgebra of k[t1, . . . , tn]; we
will denote this k-subalgebra by k⟨f1, . . . , fm⟩ or k⟨f ⟩. As an example,
we see that t1 ∈ R⟨t13⟩; more generally, if (f1, . . . , fm) ∈ k[t1, . . . , tn]

m

induces an injective map from kn to km, we have k⟨f ⟩ = k[t1, . . . , tn].
In the present note, we will describe k⟨f ⟩ in the case where k is alge-
braically closed and f induces a map from kn to km that is surjective,
or, in a sense specified later, at least close to being surjective.

The first set that k⟨f ⟩ is compared with is the k-subalgebra
of k[t1, . . . , tn] generated by {f1, . . . , fm}, which we will denote by
k[f1, . . . , fm] or k[f ]; in this algebra, we find exactly those polynomials
that can be written as p(f1, . . . , fm) with p ∈ k[x1, . . . , xm]. Clearly,
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k[f ] ⊆ k⟨f ⟩. The other inclusion need not hold in general: on any field
k, let f1 = t1, f2 = t1t2. Then f2

2 /f1 = t1t
2
2 is (f1, f2)-determined, but

t1t
2
2 /∈ k[f1, f2].

The second set with which we will compare k⟨f ⟩ is the set of all
polynomials that can be written as rational functions in f1, . . . , fm.
We denote the quotient field of k[t1, . . . , tn] by k(t1, . . . , tn). For
r1, . . . , rm ∈ k(t1, . . . , tn), the subfield of k(t1, . . . , tn) that is generated
by k∪{r1, . . . , rm} is denoted k(r1, . . . , rm). We first observe that there
are polynomials that can be written as rational functions in f , but fail
to be f -determined. As an example, we see that t2 ∈ k(t1, t1t2), but
since (0, 0 · 0) = (0, 0 · 1) and 0 ̸= 1, the polynomial t2 is not (t1, t1t2)-
determined. As for the converse inclusion, we take a field k of positive
characteristic χ. Then t1 is (t1

χ)-determined, but t1 /∈ k(t1
χ).

On the positive side, it is known that k[f1, . . . , fm] = k⟨f1, . . . , fm⟩
holds in the following cases (cf., [1, Theorem 3.1]):

• k is algebraically closed, m = n = 1, and the derivative f ′ of f
is not the zero polynomial, and, more generally,

• k is algebraically closed, m = n, and there are univariate
polynomials g1, . . . , gm ∈ k[t] with g′1 ̸= 0, . . . , g′m ̸= 0, f1 =
g1(t1), . . . , fm = gm(tm).

Let us now briefly outline the results obtained in the present note.
Let k be an algebraically closed field of characteristic 0, and let
f1, . . . , fm ∈ k[t1, . . . , tn] be algebraically independent over k. Then
we have k⟨f ⟩ ⊆ k(f ) (Theorem 3.3). The equality k[f ] = k⟨f ⟩ holds
if and only if f induces a map from kn to km that is almost surjective
(see Definition 2.1). This equality is stated in Theorem 3.4. Similar
results are given for the case of positive characteristic.

The last equality has a consequence on the functional decomposition
of polynomials. If f induces a surjective mapping from kn to km, (k
an algebraically closed of characteristic 0), and if h : km → k is an
arbitrary function such that h ◦ f is a polynomial function, then h
is a polynomial function. In an algebraically closed field of positive
characteristic χ, we will conclude that h is a composition of taking χth
roots and a polynomial function (Corollary 4.2).

2. Preliminaries about polynomials. For the notions from alge-
braic geometry used in this note, we refer to [2]; deviating from their



FUNCTION COMPOSITIONS THAT ARE POLYNOMIALS 305

definitions, we call the set of solutions of a system of polynomial equa-
tions an algebraic set (instead of affine variety). For an algebraically
closed field k and A ⊆ km, we let Im(A) (or simply I(A)) be the set of
polynomials vanishing on every point in A, and for P ⊆ k[t1, . . . , tm],
we let Vm(P ) (or simply V (P )) be the set of common zeroes of P
in km. The Zariski-closure V (I(A)) of a set A ⊆ km will be abbre-
viated by A. The dimension of an algebraic set A is the maximal
d ∈ {0, . . . ,m} such that there are i1 < i2 < · · · < id ∈ {1, . . . ,m}
with I(A) ∩ k[xi1 , . . . , xid ] = {0}. We abbreviate the dimension of A
by dim(A) and set dim(∅) := −1. For f1, . . . , fm, g ∈ k[t1, . . . , tn], and
D := {(f1(a), . . . , fm(a), g(a)) ||| a ∈ kn}, its Zariski-closure D is an
irreducible algebraic set, and its dimension is the maximal number of
algebraically independent elements in {f1, . . . , fm, g}. The closure the-
orem [2, page 258] tells that there exists an algebraic set W ⊆ km+1

with dim(W ) < dim(D) such that D = D ∪W . If dim(D) = m, then
there exists an irreducible polynomial p ∈ k[x1, . . . , xm+1] such that
D = V (p). We will denote this p by Irr(D); Irr(D) is then defined up
to a multiplication with a nonzero element from k.

Above this, we recall that a set is constructible if and only if it can be
generated from algebraic sets by a finite application of the set-theoretic
operations of forming the union of two sets, the intersection of two sets,
and the complement of a set, and that the range of a polynomial map
from kn to km and its complement are constructible. This is of course
a consequence of the theorem of Chevalley-Tarski [4, Exercise II.3.19],
but since we are only concerned with the image of kn, it also follows
from [2, page 262, Corollary 2].

Definition 2.1. Let k be an algebraically closed field, m,n ∈ N, and
let f = (f1, . . . , fm) ∈ (k[t1, . . . , tn])

m. By range(f ), we denote the

image of the mapping f̂ : kn → km that is induced by f . We say that
f is almost surjective on k if the dimension of the Zariski-closure of
km \ range(f ) is at most m− 2.

Proposition 2.2. Let k be an algebraically closed field, and let
(f1, . . . , fm) ∈ k[t1, . . . , tn]

m be almost surjective on k. Then the se-
quence (f1, . . . , fm) is algebraically independent over k.

Proof. Seeking a contradiction, we suppose that there is u ∈
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k[x1, . . . , xm] with u ̸= 0 and u(f1, . . . , fm) = 0. Then range(f ) ⊆
V (u); hence, dim(range(f )) ≤ m − 1. Since f is almost surjective,
km is then the union of two algebraic sets of dimension ≤ m − 1, a
contradiction. �

We will use the following easy consequence of the description of
constructible sets:

Proposition 2.3. Let k be an algebraically closed field, and let B
be a constructible subset of km with dim(B) ≥ m − 1. Then there
exist algebraic sets W,X such that W is irreducible, dim(W ) = m− 1,
dim(X) ≤ m− 2, and W \X ⊆ B.

Proof. Since B is constructible, there are irreducible algebraic sets
V1, . . . , Vp and algebraic sets W1, . . . ,Wp with Wi ( Vi and B =∪p

i=1(Vi \Wi) (cf., [2, page 262]). We assume that the Vi’s are ordered
with nonincreasing dimension. If dim(V1) = m, then km \ W1 ⊆ B.
Let U be an irreducible algebraic set of dimension m−1 with U ̸⊆ W1.
Then U ∩ (km \ W1) = U \ (W1 ∩ U). Since W1 ∩ U ̸= U , setting
W := U,X := W1 ∩ U yields the required sets.

If dim(V1) = m − 1, then W := V1 and X := W1 are the required
sets.

The case dim(V1) ≤ m−2 cannot occur because then B ⊆ V1∪. . .∪Vp

has dimension at most m− 2. �

Let k be a field, and let p, q, f ∈ k[t] be such that deg(f) > 0. It is
known that p(f) divides q(f) if and only if p divides q [3, Lemmas 2.1
and 2.2]. The following Lemma yields a multivariate version of this
result.

Lemma 2.4. Let k be an algebraically closed field, m,n ∈ N, and let
f = (f1, . . . , fm) ∈ (k[t1, . . . , tn])

m. Then the following are equivalent :

(i) f is almost surjective on k.
(ii) k(f1, . . . , fm) ∩ k[t1, . . . , tn] = k[f1, . . . , fm] and (f1, . . . , fm) is

algebraically independent over k.
(iii) For all p, q ∈ k[x1, . . . , xm] with p(f1, . . . , fm) | q(f1, . . . , fm), we

have p | q.
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Proof. (i) ⇒ (ii). (This proof uses some ideas from the proof of
Theorem 4.2.1 in [5, page 82].) Let g ∈ k(f1, . . . , fm) ∩ k[t1, . . . , tn].
Then there are r, s ∈ k[x1, . . . , xm] with gcd(r, s) = 1 and g =
r(f1, . . . , fm)/s(f1, . . . , fm), and thus

(2.1) g(t1, . . . , tn) · s(f1, . . . , fm) = r(f1, . . . , fm).

Suppose s /∈ k. Then V (s) has dimension m − 1. We have V (s) =

(V (s) ∩ range(f )) ∪ (V (s) ∩ (km \ range(f ))) ⊆ V (s) ∩ range(f ) ∪
V (s) ∩ (km \ range(f )). Since f is almost surjective, V (s) ∩ range(f )
is then of dimension m−1. Hence, it contains an irreducible component
of dimension m− 1, and thus there is an irreducible p ∈ k[x1, . . . , xm]

such that V (p) ⊆ V (s) ∩ range(f ). Since then V (p) ⊆ V (s), the
Nullstellensatz yields n1 ∈ N with p | sn1 , and thus by the irreducibility
of p, p | s. Now we show that, for all a ∈ V (s) ∩ range(f ), we have
r(a) = 0. To this end, let b ∈ kn with f (b) = a . Setting t := b
in (2.1), we obtain r(a) = 0. Thus, V (s) ∩ range(f ) ⊆ V (r), and

therefore V (s) ∩ range(f ) ⊆ V (r), which implies V (p) ⊆ V (r). By
the Nullstellensatz, we have an n2 ∈ N with p | rn2 and thus, by the
irreducibility of p, p | r. Now p | r and p | s, contradicting gcd(r, s) = 1.
Hence, s ∈ k, and thus g ∈ k[f1, . . . , fm]. The algebraic independence
of (f1, . . . , fm) follows from Proposition 2.2.

(ii) ⇒ (iii). Let p, q ∈ k[x1, . . . , xm] be such that p(f1, . . . , fm) |
q(f1, . . . , fm). If p(f1, . . . , fm) = 0, then q(f1, . . . , fm) = 0, and thus,
by the algebraic independence of (f1, . . . , fm), we have q = 0 and
thus p | q. Now assume p(f1, . . . , fm) ̸= 0. We have a(t1, . . . , tn) ∈
k[t1, . . . , tn] such that

(2.2) q(f1, . . . , fm) = a(t1, . . . , tn) · p(f1, . . . , fm),

and thus a(t1, . . . , tn) ∈ k(f1, . . . , fm)∩k[t1, . . . , tn]. Thus, there exists
b ∈ k[x1, . . . , xm] such that a(t1, . . . , tn) = b(f1, . . . , fm). Now (2.2)
yields

q(f1, . . . , fm) = b(f1, . . . , fm) · p(f1, . . . , fm).

Using the algebraic independence of (f1, . . . , fm), we obtain q(x1, . . . ,
xm) = b(x1, . . . , xm) · p(x1, . . . , xm), and thus p | q.

(iii) ⇒ (i). Seeking a contradiction, we suppose that f is not almost
surjective. Let B := km \ range(f ). Then dim(B) ≥ m − 1. Since
B is constructible, Proposition 2.3 yields W,X with W irreducible,
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dim(W ) = m − 1, dim(X) ≤ m − 2, and W \ X ⊆ B. Since W
is irreducible of dimension m − 1, there is p ∈ k[x1, . . . , xm] such
that W = V (p). Since dim(W ) > dim(X), we have W ̸⊆ X; thus,
I(X) ̸⊆ I(W ), and therefore there is q ∈ I(X) with q /∈ I(W ). We
have W ⊆ B ∪ X, and thus W ∩ range(f ) ⊆ X. This implies that,
for all a ∈ kn with p(f (a)) = 0, we have q(f (a)) = 0: in fact, if
p(f (a)) = 0, then f (a) ∈ V (p)∩range(f ) = W ∩range(f ) ⊆ X. Hence,
q(f (a)) = 0. By the Nullstellensatz, we obtain a ν ∈ N such that
p(f1, . . . , fm) | q(f1, . . . , fm)ν . Therefore, using (iii), we have p | qν .
This implies V (p) ⊆ V (q). Thus, we have W ⊆ V (q), and therefore
q ∈ I(W ), contradicting the choice of q. Hence, f is almost surjective,
proving (i). �

3. f -determined polynomials. We will first show that often all
f -determined polynomials are rational functions of f . Special care,
however, is needed in the case of positive characteristic. In an alge-
braically closed field of characteristic χ > 0, the unary polynomial t1 is
(tχ1 )-determined, but t1 is neither a polynomial nor a rational function
of tχ1 .

Definition 3.1. Let k be a field of characteristic χ > 0, let n ∈ N, and
let P be a subset of k[t1, . . . , tn]. We define the set radχ(P ) by

radχ(P ) := {f ∈ k[t1, . . . , tn] ||| there is ν ∈ N0 such that fχν

∈ P}.

Lemma 3.2. Let k be an algebraically closed field, let m,n ∈ N, let
f1, . . . , fm be algebraically independent polynomials in k[t1, . . . , tn], let
g ∈ k⟨f1, . . . , fm⟩, and let D := {(f1(a), . . . , fm(a), g(a)) | a ∈ kn}.
Then dim(D) = m.

Proof. By the closure theorem [2, page 258], there is an algebraic
set W such that D = D ∪W and dim(W ) < dim(D). Let π : km+1 →
km, (y1, . . . , ym+1) 7→ (y1, . . . , ym) be the projection of km+1 onto the

first m coordinates, and let π(W ) be the Zariski-closure of π(W ) in
km. We will now examine the projection of D. Since (f1, . . . , fm)
is algebraically independent, π(D) is Zariski-dense in km, and hence

dim(π(D)) = m. Since dim(V ) ≥ dim(π(V )) holds for every algebraic

set V , we then obtain dim(D) ≥ dim(π(D)) ≥ dim(π(D)) = m.
Seeking a contradiction, we suppose that dim(D) = m+ 1.
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In the case dim(π(W )) = m, we use [2, page 193, Theorem 3],

which tells π(W ) = Vm(I(W ) ∩ k[x1, . . . , xm]), and we obtain that
km = Vm(I(W )∩ k[x1, . . . , xm]), and therefore I(W )∩ k[x1, . . . , xm] =
{0}. Hence, x1 + I(W ), . . . , xm + I(W ) are algebraically independent
in k[x1, . . . , xm+1]/I(W ). Since dim(W ) ≤ m, we observe that the
sequence (x1+I(W ), . . . , xm+1+I(W )) is algebraically dependent over
k, and therefore, there is a polynomial q(x1, . . . , xm+1) ∈ I(W ) with
degxm+1

(q) > 0. Let r be the leading coefficient of q with respect to

xm+1, and let (y1, . . . , ym) ∈ km be such that r(y1, . . . , ym) ̸= 0. Then
there are only finitely many z ∈ k with (y1, . . . , ym, z) ∈ W . Since D =
km+1, there are then infinitely many z ∈ k with (y1, . . . , ym, z) ∈ D, a
contradiction to the fact that g is f -determined.

In the case dim(π(W )) ≤ m− 1, we take (y1, . . . , ym) ∈ km \ π(W ).
For all z ∈ k, we have (y1, . . . , ym, z) ∈ D and (y1, . . . , ym, z) /∈ W , and
therefore all (y1, . . . , ym, z) are elements of D, a contradiction to the
fact that g is f -determined.

Hence, we have dim(D) = m. �

Theorem 3.3. Let k be an algebraically closed field, let χ be its
characteristic, let m,n ∈ N, and let (f1, . . . , fm) be a sequence of
polynomials in k[t1, . . . , tn] that is algebraically independent over k.
Then we have:

(i) If χ = 0, then k⟨f1, . . . , fm⟩ ⊆ k(f1, . . . , fm) ∩ k[t1, . . . , tn].
(ii) If χ > 0, then k⟨f1, . . . , fm⟩ ⊆ radχ(k(f1, . . . , fm)∩ k[t1, . . . , tn]).

Proof. Let g ∈ k⟨f1, . . . , fm⟩. We define

D := {(f1(a), . . . , fm(a), g(a)) | a ∈ kn},

we let D be its Zariski-closure in km+1, and we let W be an algebraic
set with dim(W ) < dim(D) and D = D ∪W . By Lemma 3.2, we have
dim(D) = m. Now, we distinguish cases according to the characteristic
of k. Let us first suppose χ = 0. Let q := Irr(D) be an irreducible poly-
nomial with D = V (q), and let d := degxm+1

(q). Since f1, . . . , fm are
algebraically independent over k, we have d ≥ 1. We will now prove

d = 1. Suppose d > 1. We write q =
∑d

i=0 qi(x1, . . . , xm)xi
m+1.

We recall that, for a field K, and f, g ∈ K[t] of positive degree,
the resultant rest(f, g) is 0 if and only if deg(gcdK[t](f, g)) ≥ 1 [2,
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page 156, Proposition 8]. Let r := resxm+1(q, (∂/∂xm+1)q) be the
resultant of q and its derivative when seen as elements of the ring
k(x1, . . . , xm)[xm+1]. If r = 0, then q and (∂/∂xm+1)q have a com-
mon divisor in k(x1, . . . , xm)[xm+1] with 1 ≤ degxm+1

(q) ≤ d − 1 in

k(x1, . . . , xm)[xm+1]. Using a standard argument involving Gauss’s
lemma, we find a divisor a of q in k[x1, . . . , xm+1] such that 1 ≤
degxm+1

(a) ≤ d − 1. This contradicts the irreducibility of q. Hence,

r ̸= 0. Since dim(π(W )) ≤ m − 1, r ̸= 0, and qd ̸= 0, we have
V (r) ∪ V (qd) ∪ π(W ) ̸= km. Thus, we can choose a ∈ km such that
r(a) ̸= 0, qd(a) ̸= 0, and a ̸∈ π(W ). Let q̃(t) := q(a , t). Since
rest(q̃(t), q̃

′(t)) = r(a) ̸= 0, q̃ has d different roots in k, and thus
q(a , x) = 0 has d distinct solutions for x, say b1, . . . , bd. We will now
show {(a , bi) ||| i ∈ {1, . . . , d}} ⊆ D. Let i ∈ {1, . . . , d}, and suppose
that (a , bi) /∈ D. Then (a , bi) ∈ W , and thus a ∈ π(W ), a contradic-
tion. Thus, all the elements (a , b1), . . . , (a , bd) lie in D. Since d > 1,
this implies that g is not (f1, . . . , fm)-determined. Therefore, we have
d = 1. Since (f1, . . . , fm) is algebraically independent, the polynomial
q witnesses that g is algebraic of degree 1 over k(f1, . . . , fm), and thus
lies in k(f1, . . . , fm). This concludes the case χ = 0.

Now we assume χ > 0. It follows from Lemma 3.2 that, for every
h ∈ k⟨t1, . . . , tn⟩, the Zariski-closure of

D(h) := {(f1(a), . . . , fm(a), h(a)) | a ∈ kn}

is an irreducible variety of dimension m in km+1. This implies that
there is an irreducible polynomial Irr(D(h)) ∈ k[x1, . . . , xm] such that

D(h) = V (Irr(D(h))). Furthermore, by the closure theorem [2], there
is an algebraic set W (h) ⊆ km such that dim(W (h)) ≤ m − 1 and

D(h) ∪ W (h) = D(h). We will now prove the following statement by

induction on degxm+1
(Irr(D(h))).

Every f -determined polynomial h ∈ k[t1, . . . , tn] is an
element of radχ(k(f1, . . . , fm) ∩ k[t1, . . . , tn]).

Let
d := degxm+1

(Irr(D(h))).

If d = 0, then f1, . . . , fm are algebraically dependent, a contradiction.
If d = 1, then since f1, . . . , fm are algebraically independent, h is
algebraic of degree 1 over k(f1, . . . , fm) and thus lies in k(f1, . . . , fm)∩
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k[t1, . . . , tn]. Let us now consider the case d > 1. We set

e := degxm+1
( ∂
∂xm+1

Irr(D(h))).

If ∂/(∂xm+1)Irr(D(h)) = 0, then there is a polynomial p ∈ k[x1, . . . ,

xm+1] such that Irr(D(h)) = p(x1, . . . , xm, xχ
m+1). We know that hχ is

f -determined; hence, by Lemma 3.2, D(hχ) is of dimension m. Since

p (f1, . . . , fm, hχ) = Irr(D(h)) (f1, . . . , fm, h) = 0,

we have p ∈ I(D(hχ)). Thus, D(hχ) ⊆ V (p). Therefore, the irreducible

polynomial Irr(D(hχ)) divides p, and thus

degxm+1
(Irr(D(hχ))) ≤ degxm+1

(p) < degxm+1
(Irr(D(h))).

By the induction hypothesis, we obtain that hχ is an element of
radχ(k(f1, . . . , fm)∩k[t1, . . . , tn]). Therefore, h ∈ radχ(k(f1, . . . , fm)∩
k[t1, . . . , tn]). This concludes the case that (∂/∂xm+1)(Irr(D(h))) = 0.

If e = 0, we choose a = (a1, . . . , am) ∈ km such that

∂

∂xm+1
Irr(D(h)) (a1, . . . , am, 0) ̸= 0,

such that the leading coefficient of Irr(D(h)) with respect to xm+1 does

not vanish at a , and such that a /∈ π(W (h)). Then Irr(D(h))(a , x) = 0
has d different solutions for x, say b1, . . . , bd. Since {(a , bi) | i ∈
{1, . . . , d}} ∩ W (h) = ∅ because a /∈ π(W (h)), we have {(a , bi) | i ∈
{1, . . . , d}} ⊆ D(h). Since h is f -determined, d = 1, contradicting the
case assumption.

If e > 0, then we compute the resultant r := res
(d,e)
xm+1(Irr(D(h)),

(∂/∂xm+1)Irr(D(h))), seen as polynomials of degrees d and e over the
field k(x1, . . . , xm) in the variable xm+1. As in the case χ = 0, the

irreducibility of Irr(D(h)) yields r ̸= 0. Now we let a ∈ km be such

that r(a) ̸= 0, the leading coefficient (Irr(D(h)))d of Irr(D(h)) with
respect to xm+1 does not vanish at a , and a /∈ π(W (h)). Setting

q̃(t) := Irr(D(h)) (a , t), we see that res
(d,e)
t (q̃(t), q̃′(t)) ̸= 0. Thus, q̃ has

d distinct zeroes b1, . . . , bd, and then {(a , bi) | i ∈ {1, . . . , d}} ⊆ D(h).
Since d > 1, this contradicts the fact that h is f -determined. �
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Theorem 3.4. Let k be an algebraically closed field of characteristic 0,
let m,n ∈ N, and let f = (f1, . . . , fm) be a sequence of algebraically
independent polynomials in k[t1, . . . , tn]. Then the following are equiv-
alent :

(i) k⟨f1, . . . , fm⟩ = k[f1, . . . , fm].
(ii) f is almost surjective.

Proof. (i) ⇒ (ii). Suppose that f is not almost surjective. Then,
by Lemma 2.4, there are p, q ∈ k[x1, . . . , xm] such that p(f1, . . . , fm) |
q(f1, . . . , fm) and p - q. Let d := gcd(p, q), p1 := p/d, q1 := q/d. Let
a(t1, . . . , tn) ∈ k[t1, . . . , tn] be such that

(3.1) p1(f1, . . . , fm) · a(t1, . . . , tn) = q1(f1, . . . , fm).

We claim that b(t1, . . . , tn) := q1(f1, . . . , fm) · a(t1, . . . , tn) is f -
determined and is not an element of k[f1, . . . , fm]. In order to show
that b is f -determined, we let c,d ∈ kn be such that f (c) = f (d).
If p1(f (c)) ̸= 0, we have b(c) = q1(f (c)) · a(c) = q1(f (c)) ·
(q1(f (c))/p1(f (c))) = q1(f (d)) · (q1(f (d))/p1(f (d))) = q1(f (d)) ·
a(d) = b(d). If p1(f (c)) = 0, we have b(c) = q1(f (c)) · a(c). By (3.1),
we have q1(f (c)) = 0, and thus b(c) = 0. Similarly, b(d) = 0. This
concludes the proof that b is f -determined.

Let us now show that b /∈ k[f1, . . . , fm]. We have

b(t1, . . . , tn) =
q1(f1, . . . , fm)2

p1(f1, . . . , fm)
.

If b ∈ k[f1, . . . , fm], there is r ∈ k[x1, . . . , xm] with r(f1, . . . , fm) =
b(t1, . . . , tn). Then r(f1, . . . , fm) · p1(f1, . . . , fm) = q1(f1, . . . , fm)2.
From the algebraic independence of (f1, . . . , fm), we obtain r(x1,. . ., xm)·
p1(x1,. . ., xm) = q1(x1,. . ., xm)2; hence, p1(x1,. . ., xm) | q1(x1,. . ., xm)2.
Since p1, q1 are relatively prime, we then have p1(x1,. . ., xm) | q1(x1,
. . . , xm), contradicting the choice of p and q. Hence, f is almost sur-
jective.

(ii) ⇒ (i). From Theorem 3.3, we obtain k⟨f ⟩ ⊆ k(f )∩ k[t1, . . . , tn].
Since f is almost surjective, Lemma 2.4 yields k(f )∩k[t1, . . . , tn] = k[f ],
and thus k⟨f ⟩ ⊆ k[f ]. The other inclusion is obvious. �
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Theorem 3.5. Let k be an algebraically closed field of characteristic
χ > 0, let m,n ∈ N, and let f = (f1, . . . , fm) be a sequence of alge-
braically independent polynomials in k[t1, . . . , tn]. Then the following
are equivalent :

(i) k⟨f1, . . . , fm⟩ = radχ(k[f1, . . . , fm]).
(ii) f is almost surjective.

Proof. (i) ⇒ (ii). As in the proof of Theorem 3.4, we produce an
f -determined polynomial b and relatively prime p1, q1 ∈ k[x1, . . . , xm]
with p1 - q1 and

b(t1, . . . , tn) =
q1(f1, . . . , fm)2

p1(f1, . . . , fm)
.

Now suppose that there is a ν ∈ N0 with bχ
ν ∈ k[f1, . . . , fm]. Then

p1(f1, . . . , fm)χ
ν

divides q1(f1, . . . , fm)2χ
ν

in k[f1, . . . , fm], and thus
p1(x1, . . . , xm) divides q1(x1, . . . , xm)2χ

ν

in k[x1, . . . , xm]. Since p1 and
q1 are relatively prime, we obtain p1 | q1, contradicting the choice of p1
and q1.

(i) ⇒ (ii). From Theorem 3.3, we obtain k⟨f ⟩ ⊆ radχ(k(f ) ∩
k[t1, . . . , tn]). Since f is almost surjective, Lemma 2.4 yields k(f ) ∩
k[t1, . . . , tn] = k[f ], and thus k⟨f ⟩ ⊆ radχ(k[f ]). The other inclusion
follows from the fact that the map φ : k → k, φ(y) := yχ is
injective. �

4. Function compositions that are polynomials. For a field k,
let f = (f1, . . . , fm) ∈ (k[t1, . . . , tn])

m, and let h : km → k be an
arbitrary function. Then we write h ◦ f for the function defined by
(h ◦ f ) (a) = h(f1(a), . . . , fm(a)) for all a ∈ kn. For an algebraically
closed field K of characteristic χ > 0, y ∈ K and ν ∈ N0, we let s

(χν)(y)
be the element in K with (s(χ

ν)(y))χ
ν

= y; so s(χ
ν) takes the χνth root.

Theorem 4.1. Let k be a field, let K be its algebraic closure, let
m,n ∈ N, let g, f1, . . . , fm ∈ k[t1, . . . , tn], and let h : Km → K be
an arbitrary function. Let R := f (Kn) be the range of the function
from Kn to Km that f = (f1, . . . , fm) induces on K. We assume that

dim(Km \R) ≤ m− 2, and that h ◦ f = g on K, which means that

h(f (a)) = g(a) for all a ∈ Kn.
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Then we have:

(i) If k is of characteristic 0, then there is a p ∈ k[x1, . . . , xm] such
that h(b) = p(b) for all b ∈ R.

(ii) If k is of characteristic χ > 0, then there are p ∈ k[x1, . . . , xm]
and ν ∈ N0 such that h(b) = s(χ

ν)(p(b)) for all b ∈ R.

Proof. Let us first assume that k is of characteristic 0. We observe
that as a polynomial in K[t1, . . . , tn], g is f -determined. Hence, by
Theorem 3.4, there is a q ∈ K[x1, . . . , xm] such that q(f1, . . . , fm) = g.
Writing

q =
∑

(i1,...,im)∈I

αi1,...,imxi1
1 · · ·xim

m ,

we obtain g =
∑

(i1,...,im)∈I αi1,...,imf i1
1 · · · f im

m . Expanding the right

hand side and comparing coefficients, we see that (αi1,...,im)(i1,...,im)∈I

is a solution of a linear system with coefficients in k. Since this system
has a solution over K, it also has a solution over k. The solution over
k provides the coefficients of a polynomial p ∈ k[x1, . . . , xm] such that
p(f1, . . . , fm) = g. From this, we obtain that p(f1(a), . . . , fm(a)) =
g(a) for all a ∈ Kn, and thus p(b) = h(b) for all b ∈ R. This
completes the proof of item (i).

In the case that k is of characteristic χ > 0, Theorem 3.5 yields a
polynomial q ∈ K[x1, . . . , xm] and ν ∈ N0 such that q(f1, . . . , fm) =
gχ

ν

. As in the previous case, we obtain p ∈ k[x1, . . . , xm] such that
p(f1, . . . , fm) = gχ

ν

. Let b ∈ R, and let a be such that f (a) = b.
Then s(χ

ν)(p(b)) = s(χ
ν)(p(f (a))) = g(a) = h(f (a)) = h(b), which

completes the proof of (ii). �

We will now state the special case that k is algebraically closed and
f is surjective in the following corollary. By a polynomial function,
we will simply mean a function induced by a polynomial with all its
coefficients in k.

Corollary 4.2. Let k be an algebraically closed field, let f =(f1, . . . , fm)
∈ (k[t1, . . . , tn])

m, and let h : km → k be an arbitrary function. We
assume that f induces a surjective mapping from kn to km and that
h ◦ f is a polynomial function. Then we have:

(i) If k is of characteristic 0, then h is a polynomial function.
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(ii) If k is of characteristic χ > 0, then there is a ν ∈ N0 such that
hχν

: (y1, . . . , ym) 7→ h(y1, . . . , ym)χ
ν

is a polynomial function.
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