ON FUNCTION COMPOSITIONS THAT ARE POLYNOMIALS

ERHARD AICHINGER

Abstract

For a polynomial map $\boldsymbol{f}: k^{n} \rightarrow k^{m}(k$ a field), we investigate those polynomials $g \in k\left[t_{1}, \ldots, t_{n}\right]$ that can be written as a composition $g=h \circ f$, where $h: k^{m} \rightarrow k$ is an arbitrary function. In the case that k is algebraically closed of characteristic 0 and f is surjective, we will show that $g=h \circ f$ implies that h is a polynomial.

1. Introduction. In the present note, we investigate the situation where the value of a polynomial depends only on the value of certain given polynomials. To be precise, let k be a field, $m, n \in \mathbb{N}$, and let $g, f_{1}, \ldots, f_{m} \in k\left[t_{1}, \ldots, t_{n}\right]$. We say that g is determined by $\boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right)$ if, for all $\boldsymbol{a}, \boldsymbol{b} \in k^{n}$ with $f_{1}(\boldsymbol{a})=f_{1}(\boldsymbol{b}), \ldots, f_{m}(\boldsymbol{a})=$ $f_{m}(\boldsymbol{b})$, we have $g(\boldsymbol{a})=g(\boldsymbol{b})$. In other words, g is determined by \boldsymbol{f} if and only if there is a function $h: k^{m} \rightarrow k$ such that

$$
g(\boldsymbol{a})=h\left(f_{1}(\boldsymbol{a}), \ldots, f_{m}(\boldsymbol{a})\right) \quad \text { for all } \boldsymbol{a} \in k^{n}
$$

For given $f_{1}, \ldots, f_{m} \in k\left[t_{1}, \ldots, t_{n}\right]$, the set of all elements of $k\left[t_{1}, \ldots, t_{n}\right]$ that are determined by $\left(f_{1}, \ldots, f_{m}\right)$ is a k-subalgebra of $k\left[t_{1}, \ldots, t_{n}\right]$; we will denote this k-subalgebra by $k\left\langle f_{1}, \ldots, f_{m}\right\rangle$ or $k\langle\boldsymbol{f}\rangle$. As an example, we see that $t_{1} \in \mathbb{R}\left\langle t_{1}^{3}\right\rangle$; more generally, if $\left(f_{1}, \ldots, f_{m}\right) \in k\left[t_{1}, \ldots, t_{n}\right]^{m}$ induces an injective map from k^{n} to k^{m}, we have $k\langle\boldsymbol{f}\rangle=k\left[t_{1}, \ldots, t_{n}\right]$. In the present note, we will describe $k\langle\boldsymbol{f}\rangle$ in the case where k is algebraically closed and \boldsymbol{f} induces a map from k^{n} to k^{m} that is surjective, or, in a sense specified later, at least close to being surjective.

The first set that $k\langle\boldsymbol{f}\rangle$ is compared with is the k-subalgebra of $k\left[t_{1}, \ldots, t_{n}\right]$ generated by $\left\{f_{1}, \ldots, f_{m}\right\}$, which we will denote by $k\left[f_{1}, \ldots, f_{m}\right]$ or $k[\boldsymbol{f}]$; in this algebra, we find exactly those polynomials that can be written as $p\left(f_{1}, \ldots, f_{m}\right)$ with $p \in k\left[x_{1}, \ldots, x_{m}\right]$. Clearly,

[^0]$k[\boldsymbol{f}] \subseteq k\langle\boldsymbol{f}\rangle$. The other inclusion need not hold in general: on any field k, let $f_{1}=t_{1}, f_{2}=t_{1} t_{2}$. Then $f_{2}^{2} / f_{1}=t_{1} t_{2}^{2}$ is $\left(f_{1}, f_{2}\right)$-determined, but $t_{1} t_{2}^{2} \notin k\left[f_{1}, f_{2}\right]$.

The second set with which we will compare $k\langle\boldsymbol{f}\rangle$ is the set of all polynomials that can be written as rational functions in f_{1}, \ldots, f_{m}. We denote the quotient field of $k\left[t_{1}, \ldots, t_{n}\right]$ by $k\left(t_{1}, \ldots, t_{n}\right)$. For $r_{1}, \ldots, r_{m} \in k\left(t_{1}, \ldots, t_{n}\right)$, the subfield of $k\left(t_{1}, \ldots, t_{n}\right)$ that is generated by $k \cup\left\{r_{1}, \ldots, r_{m}\right\}$ is denoted $k\left(r_{1}, \ldots, r_{m}\right)$. We first observe that there are polynomials that can be written as rational functions in f, but fail to be \boldsymbol{f}-determined. As an example, we see that $t_{2} \in k\left(t_{1}, t_{1} t_{2}\right)$, but since $(0,0 \cdot 0)=(0,0 \cdot 1)$ and $0 \neq 1$, the polynomial t_{2} is not $\left(t_{1}, t_{1} t_{2}\right)$ determined. As for the converse inclusion, we take a field k of positive characteristic χ. Then t_{1} is $\left(t_{1} \chi\right)$-determined, but $t_{1} \notin k\left(t_{1} \chi\right)$.

On the positive side, it is known that $k\left[f_{1}, \ldots, f_{m}\right]=k\left\langle f_{1}, \ldots, f_{m}\right\rangle$ holds in the following cases (cf., [1, Theorem 3.1]):

- k is algebraically closed, $m=n=1$, and the derivative f^{\prime} of f is not the zero polynomial, and, more generally,
- k is algebraically closed, $m=n$, and there are univariate polynomials $g_{1}, \ldots, g_{m} \in k[t]$ with $g_{1}^{\prime} \neq 0, \ldots, g_{m}^{\prime} \neq 0, f_{1}=$ $g_{1}\left(t_{1}\right), \ldots, f_{m}=g_{m}\left(t_{m}\right)$.

Let us now briefly outline the results obtained in the present note. Let k be an algebraically closed field of characteristic 0 , and let $f_{1}, \ldots, f_{m} \in k\left[t_{1}, \ldots, t_{n}\right]$ be algebraically independent over k. Then we have $k\langle\boldsymbol{f}\rangle \subseteq k(\boldsymbol{f})$ (Theorem 3.3). The equality $k[\boldsymbol{f}]=k\langle\boldsymbol{f}\rangle$ holds if and only if \boldsymbol{f} induces a map from k^{n} to k^{m} that is almost surjective (see Definition 2.1). This equality is stated in Theorem 3.4. Similar results are given for the case of positive characteristic.

The last equality has a consequence on the functional decomposition of polynomials. If \boldsymbol{f} induces a surjective mapping from k^{n} to $k^{m},(k$ an algebraically closed of characteristic 0), and if $h: k^{m} \rightarrow k$ is an arbitrary function such that $h \circ \boldsymbol{f}$ is a polynomial function, then h is a polynomial function. In an algebraically closed field of positive characteristic χ, we will conclude that h is a composition of taking χ th roots and a polynomial function (Corollary 4.2).
2. Preliminaries about polynomials. For the notions from algebraic geometry used in this note, we refer to [2]; deviating from their
definitions, we call the set of solutions of a system of polynomial equations an algebraic set (instead of affine variety). For an algebraically closed field k and $A \subseteq k^{m}$, we let $I_{m}(A)$ (or simply $I(A)$) be the set of polynomials vanishing on every point in A, and for $P \subseteq k\left[t_{1}, \ldots, t_{m}\right]$, we let $V_{m}(P)$ (or simply $V(P)$) be the set of common zeroes of P in k^{m}. The Zariski-closure $V(I(A))$ of a set $A \subseteq k^{m}$ will be abbreviated by \bar{A}. The dimension of an algebraic set A is the maximal $d \in\{0, \ldots, m\}$ such that there are $i_{1}<i_{2}<\cdots<i_{d} \in\{1, \ldots, m\}$ with $I(A) \cap k\left[x_{i_{1}}, \ldots, x_{i_{d}}\right]=\{0\}$. We abbreviate the dimension of A by $\operatorname{dim}(A)$ and set $\operatorname{dim}(\emptyset):=-1$. For $f_{1}, \ldots, f_{m}, g \in k\left[t_{1}, \ldots, t_{n}\right]$, and $D:=\left\{\left(f_{1}(\boldsymbol{a}), \ldots, f_{m}(\boldsymbol{a}), g(\boldsymbol{a})\right) \mid \boldsymbol{a} \in k^{n}\right\}$, its Zariski-closure \bar{D} is an irreducible algebraic set, and its dimension is the maximal number of algebraically independent elements in $\left\{f_{1}, \ldots, f_{m}, g\right\}$. The closure theorem [2, page 258] tells that there exists an algebraic set $W \subseteq k^{m+1}$ with $\operatorname{dim}(W)<\operatorname{dim}(\bar{D})$ such that $\bar{D}=D \cup W$. If $\operatorname{dim}(\bar{D})=m$, then there exists an irreducible polynomial $p \in k\left[x_{1}, \ldots, x_{m+1}\right]$ such that $\bar{D}=V(p)$. We will denote this p by $\operatorname{Irr}(\bar{D}) ; \operatorname{Irr}(\bar{D})$ is then defined up to a multiplication with a nonzero element from k.

Above this, we recall that a set is constructible if and only if it can be generated from algebraic sets by a finite application of the set-theoretic operations of forming the union of two sets, the intersection of two sets, and the complement of a set, and that the range of a polynomial map from k^{n} to k^{m} and its complement are constructible. This is of course a consequence of the theorem of Chevalley-Tarski [4, Exercise II.3.19], but since we are only concerned with the image of k^{n}, it also follows from [2, page 262, Corollary 2].

Definition 2.1. Let k be an algebraically closed field, $m, n \in \mathbb{N}$, and let $\boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right) \in\left(k\left[t_{1}, \ldots, t_{n}\right]\right)^{m}$. By range (\boldsymbol{f}), we denote the image of the mapping $\hat{\boldsymbol{f}}: k^{n} \rightarrow k^{m}$ that is induced by \boldsymbol{f}. We say that f is almost surjective on k if the dimension of the Zariski-closure of $k^{m} \backslash \operatorname{range}(\boldsymbol{f})$ is at most $m-2$.

Proposition 2.2. Let k be an algebraically closed field, and let $\left(f_{1}, \ldots, f_{m}\right) \in k\left[t_{1}, \ldots, t_{n}\right]^{m}$ be almost surjective on k. Then the sequence $\left(f_{1}, \ldots, f_{m}\right)$ is algebraically independent over k.

Proof. Seeking a contradiction, we suppose that there is $u \in$
$k\left[x_{1}, \ldots, x_{m}\right]$ with $u \neq 0$ and $u\left(f_{1}, \ldots, f_{m}\right)=0$. Then range $(\boldsymbol{f}) \subseteq$ $V(u)$; hence, $\operatorname{dim}(\overline{\operatorname{range}(\boldsymbol{f})}) \leq m-1$. Since \boldsymbol{f} is almost surjective, k^{m} is then the union of two algebraic sets of dimension $\leq m-1$, a contradiction.

We will use the following easy consequence of the description of constructible sets:

Proposition 2.3. Let k be an algebraically closed field, and let B be a constructible subset of k^{m} with $\operatorname{dim}(\bar{B}) \geq m-1$. Then there exist algebraic sets W, X such that W is irreducible, $\operatorname{dim}(W)=m-1$, $\operatorname{dim}(X) \leq m-2$, and $W \backslash X \subseteq B$.

Proof. Since B is constructible, there are irreducible algebraic sets V_{1}, \ldots, V_{p} and algebraic sets W_{1}, \ldots, W_{p} with $W_{i} \subsetneq V_{i}$ and $B=$ $\bigcup_{i=1}^{p}\left(V_{i} \backslash W_{i}\right)$ (cf., [2, page 262]). We assume that the V_{i} 's are ordered with nonincreasing dimension. If $\operatorname{dim}\left(V_{1}\right)=m$, then $k^{m} \backslash W_{1} \subseteq B$. Let U be an irreducible algebraic set of dimension $m-1$ with $U \nsubseteq W_{1}$. Then $U \cap\left(k^{m} \backslash W_{1}\right)=U \backslash\left(W_{1} \cap U\right)$. Since $W_{1} \cap U \neq U$, setting $W:=U, X:=W_{1} \cap U$ yields the required sets.

If $\operatorname{dim}\left(V_{1}\right)=m-1$, then $W:=V_{1}$ and $X:=W_{1}$ are the required sets.

The case $\operatorname{dim}\left(V_{1}\right) \leq m-2$ cannot occur because then $\bar{B} \subseteq V_{1} \cup \ldots \cup V_{p}$ has dimension at most $m-2$.

Let k be a field, and let $p, q, f \in k[t]$ be such that $\operatorname{deg}(f)>0$. It is known that $p(f)$ divides $q(f)$ if and only if p divides q [3, Lemmas 2.1 and 2.2]. The following Lemma yields a multivariate version of this result.

Lemma 2.4. Let k be an algebraically closed field, $m, n \in \mathbb{N}$, and let $\boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right) \in\left(k\left[t_{1}, \ldots, t_{n}\right]\right)^{m}$. Then the following are equivalent:
(i) \boldsymbol{f} is almost surjective on k.
(ii) $k\left(f_{1}, \ldots, f_{m}\right) \cap k\left[t_{1}, \ldots, t_{n}\right]=k\left[f_{1}, \ldots, f_{m}\right]$ and $\left(f_{1}, \ldots, f_{m}\right)$ is algebraically independent over k.
(iii) For all $p, q \in k\left[x_{1}, \ldots, x_{m}\right]$ with $p\left(f_{1}, \ldots, f_{m}\right) \mid q\left(f_{1}, \ldots, f_{m}\right)$, we have $p \mid q$.

Proof. (i) \Rightarrow (ii). (This proof uses some ideas from the proof of Theorem 4.2.1 in [5, page 82].) Let $g \in k\left(f_{1}, \ldots, f_{m}\right) \cap k\left[t_{1}, \ldots, t_{n}\right]$. Then there are $r, s \in k\left[x_{1}, \ldots, x_{m}\right]$ with $\operatorname{gcd}(r, s)=1$ and $g=$ $r\left(f_{1}, \ldots, f_{m}\right) / s\left(f_{1}, \ldots, f_{m}\right)$, and thus

$$
\begin{equation*}
g\left(t_{1}, \ldots, t_{n}\right) \cdot s\left(f_{1}, \ldots, f_{m}\right)=r\left(f_{1}, \ldots, f_{m}\right) \tag{2.1}
\end{equation*}
$$

Suppose $s \notin k$. Then $V(s)$ has dimension $m-1$. We have $V(s)=$ $(V(s) \cap \operatorname{range}(\boldsymbol{f})) \cup\left(V(s) \cap\left(k^{m} \backslash \operatorname{range}(\boldsymbol{f})\right)\right) \subseteq \overline{V(s) \cap \operatorname{range}(\boldsymbol{f})} \cup$ $\overline{V(s) \cap\left(k^{m} \backslash \operatorname{range}(\boldsymbol{f})\right)}$. Since \boldsymbol{f} is almost surjective, $\overline{V(s) \cap \operatorname{range}(\boldsymbol{f})}$ is then of dimension $m-1$. Hence, it contains an irreducible component of dimension $m-1$, and thus there is an irreducible $p \in k\left[x_{1}, \ldots, x_{m}\right]$ such that $V(p) \subseteq \overline{V(s) \cap \operatorname{range}(\boldsymbol{f})}$. Since then $V(p) \subseteq V(s)$, the Nullstellensatz yields $n_{1} \in \mathbb{N}$ with $p \mid s^{n_{1}}$, and thus by the irreducibility of $p, p \mid s$. Now we show that, for all $\boldsymbol{a} \in V(s) \cap$ range (\boldsymbol{f}), we have $r(\boldsymbol{a})=0$. To this end, let $\boldsymbol{b} \in k^{n}$ with $\boldsymbol{f}(\boldsymbol{b})=\boldsymbol{a}$. Setting $\boldsymbol{t}:=\boldsymbol{b}$ in (2.1), we obtain $r(\boldsymbol{a})=0$. Thus, $V(s) \cap$ range $(\boldsymbol{f}) \subseteq V(r)$, and therefore $\overline{V(s) \cap \operatorname{range}(\boldsymbol{f})} \subseteq V(r)$, which implies $V(p) \subseteq V(r)$. By the Nullstellensatz, we have an $n_{2} \in \mathbb{N}$ with $p \mid r^{n_{2}}$ and thus, by the irreducibility of $p, p \mid r$. Now $p \mid r$ and $p \mid s$, contradicting $\operatorname{gcd}(r, s)=1$. Hence, $s \in k$, and thus $g \in k\left[f_{1}, \ldots, f_{m}\right]$. The algebraic independence of $\left(f_{1}, \ldots, f_{m}\right)$ follows from Proposition 2.2.
(ii) \Rightarrow (iii). Let $p, q \in k\left[x_{1}, \ldots, x_{m}\right]$ be such that $p\left(f_{1}, \ldots, f_{m}\right) \mid$ $q\left(f_{1}, \ldots, f_{m}\right)$. If $p\left(f_{1}, \ldots, f_{m}\right)=0$, then $q\left(f_{1}, \ldots, f_{m}\right)=0$, and thus, by the algebraic independence of $\left(f_{1}, \ldots, f_{m}\right)$, we have $q=0$ and thus $p \mid q$. Now assume $p\left(f_{1}, \ldots, f_{m}\right) \neq 0$. We have $a\left(t_{1}, \ldots, t_{n}\right) \in$ $k\left[t_{1}, \ldots, t_{n}\right]$ such that

$$
\begin{equation*}
q\left(f_{1}, \ldots, f_{m}\right)=a\left(t_{1}, \ldots, t_{n}\right) \cdot p\left(f_{1}, \ldots, f_{m}\right) \tag{2.2}
\end{equation*}
$$

and thus $a\left(t_{1}, \ldots, t_{n}\right) \in k\left(f_{1}, \ldots, f_{m}\right) \cap k\left[t_{1}, \ldots, t_{n}\right]$. Thus, there exists $b \in k\left[x_{1}, \ldots, x_{m}\right]$ such that $a\left(t_{1}, \ldots, t_{n}\right)=b\left(f_{1}, \ldots, f_{m}\right)$. Now (2.2) yields

$$
q\left(f_{1}, \ldots, f_{m}\right)=b\left(f_{1}, \ldots, f_{m}\right) \cdot p\left(f_{1}, \ldots, f_{m}\right)
$$

Using the algebraic independence of $\left(f_{1}, \ldots, f_{m}\right)$, we obtain $q\left(x_{1}, \ldots\right.$, $\left.x_{m}\right)=b\left(x_{1}, \ldots, x_{m}\right) \cdot p\left(x_{1}, \ldots, x_{m}\right)$, and thus $p \mid q$.
(iii) \Rightarrow (i). Seeking a contradiction, we suppose that f is not almost surjective. Let $B:=k^{m} \backslash \operatorname{range}(\boldsymbol{f})$. Then $\operatorname{dim}(\bar{B}) \geq m-1$. Since B is constructible, Proposition 2.3 yields W, X with W irreducible,
$\operatorname{dim}(W)=m-1, \operatorname{dim}(X) \leq m-2$, and $W \backslash X \subseteq B$. Since W is irreducible of dimension $m-1$, there is $p \in k\left[x_{1}, \ldots, x_{m}\right]$ such that $W=V(p)$. Since $\operatorname{dim}(W)>\operatorname{dim}(X)$, we have $W \nsubseteq X$; thus, $I(X) \nsubseteq I(W)$, and therefore there is $q \in I(X)$ with $q \notin I(W)$. We have $W \subseteq B \cup X$, and thus $W \cap \operatorname{range}(\boldsymbol{f}) \subseteq X$. This implies that, for all $\boldsymbol{a} \in k^{n}$ with $p(\boldsymbol{f}(\boldsymbol{a}))=0$, we have $q(\boldsymbol{f}(\boldsymbol{a}))=0$: in fact, if $p(\boldsymbol{f}(\boldsymbol{a}))=0$, then $\boldsymbol{f}(\mathbf{a}) \in V(p) \cap \operatorname{range}(\boldsymbol{f})=W \cap \operatorname{range}(\boldsymbol{f}) \subseteq X$. Hence, $q(\boldsymbol{f}(\boldsymbol{a}))=0$. By the Nullstellensatz, we obtain a $\nu \in \mathbb{N}$ such that $p\left(f_{1}, \ldots, f_{m}\right) \mid q\left(f_{1}, \ldots, f_{m}\right)^{\nu}$. Therefore, using (iii), we have $p \mid q^{\nu}$. This implies $V(p) \subseteq V(q)$. Thus, we have $W \subseteq V(q)$, and therefore $q \in I(W)$, contradicting the choice of q. Hence, \boldsymbol{f} is almost surjective, proving (i).
3. f-determined polynomials. We will first show that often all f-determined polynomials are rational functions of f. Special care, however, is needed in the case of positive characteristic. In an algebraically closed field of characteristic $\chi>0$, the unary polynomial t_{1} is $\left(t_{1}^{\chi}\right)$-determined, but t_{1} is neither a polynomial nor a rational function of t_{1}^{χ}.

Definition 3.1. Let k be a field of characteristic $\chi>0$, let $n \in \mathbb{N}$, and let P be a subset of $k\left[t_{1}, \ldots, t_{n}\right]$. We define the set $\operatorname{rad}_{\chi}(P)$ by $\operatorname{rad}_{\chi}(P):=\left\{f \in k\left[t_{1}, \ldots, t_{n}\right] \mid\right.$ there is $\nu \in \mathbb{N}_{0}$ such that $\left.f^{\chi^{\nu}} \in P\right\}$.

Lemma 3.2. Let k be an algebraically closed field, let $m, n \in \mathbb{N}$, let f_{1}, \ldots, f_{m} be algebraically independent polynomials in $k\left[t_{1}, \ldots, t_{n}\right]$, let $g \in k\left\langle f_{1}, \ldots, f_{m}\right\rangle$, and let $D:=\left\{\left(f_{1}(\boldsymbol{a}), \ldots, f_{m}(\boldsymbol{a}), g(\boldsymbol{a})\right) \mid \boldsymbol{a} \in k^{n}\right\}$. Then $\operatorname{dim}(\bar{D})=m$.

Proof. By the closure theorem [2, page 258], there is an algebraic set W such that $\bar{D}=D \cup W$ and $\operatorname{dim}(W)<\operatorname{dim}(\bar{D})$. Let $\pi: k^{m+1} \rightarrow$ $k^{m},\left(y_{1}, \ldots, y_{m+1}\right) \mapsto\left(y_{1}, \ldots, y_{m}\right)$ be the projection of k^{m+1} onto the first m coordinates, and let $\overline{\pi(W)}$ be the Zariski-closure of $\pi(W)$ in k^{m}. We will now examine the projection of D. Since $\left(f_{1}, \ldots, f_{m}\right)$ is algebraically independent, $\pi(D)$ is Zariski-dense in k^{m}, and hence $\operatorname{dim}(\overline{\pi(D)})=m$. Since $\operatorname{dim}(V) \geq \operatorname{dim}(\overline{\pi(V)})$ holds for every algebraic set V, we then obtain $\operatorname{dim}(\bar{D}) \geq \operatorname{dim}(\overline{\pi(\bar{D})}) \geq \operatorname{dim}(\overline{\pi(D)})=m$. Seeking a contradiction, we suppose that $\operatorname{dim}(\bar{D})=m+1$.

In the case $\operatorname{dim}(\overline{\pi(W)})=m$, we use [2, page 193, Theorem 3], which tells $\overline{\pi(W)}=V_{m}\left(I(W) \cap k\left[x_{1}, \ldots, x_{m}\right]\right)$, and we obtain that $k^{m}=V_{m}\left(I(W) \cap k\left[x_{1}, \ldots, x_{m}\right]\right)$, and therefore $I(W) \cap k\left[x_{1}, \ldots, x_{m}\right]=$ $\{0\}$. Hence, $x_{1}+I(W), \ldots, x_{m}+I(W)$ are algebraically independent in $k\left[x_{1}, \ldots, x_{m+1}\right] / I(W)$. Since $\operatorname{dim}(W) \leq m$, we observe that the sequence $\left(x_{1}+I(W), \ldots, x_{m+1}+I(W)\right)$ is algebraically dependent over k, and therefore, there is a polynomial $q\left(x_{1}, \ldots, x_{m+1}\right) \in I(W)$ with $\operatorname{deg}_{x_{m+1}}(q)>0$. Let r be the leading coefficient of q with respect to x_{m+1}, and let $\left(y_{1}, \ldots, y_{m}\right) \in k^{m}$ be such that $r\left(y_{1}, \ldots, y_{m}\right) \neq 0$. Then there are only finitely many $z \in k$ with $\left(y_{1}, \ldots, y_{m}, z\right) \in W$. Since $\bar{D}=$ k^{m+1}, there are then infinitely many $z \in k$ with $\left(y_{1}, \ldots, y_{m}, z\right) \in D$, a contradiction to the fact that g is f-determined.

In the case $\operatorname{dim}(\overline{\pi(W)}) \leq m-1$, we take $\left(y_{1}, \ldots, y_{m}\right) \in k^{m} \backslash \pi(W)$. For all $z \in k$, we have $\left(y_{1}, \ldots, y_{m}, z\right) \in \bar{D}$ and $\left(y_{1}, \ldots, y_{m}, z\right) \notin W$, and therefore all $\left(y_{1}, \ldots, y_{m}, z\right)$ are elements of D, a contradiction to the fact that g is f-determined.

Hence, we have $\operatorname{dim}(\bar{D})=m$.
Theorem 3.3. Let k be an algebraically closed field, let χ be its characteristic, let $m, n \in \mathbb{N}$, and let $\left(f_{1}, \ldots, f_{m}\right)$ be a sequence of polynomials in $k\left[t_{1}, \ldots, t_{n}\right]$ that is algebraically independent over k. Then we have:
(i) If $\chi=0$, then $k\left\langle f_{1}, \ldots, f_{m}\right\rangle \subseteq k\left(f_{1}, \ldots, f_{m}\right) \cap k\left[t_{1}, \ldots, t_{n}\right]$.
(ii) If $\chi>0$, then $k\left\langle f_{1}, \ldots, f_{m}\right\rangle \subseteq \operatorname{rad}_{\chi}\left(k\left(f_{1}, \ldots, f_{m}\right) \cap k\left[t_{1}, \ldots, t_{n}\right]\right)$.

Proof. Let $g \in k\left\langle f_{1}, \ldots, f_{m}\right\rangle$. We define

$$
D:=\left\{\left(f_{1}(\boldsymbol{a}), \ldots, f_{m}(\boldsymbol{a}), g(\boldsymbol{a})\right) \mid \boldsymbol{a} \in k^{n}\right\}
$$

we let \bar{D} be its Zariski-closure in k^{m+1}, and we let W be an algebraic set with $\operatorname{dim}(W)<\operatorname{dim}(\bar{D})$ and $\bar{D}=D \cup W$. By Lemma 3.2, we have $\operatorname{dim}(\bar{D})=m$. Now, we distinguish cases according to the characteristic of k. Let us first suppose $\chi=0$. Let $q:=\operatorname{Irr}(\bar{D})$ be an irreducible polynomial with $\bar{D}=V(q)$, and let $d:=\operatorname{deg}_{x_{m+1}}(q)$. Since f_{1}, \ldots, f_{m} are algebraically independent over k, we have $d \geq 1$. We will now prove $d=1$. Suppose $d>1$. We write $q=\sum_{i=0}^{d} q_{i}\left(x_{1}, \ldots, x_{m}\right) x_{m+1}^{i}$. We recall that, for a field K, and $f, g \in K[t]$ of positive degree, the resultant $\operatorname{res}_{t}(f, g)$ is 0 if and only if $\operatorname{deg}\left(\operatorname{gcd}_{K[t]}(f, g)\right) \geq 1[\mathbf{2}$,
page 156 , Proposition 8]. Let $r:=\operatorname{res}_{x_{m+1}}\left(q,\left(\partial / \partial x_{m+1}\right) q\right)$ be the resultant of q and its derivative when seen as elements of the ring $k\left(x_{1}, \ldots, x_{m}\right)\left[x_{m+1}\right]$. If $r=0$, then q and $\left(\partial / \partial x_{m+1}\right) q$ have a common divisor in $k\left(x_{1}, \ldots, x_{m}\right)\left[x_{m+1}\right]$ with $1 \leq \operatorname{deg}_{x_{m+1}}(q) \leq d-1$ in $k\left(x_{1}, \ldots, x_{m}\right)\left[x_{m+1}\right]$. Using a standard argument involving Gauss's lemma, we find a divisor a of q in $k\left[x_{1}, \ldots, x_{m+1}\right]$ such that $1 \leq$ $\operatorname{deg}_{x_{m+1}}(a) \leq d-1$. This contradicts the irreducibility of q. Hence, $r \neq 0$. Since $\operatorname{dim}(\overline{\pi(W)}) \leq m-1, r \neq 0$, and $q_{d} \neq 0$, we have $V(r) \cup V\left(q_{d}\right) \cup \pi(W) \neq k^{m}$. Thus, we can choose $\boldsymbol{a} \in k^{m}$ such that $r(\boldsymbol{a}) \neq 0, q_{d}(\boldsymbol{a}) \neq 0$, and $\boldsymbol{a} \notin \pi(W)$. Let $\widetilde{q}(t):=q(\boldsymbol{a}, t)$. Since $\operatorname{res}_{t}\left(\widetilde{q}(t), \widetilde{q}^{\prime}(t)\right)=r(\boldsymbol{a}) \neq 0, \widetilde{q}$ has d different roots in k, and thus $q(\boldsymbol{a}, x)=0$ has d distinct solutions for x, say b_{1}, \ldots, b_{d}. We will now show $\left\{\left(\boldsymbol{a}, b_{i}\right) \mid i \in\{1, \ldots, d\}\right\} \subseteq D$. Let $i \in\{1, \ldots, d\}$, and suppose that $\left(\boldsymbol{a}, b_{i}\right) \notin D$. Then $\left(\boldsymbol{a}, b_{i}\right) \in W$, and thus $\boldsymbol{a} \in \pi(W)$, a contradiction. Thus, all the elements $\left(\boldsymbol{a}, b_{1}\right), \ldots,\left(\boldsymbol{a}, b_{d}\right)$ lie in D. Since $d>1$, this implies that g is not $\left(f_{1}, \ldots, f_{m}\right)$-determined. Therefore, we have $d=1$. Since $\left(f_{1}, \ldots, f_{m}\right)$ is algebraically independent, the polynomial q witnesses that g is algebraic of degree 1 over $k\left(f_{1}, \ldots, f_{m}\right)$, and thus lies in $k\left(f_{1}, \ldots, f_{m}\right)$. This concludes the case $\chi=0$.

Now we assume $\chi>0$. It follows from Lemma 3.2 that, for every $h \in k\left\langle t_{1}, \ldots, t_{n}\right\rangle$, the Zariski-closure of

$$
D(h):=\left\{\left(f_{1}(\boldsymbol{a}), \ldots, f_{m}(\boldsymbol{a}), h(\boldsymbol{a})\right) \mid \boldsymbol{a} \in k^{n}\right\}
$$

is an irreducible variety of dimension m in k^{m+1}. This implies that there is an irreducible polynomial $\operatorname{Irr}(\overline{D(h)}) \in k\left[x_{1}, \ldots, x_{m}\right]$ such that $\overline{D(h)}=V(\operatorname{Irr}(\overline{D(h)}))$. Furthermore, by the closure theorem [2], there is an algebraic set $W(h) \subseteq k^{m}$ such that $\operatorname{dim}(W(h)) \leq m-1$ and $D(h) \cup W(h)=\overline{D(h)}$. We will now prove the following statement by induction on $\operatorname{deg}_{x_{m+1}}(\operatorname{Irr}(\overline{D(h)}))$.

Every \boldsymbol{f}-determined polynomial $h \in k\left[t_{1}, \ldots, t_{n}\right]$ is an element of $\operatorname{rad}_{\chi}\left(k\left(f_{1}, \ldots, f_{m}\right) \cap k\left[t_{1}, \ldots, t_{n}\right]\right)$.

Let

$$
d:=\operatorname{deg}_{x_{m+1}}(\operatorname{Irr}(\overline{D(h)}))
$$

If $d=0$, then f_{1}, \ldots, f_{m} are algebraically dependent, a contradiction. If $d=1$, then since f_{1}, \ldots, f_{m} are algebraically independent, h is algebraic of degree 1 over $k\left(f_{1}, \ldots, f_{m}\right)$ and thus lies in $k\left(f_{1}, \ldots, f_{m}\right) \cap$
$k\left[t_{1}, \ldots, t_{n}\right]$. Let us now consider the case $d>1$. We set

$$
e:=\operatorname{deg}_{x_{m+1}}\left(\frac{\partial}{\partial x_{m+1}} \operatorname{Irr}(\overline{D(h)})\right)
$$

If $\partial /\left(\partial x_{m+1}\right) \operatorname{Irr}(\overline{D(h)})=0$, then there is a polynomial $p \in k\left[x_{1}, \ldots\right.$, $\left.x_{m+1}\right]$ such that $\operatorname{Irr}(\overline{D(h)})=p\left(x_{1}, \ldots, x_{m}, x_{m+1}^{\chi}\right)$. We know that h^{χ} is f-determined; hence, by Lemma 3.2, $\overline{D\left(h^{\chi}\right)}$ is of dimension m. Since

$$
p\left(f_{1}, \ldots, f_{m}, h^{\chi}\right)=\operatorname{Irr}(\overline{D(h)})\left(f_{1}, \ldots, f_{m}, h\right)=0
$$

we have $p \in I\left(D\left(h^{\chi}\right)\right)$. Thus, $\overline{D\left(h^{\chi}\right)} \subseteq V(p)$. Therefore, the irreducible polynomial $\operatorname{Irr}\left(\overline{D\left(h^{\chi}\right)}\right)$ divides p, and thus

$$
\operatorname{deg}_{x_{m+1}}\left(\operatorname{Irr}\left(\overline{D\left(h^{\chi}\right)}\right)\right) \leq \operatorname{deg}_{x_{m+1}}(p)<\operatorname{deg}_{x_{m+1}}(\operatorname{Irr}(\overline{D(h)}))
$$

By the induction hypothesis, we obtain that h^{χ} is an element of $\operatorname{rad}_{\chi}\left(k\left(f_{1}, \ldots, f_{m}\right) \cap k\left[t_{1}, \ldots, t_{n}\right]\right)$. Therefore, $h \in \operatorname{rad}_{\chi}\left(k\left(f_{1}, \ldots, f_{m}\right) \cap\right.$ $\left.k\left[t_{1}, \ldots, t_{n}\right]\right)$. This concludes the case that $\left(\partial / \partial x_{m+1}\right)(\operatorname{Irr}(\overline{D(h)}))=0$.

If $e=0$, we choose $\boldsymbol{a}=\left(a_{1}, \ldots, a_{m}\right) \in k^{m}$ such that

$$
\frac{\partial}{\partial x_{m+1}} \operatorname{Irr}(\overline{D(h)}) \quad\left(a_{1}, \ldots, a_{m}, 0\right) \neq 0
$$

such that the leading coefficient of $\operatorname{Irr}(\overline{D(h)})$ with respect to x_{m+1} does not vanish at \boldsymbol{a}, and such that $\boldsymbol{a} \notin \pi(W(h))$. Then $\operatorname{Irr}(\overline{D(h)})(\boldsymbol{a}, x)=0$ has d different solutions for x, say b_{1}, \ldots, b_{d}. Since $\left\{\left(\boldsymbol{a}, b_{i}\right) \mid i \in\right.$ $\{1, \ldots, d\}\} \cap W(h)=\emptyset$ because $\boldsymbol{a} \notin \pi(W(h))$, we have $\left\{\left(\boldsymbol{a}, b_{i}\right) \mid i \in\right.$ $\{1, \ldots, d\}\} \subseteq D(h)$. Since h is \boldsymbol{f}-determined, $d=1$, contradicting the case assumption.

If $e>0$, then we compute the resultant $r:=\operatorname{res}_{x_{m+1}}^{(d, e)}(\operatorname{Irr}(\overline{D(h)})$, $\left.\left(\partial / \partial x_{m+1}\right) \operatorname{Irr}(\overline{D(h)})\right)$, seen as polynomials of degrees d and e over the field $k\left(x_{1}, \ldots, x_{m}\right)$ in the variable x_{m+1}. As in the case $\chi=0$, the irreducibility of $\operatorname{Irr}(\overline{D(h)})$ yields $r \neq 0$. Now we let $\boldsymbol{a} \in k^{m}$ be such that $r(\boldsymbol{a}) \neq 0$, the leading coefficient $(\operatorname{Irr}(\overline{D(h)}))_{d}$ of $\operatorname{Irr}(\overline{D(h)})$ with respect to x_{m+1} does not vanish at \boldsymbol{a}, and $\boldsymbol{a} \notin \pi(W(h))$. Setting $\widetilde{q}(t):=\operatorname{Irr}(\overline{D(h)})(\boldsymbol{a}, t)$, we see that res ${ }_{t}^{(d, e)}\left(\widetilde{q}(t), \widetilde{q}^{\prime}(t)\right) \neq 0$. Thus, \widetilde{q} has d distinct zeroes b_{1}, \ldots, b_{d}, and then $\left\{\left(\boldsymbol{a}, b_{i}\right) \mid i \in\{1, \ldots, d\}\right\} \subseteq D(h)$. Since $d>1$, this contradicts the fact that h is \boldsymbol{f}-determined.

Theorem 3.4. Let k be an algebraically closed field of characteristic 0 , let $m, n \in \mathbb{N}$, and let $\boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right)$ be a sequence of algebraically independent polynomials in $k\left[t_{1}, \ldots, t_{n}\right]$. Then the following are equivalent:
(i) $k\left\langle f_{1}, \ldots, f_{m}\right\rangle=k\left[f_{1}, \ldots, f_{m}\right]$.
(ii) \boldsymbol{f} is almost surjective.

Proof. (i) \Rightarrow (ii). Suppose that f is not almost surjective. Then, by Lemma 2.4, there are $p, q \in k\left[x_{1}, \ldots, x_{m}\right]$ such that $p\left(f_{1}, \ldots, f_{m}\right) \mid$ $q\left(f_{1}, \ldots, f_{m}\right)$ and $p \nmid q$. Let $d:=\operatorname{gcd}(p, q), p_{1}:=p / d, q_{1}:=q / d$. Let $a\left(t_{1}, \ldots, t_{n}\right) \in k\left[t_{1}, \ldots, t_{n}\right]$ be such that

$$
\begin{equation*}
p_{1}\left(f_{1}, \ldots, f_{m}\right) \cdot a\left(t_{1}, \ldots, t_{n}\right)=q_{1}\left(f_{1}, \ldots, f_{m}\right) \tag{3.1}
\end{equation*}
$$

We claim that $b\left(t_{1}, \ldots, t_{n}\right):=q_{1}\left(f_{1}, \ldots, f_{m}\right) \cdot a\left(t_{1}, \ldots, t_{n}\right)$ is \boldsymbol{f} determined and is not an element of $k\left[f_{1}, \ldots, f_{m}\right]$. In order to show that b is \boldsymbol{f}-determined, we let $\boldsymbol{c}, \boldsymbol{d} \in k^{n}$ be such that $\boldsymbol{f}(\boldsymbol{c})=\boldsymbol{f}(\boldsymbol{d})$. If $p_{1}(\boldsymbol{f}(\boldsymbol{c})) \neq 0$, we have $b(\boldsymbol{c})=q_{1}(\boldsymbol{f}(\boldsymbol{c})) \cdot a(\boldsymbol{c})=q_{1}(\boldsymbol{f}(\boldsymbol{c}))$. $\left(q_{1}(\boldsymbol{f}(\boldsymbol{c})) / p_{1}(\boldsymbol{f}(\boldsymbol{c}))\right)=q_{1}(\boldsymbol{f}(\boldsymbol{d})) \cdot\left(q_{1}(\boldsymbol{f}(\boldsymbol{d})) / p_{1}(\boldsymbol{f}(\boldsymbol{d}))\right)=q_{1}(\boldsymbol{f}(\boldsymbol{d}))$. $a(\boldsymbol{d})=b(\boldsymbol{d})$. If $p_{1}(\boldsymbol{f}(\boldsymbol{c}))=0$, we have $b(\boldsymbol{c})=q_{1}(\boldsymbol{f}(\boldsymbol{c})) \cdot a(\boldsymbol{c})$. By (3.1), we have $q_{1}(\boldsymbol{f}(\boldsymbol{c}))=0$, and thus $b(\boldsymbol{c})=0$. Similarly, $b(\boldsymbol{d})=0$. This concludes the proof that b is f-determined.

Let us now show that $b \notin k\left[f_{1}, \ldots, f_{m}\right]$. We have

$$
b\left(t_{1}, \ldots, t_{n}\right)=\frac{q_{1}\left(f_{1}, \ldots, f_{m}\right)^{2}}{p_{1}\left(f_{1}, \ldots, f_{m}\right)}
$$

If $b \in k\left[f_{1}, \ldots, f_{m}\right]$, there is $r \in k\left[x_{1}, \ldots, x_{m}\right]$ with $r\left(f_{1}, \ldots, f_{m}\right)=$ $b\left(t_{1}, \ldots, t_{n}\right)$. Then $r\left(f_{1}, \ldots, f_{m}\right) \cdot p_{1}\left(f_{1}, \ldots, f_{m}\right)=q_{1}\left(f_{1}, \ldots, f_{m}\right)^{2}$. From the algebraic independence of $\left(f_{1}, \ldots, f_{m}\right)$, we obtain $r\left(x_{1}, \ldots, x_{m}\right)$. $p_{1}\left(x_{1}, \ldots, x_{m}\right)=q_{1}\left(x_{1}, \ldots, x_{m}\right)^{2}$; hence, $p_{1}\left(x_{1}, \ldots, x_{m}\right) \mid q_{1}\left(x_{1}, \ldots, x_{m}\right)^{2}$. Since p_{1}, q_{1} are relatively prime, we then have $p_{1}\left(x_{1}, \ldots, x_{m}\right) \mid q_{1}\left(x_{1}\right.$, \ldots, x_{m}), contradicting the choice of p and q. Hence, \boldsymbol{f} is almost surjective.
(ii) \Rightarrow (i). From Theorem 3.3, we obtain $k\langle\boldsymbol{f}\rangle \subseteq k(\boldsymbol{f}) \cap k\left[t_{1}, \ldots, t_{n}\right]$. Since \boldsymbol{f} is almost surjective, Lemma 2.4 yields $k(\boldsymbol{f}) \cap k\left[t_{1}, \ldots, t_{n}\right]=k[\boldsymbol{f}]$, and thus $k\langle\boldsymbol{f}\rangle \subseteq k[\boldsymbol{f}]$. The other inclusion is obvious.

Theorem 3.5. Let k be an algebraically closed field of characteristic $\chi>0$, let $m, n \in \mathbb{N}$, and let $\boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right)$ be a sequence of algebraically independent polynomials in $k\left[t_{1}, \ldots, t_{n}\right]$. Then the following are equivalent:
(i) $k\left\langle f_{1}, \ldots, f_{m}\right\rangle=\operatorname{rad}_{\chi}\left(k\left[f_{1}, \ldots, f_{m}\right]\right)$.
(ii) \boldsymbol{f} is almost surjective.

Proof. (i) \Rightarrow (ii). As in the proof of Theorem 3.4, we produce an f-determined polynomial b and relatively prime $p_{1}, q_{1} \in k\left[x_{1}, \ldots, x_{m}\right]$ with $p_{1} \nmid q_{1}$ and

$$
b\left(t_{1}, \ldots, t_{n}\right)=\frac{q_{1}\left(f_{1}, \ldots, f_{m}\right)^{2}}{p_{1}\left(f_{1}, \ldots, f_{m}\right)}
$$

 $p_{1}\left(f_{1}, \ldots, f_{m}\right)^{\chi^{\nu}}$ divides $q_{1}\left(f_{1}, \ldots, f_{m}\right)^{2 \chi^{\nu}}$ in $k\left[f_{1}, \ldots, f_{m}\right]$, and thus $p_{1}\left(x_{1}, \ldots, x_{m}\right)$ divides $q_{1}\left(x_{1}, \ldots, x_{m}\right)^{2 \chi}$ in $k\left[x_{1}, \ldots, x_{m}\right]$. Since p_{1} and q_{1} are relatively prime, we obtain $p_{1} \mid q_{1}$, contradicting the choice of p_{1} and q_{1}.
(i) \Rightarrow (ii). From Theorem 3.3, we obtain $k\langle\boldsymbol{f}\rangle \subseteq \operatorname{rad}_{\chi}(k(\boldsymbol{f}) \cap$ $k\left[t_{1}, \ldots, t_{n}\right]$). Since \boldsymbol{f} is almost surjective, Lemma 2.4 yields $k(\boldsymbol{f}) \cap$ $k\left[t_{1}, \ldots, t_{n}\right]=k[\boldsymbol{f}]$, and thus $k\langle\boldsymbol{f}\rangle \subseteq \operatorname{rad}_{\chi}(k[\boldsymbol{f}])$. The other inclusion follows from the fact that the $\operatorname{map} \varphi: k \rightarrow k, \varphi(y):=y^{\chi}$ is injective.
4. Function compositions that are polynomials. For a field k, let $\boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right) \in\left(k\left[t_{1}, \ldots, t_{n}\right]\right)^{m}$, and let $h: k^{m} \rightarrow k$ be an arbitrary function. Then we write $h \circ f$ for the function defined by $(h \circ \boldsymbol{f})(\boldsymbol{a})=h\left(f_{1}(\boldsymbol{a}), \ldots, f_{m}(\boldsymbol{a})\right)$ for all $\boldsymbol{a} \in k^{n}$. For an algebraically closed field K of characteristic $\chi>0, y \in K$ and $\nu \in \mathbb{N}_{0}$, we let $s^{\left(\chi^{\nu}\right)}(y)$ be the element in K with $\left(s^{\left(\chi^{\nu}\right)}(y)\right)^{\chi^{\nu}}=y$; so $s^{\left(\chi^{\nu}\right)}$ takes the χ^{ν} th root.

Theorem 4.1. Let k be a field, let K be its algebraic closure, let $m, n \in \mathbb{N}$, let $g, f_{1}, \ldots, f_{m} \in k\left[t_{1}, \ldots, t_{n}\right]$, and let $h: K^{m} \rightarrow K$ be an arbitrary function. Let $R:=\boldsymbol{f}\left(K^{n}\right)$ be the range of the function from K^{n} to K^{m} that $\boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right)$ induces on K. We assume that $\operatorname{dim}\left(\overline{K^{m} \backslash R}\right) \leq m-2$, and that $h \circ \boldsymbol{f}=g$ on K, which means that

$$
h(\boldsymbol{f}(\boldsymbol{a}))=g(\boldsymbol{a}) \text { for all } \boldsymbol{a} \in K^{n}
$$

Then we have:
(i) If k is of characteristic 0 , then there is a $p \in k\left[x_{1}, \ldots, x_{m}\right]$ such that $h(\boldsymbol{b})=p(\boldsymbol{b})$ for all $\boldsymbol{b} \in R$.
(ii) If k is of characteristic $\chi>0$, then there are $p \in k\left[x_{1}, \ldots, x_{m}\right]$ and $\nu \in \mathbb{N}_{0}$ such that $h(\boldsymbol{b})=s^{\left(\chi^{\nu}\right)}(p(\boldsymbol{b}))$ for all $\boldsymbol{b} \in R$.

Proof. Let us first assume that k is of characteristic 0 . We observe that as a polynomial in $K\left[t_{1}, \ldots, t_{n}\right], g$ is \boldsymbol{f}-determined. Hence, by Theorem 3.4, there is a $q \in K\left[x_{1}, \ldots, x_{m}\right]$ such that $q\left(f_{1}, \ldots, f_{m}\right)=g$. Writing

$$
q=\sum_{\left(i_{1}, \ldots, i_{m}\right) \in I} \alpha_{i_{1}, \ldots, i_{m}} x_{1}^{i_{1}} \cdots x_{m}^{i_{m}}
$$

we obtain $g=\sum_{\left(i_{1}, \ldots, i_{m}\right) \in I} \alpha_{i_{1}, \ldots, i_{m}} f_{1}^{i_{1}} \cdots f_{m}^{i_{m}}$. Expanding the right hand side and comparing coefficients, we see that $\left(\alpha_{i_{1}, \ldots, i_{m}}\right)_{\left(i_{1}, \ldots, i_{m}\right) \in I}$ is a solution of a linear system with coefficients in k. Since this system has a solution over K, it also has a solution over k. The solution over k provides the coefficients of a polynomial $p \in k\left[x_{1}, \ldots, x_{m}\right]$ such that $p\left(f_{1}, \ldots, f_{m}\right)=g$. From this, we obtain that $p\left(f_{1}(\boldsymbol{a}), \ldots, f_{m}(\boldsymbol{a})\right)=$ $g(\boldsymbol{a})$ for all $\boldsymbol{a} \in K^{n}$, and thus $p(\boldsymbol{b})=h(\boldsymbol{b})$ for all $\boldsymbol{b} \in R$. This completes the proof of item (i).

In the case that k is of characteristic $\chi>0$, Theorem 3.5 yields a polynomial $q \in K\left[x_{1}, \ldots, x_{m}\right]$ and $\nu \in \mathbb{N}_{0}$ such that $q\left(f_{1}, \ldots, f_{m}\right)=$ $g^{\chi^{\nu}}$. As in the previous case, we obtain $p \in k\left[x_{1}, \ldots, x_{m}\right]$ such that $p\left(f_{1}, \ldots, f_{m}\right)=g^{\chi^{\nu}}$. Let $\boldsymbol{b} \in R$, and let \boldsymbol{a} be such that $\boldsymbol{f}(\boldsymbol{a})=\boldsymbol{b}$. Then $s^{\left(\chi^{\nu}\right)}(p(\boldsymbol{b}))=s^{\left(\chi^{\nu}\right)}(p(\boldsymbol{f}(\boldsymbol{a})))=g(\boldsymbol{a})=h(\boldsymbol{f}(\boldsymbol{a}))=h(\boldsymbol{b})$, which completes the proof of (ii).

We will now state the special case that k is algebraically closed and f is surjective in the following corollary. By a polynomial function, we will simply mean a function induced by a polynomial with all its coefficients in k.

Corollary 4.2. Let k be an algebraically closed field, let $\boldsymbol{f}=\left(f_{1}, \ldots, f_{m}\right)$ $\in\left(k\left[t_{1}, \ldots, t_{n}\right]\right)^{m}$, and let $h: k^{m} \rightarrow k$ be an arbitrary function. We assume that \boldsymbol{f} induces a surjective mapping from k^{n} to k^{m} and that $h \circ f$ is a polynomial function. Then we have:
(i) If k is of characteristic 0 , then h is a polynomial function.
(ii) If k is of characteristic $\chi>0$, then there is a $\nu \in N_{0}$ such that $h^{\chi^{\nu}}:\left(y_{1}, \ldots, y_{m}\right) \mapsto h\left(y_{1}, \ldots, y_{m}\right)^{\chi^{\nu}}$ is a polynomial function.

REFERENCES

1. E. Aichinger and S. Steinerberger, A proof of a theorem by Fried and MacRae and applications to the composition of polynomial functions, Arch. Math. 97 (2011), 115-124.
2. D. Cox, J. Little and D. O'Shea, Ideals, varieties, and algorithms, Third ed., Undergrad. Texts Math., Springer, New York, 2007.
3. H.T. Engstrom, Polynomial substitutions, Amer. J. Math. 63 (1941), 249255.
4. R. Hartshorne, Algebraic geometry, Grad. Texts Math. 52, Springer-Verlag, New York, 1977.
5. A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progr. Math. 190, Birkhäuser Verlag, Basel, 2000.

Erhard Aichinger, Institut für Algebra, Johannes Kepler Universität Linz, 4040 Linz, Austria
Email address: erhard@algebra.uni-linz.ac.at

[^0]: 2010 AMS Mathematics subject classification. Primary 13B25 (12E05).
 Keywords and phrases. Polynomial composition, polynomial maps.
 Supported by the Austrian Science Fund (FWF): P24077.
 Received by the editors on June 19, 2013.

