
Illinois Journal of Mathematics
Volume 60, Numbers 3–4, Fall and Winter 2016, Pages 845–858
S 0019-2082

ASYMPTOTIC STABILIZATION OF BETTI DIAGRAMS OF
GENERIC INITIAL SYSTEMS

SARAH MAYES-TANG

Abstract. Several authors investigating the asymptotic be-
haviour of the Betti diagrams of the graded system {Ik} inde-
pendently showed that the shape of the nonzero entries in the di-
agrams stabilizes when I is a homogeneous ideal with generators

of the same degree. In this paper, we study the Betti diagrams

of graded systems of ideals built by taking the initial ideals or

generic initial ideals of powers, and discuss the stabilization of

additional collections of Betti diagrams. Our main result shows

that when I has generators of the same degree, the entries in the

Betti diagrams of the reverse lexicographic generic initial system

{gin(Ik)} are given asymptotically by polynomials and that the
shape of the diagrams stabilizes.

1. Betti tables of graded systems of ideals: Examples and main
result

Cutkosky, Herzog, and Trung proved that when I is an ideal in S =
K[x1, . . . , xn], the regularity of Ik is a linear function for large k ([4]). Fol-
lowing their lead, later work examined the asymptotic behaviour of finer in-
variants of the set of powers of an ideal, {Ik}, such as the Betti numbers and
graded Betti numbers βi,j(I) = dimK Tori(K,I)j ([10], [13], [1], [14]). The
goal of this paper is to examine the behaviour of the graded Betti numbers
of other families of ideals. In particular, we will consider graded systems of
ideals {Jk} satisfying Ji · Jj ⊆ Ji+j for all i and j.

One type of end behaviour of graded Betti numbers of ideals in a graded
system occurs when the shape of the nonzero entries in the Betti diagrams
stabilizes in the following sense (see [14]).
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Definition 1.1. Consider a graded system of ideals {Jk}. We say that
the shape of β(Jk) stabilizes if there exist integers k0 and r such that for all
i, j, and k ≥ k0,

βi,kr+j(Jk) �= 0 if and only if βi,k0r+j(Jk0) �= 0.

The smallest k0 satisfying this definition is called the stabilization index of
{Jk}.

The first known families with this property are obtained by taking powers
of ideals with homogeneous generators of the same degrees; such ideals are
said to be equigenerated.

Theorem 1.2 ([10], [13], [14]). Let I be an ideal in a polynomial ring
S =K[x1, . . . , xn] that is equigenerated in degree r. Then the shape of β(Ik)
stabilizes.

Example 1.3. Let I = (x2y + z3, xyz, yz2). Macaulay2 ([7]) gives the fol-
lowing Betti diagrams of Ik for small k. Note that βi,i+j(I) is displayed in
the ith column and the jth row of the Betti diagram.

(β(I) : 0 1

3 3 1

4 − 1

)
,

(β(I2) : 0 1

6 6 4

7 − 1

)
,

(β(I3) : 0 1 2

9 10 9 1

10 − 1 −

)
,

(β(I4) : 0 1 2

12 15 16 3

13 − 1 −

)
,

(β(I5) : 0 1 2

15 21 25 6

16 − 1 −

)
,

(β(I6) : 0 1 2

18 28 36 10

19 − 1 −

)
.

For all k ≥ 3, β(Ik) has the following shape

(β(Ik) : 0 1 2

3k a b c
3k+ 1 − d −

)

and we see from the examples that the stabilization index of {Ik} is 3. Looking
more closely at the graded Betti numbers appearing in the tables, we see that
the entries are given by the following polynomials in k:

a=
k2

2
+

3k

2
+ 1, b= k2, c=

k2

2
− 3

2
k+ 1, d= 1.
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Definition 1.4. Consider an indexed collection of ideals {Jk}. We say
that the entries of β(Jk) are given by polynomials for k � 0 if there exists a
number r such that for all i, j there is a number k0(i, j) and a polynomial
Pi,j(k) satisfying

βi,rk+i+j(Jk) = Pi,j(k)

for all k > k0(i, j)

As suggested by Example 1.3, when I is equigenerated β(Ik) has entries
given by polynomials.

Theorem 1.5 (Cor. 2.2 of [13], Prop. 6.3.6 of [10]). Let I be an ideal in
a polynomial ring S =K[x1, . . . , xn] that is equigenerated in degree r. Then
β(Ik) has entries given by polynomials for k � 0. Further, the polynomial
functions corresponding to nonzero entries have positive leading coefficients
and are of degree less than the analytic spread of I , �(I).

At first glance, it may seem that if β(Jk) has entries given by polynomials
for k � 0 then the shape of the β(Jk) must stabilize. However, as k gets
large, the number of nonzero entries in β(Jk) may keep increasing, and the
collection {k0(i, j)} may be unbounded. The following example illustrates this
possibility.

Example 1.6. Consider the complete intersection ideal I = (xa, yb) ⊆
K[x, y]. When 1< a� b,

β0,ak+l(b−a)

(
Ik

)
= 1 for all k ≥ l,

β1,ak+l(b−a)+a

(
Ik

)
= 1 for all k ≥ l

and all other Betti numbers are 0 (see [9]). Thus, the Betti numbers of β(Ik)
are given by polynomials but the shape of the diagram does not stabilize
because the number of nonzero entries in β(Ik) is unbounded.

The following lemma connects Definitions and 1.1 and 1.4; its proof is
immediate from the definitions.

Lemma 1.7. Let {Jk} be an indexed collection of ideals. Suppose that the
entries of β(Jk) are given by polynomials in k and that there exists a k0 such
that the number of nonzero entries of β(Jk) is bounded for all k > k0. Then
the shape of β(Jk) stabilizes.

Question 1.8. Let {Jk} be a graded system of ideals. What conditions
are necessary to ensure that the entries of β(Jk) are given by polynomials for
k� 0?

We now consider the asymptotic behaviour of the graded Betti numbers of
other graded systems of ideals. Our main stabilization result concerns graded
systems built by taking the generic initial ideals of powers of an equigenerated
ideal.
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Theorem 1.9. Let I be an equigenerated ideal in S =K[x1, . . . , xn], where

K a field of characteristic 0. Consider the graded reverse lexicographic generic

initial system, {ginrevlex(Ik)}.

(a) The shape of β(ginrevlex(I
k)) stabilizes.

(b) The entries of β(ginrevlex(I
k)) are given by polynomials for k� 0.

When no monomial order is specified, gin(I) represents the generic initial

ideal under the reverse lexicographic order and lexgin(I) represents the generic

initial ideal under the lexicographic order.

Example 1.10. Let I = (x2y + z3, xyz, yz2). Under the reverse lexico-

graphic order, the Betti diagrams of gin(Ik) for small values of k are as fol-

lows.

(β(gin(I)) : 0 1

3 3 2

4 1 1

)
,

(β(gin(I2)) : 0 1

6 6 5

7 1 1

)
,

(β(gin(I3)) : 0 1 2

9 10 10 1

10 1 1 −

)
,

(β(gin(I4)) : 0 1 2

12 15 17 3

13 1 1 −

)
,

(β(gin(I5)) : 0 1 2

15 21 26 6

16 1 1 −

)
,

(β(gin(I6)) : 0 1 2

18 28 37 10

19 1 1 −

)
.

We see that β(gin(Ik)) stabilizes to the following shape

(β(gin(Ik)) : 0 1 2

3k a b c
3k+ 1 d e −

)

and its stabilization index is 3. The nonzero polynomials guaranteed by part

(b) of Theorem 1.9 are:

a=
k2

2
+

3k

2
+ 1, b= k2 + 1, c=

k2

2
− 3

2
k+ 1, d= e= 1.
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Under the lexicographic order, the number of nonzero rows in the Betti
diagram of lexgin(Ik) increases with k. For example,

⎛
⎜⎜⎜⎜⎝

β(lexgin(I)) : 0 1 2

3 3 3 1

4 2 3 1

5 1 2 1

6 1 1 −

⎞
⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β(lexgin(I2)) : 0 1 2

6 6 8 3

7 4 7 3

8 3 5 2

9 2 4 2

10 2 3 1

11 1 2 1

12 1 1 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β(lexgin(I3)) : 0 1 2

9 10 15 6

10 6 10 4

11 4 8 4

12 4 7 3

13 3 6 3

14 3 5 2

15 2 4 2

16 2 3 1

17 1 2 1

18 1 1 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can show that reg(lexgin(Ik)) = 6k while the minimal degree generators
of lexgin(Ik) are of degree 3k. Therefore, the Betti diagram of lexgin(Ik)
has nonzero entries in 3k+1 rows, and shape of the Betti diagrams does not
stabilize. However, it appears that for any pair (i, j), βi,3k+i+j(lexgin(I

k)) is
a polynomial for k� 0: for example,

β1,3k+1+1

(
lexgin

(
Ik

))
= 4k− 2

for k ≥ 3. This implies that a stabilized shape is not necessary for the entries
of β(Jk) to be given by polynomials (see Question 1.8).

While the shape of the Betti diagrams of the lexicographic generic ini-
tial system {lexgin(Ik)} do not stabilize in the sense of Definition 1.1, there
appears to be additional uniformity beyond its entries being given by poly-
nomials. For example, rows 8 through 12 in β(lexgin(I2)) are identical to
rows 14 through 18 of β(lexgin(I3)). Similar patterns hold for higher mem-
bers in the graded system. Further, while the I above shows that the number
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of nonzero entries of β(lexgin(Ik)) is not always bounded, there are circum-
stances under which it does, even when lexgin(Ik) �= gin(Ik) (for example,
consider I = (x2, xy, z2)). Observations like those lead to the following ques-
tions.

Question 1.11. Are the entries of β(lexgin(Ik)) given by polynomials for
all k� 0? What other types of uniformity do these Betti diagrams exhibit as
k→∞?

Finally, patterns in the total Betti numbers βi(lexgin(I
k)) =∑

j βij(lexgin(I
k)) for I in Example 1.10 are less apparent than the patterns

in the graded Betti numbers βij(lexgin(I
k)) described above. Therefore, the

reason that we focus on graded Betti numbers rather than total Betti num-
bers is two-fold: graded Betti numbers are a finer invariant, and patterns in
βij(Jk) are often more accessible than patterns in βi(Jk).

The following example demonstrates that generic coordinates are necessary
for Theorem 1.9.

Example 1.12. Let I = (x2y+z3, xyz, yz2) and consider the graded system
obtained by taking the lexicographic or reverse lexicographic initial ideals of
Ik, {in(Ik)}. There are k + 1 rows in β(in(Ik)) with nonzero entries, so the
shape of β(in(Ik)) does not stabilize.

We might hope that the entries in β(in(Ik)) are given by polynomials for
k� 0. However, if we look more carefully at its entries we see that this does
not hold. Consider, for example, β2,3k+2(in(I

k)) (see Table 1).
For all k ≥ 3,

β2,3k+2

(
in
(
Ik

))
=

{
k2

2 − k+ 1
2 for odd k,

k2

2 − k for even k.

This function cannot be written as a single polynomial for all k� 0.

As in the lexicographic generic initial system, there appears to be some
asymptotic uniformity in the Betti diagrams of the initial system, although it
is more complicated than in generic coordinates. Similar statements may be
made for the Betti diagrams of other graded systems of ideals, including {Ik}
when I is not equigenerated and the system {I(k)} composed of the symbolic
powers of an ideal. This leads to the following questions:

Table 1. β2,3k+2(in(I
k)) for I = (x2y+ z3, xyz, yz2)

k 3 4 5 6 7 8 9 10

β2,3k+2(in(I
k)) 2 4 8 12 18 24 32 40
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Question 1.13. In what ways may the Betti diagrams of a graded system
of ideals {Jk} display uniformity as k→∞? How can we describe more com-
plicated types of stabilization? In addition to the systems {Ik} and {gin(Ik)}
arising from equigenerated ideals I , are there other natural graded systems of
ideals for which the shape of β(Jk) stabilizes in the sense of Definition 1.1?

Bagheri, Chardin, and Ha address similar questions in [1] where they de-
scribe the asymptotic behaviour of the graded Betti numbers of multi-graded
systems of ideals.

Section 2 of this paper provides background on the resolutions of generic
initial ideals and Section 3 contains the proof of Theorem 1.9. Additional
corollaries of Theorem 1.9 are included in Section 3.3, including a description
of the Boij–Söderberg decompositions of β(gin(Ik)).

2. Background: Graded Betti numbers of generic initial ideals

In this section, we record facts related to the graded Betti numbers of
generic initial ideals. Throughout, S = K[x1, . . . , xn] is a polynomial ring
with the standard grading over a field of characteristic zero and I is a homo-
geneous ideal in S. We use ginτ (I) to denote the generic initial ideal under the
term order τ and gin(I) to denote the generic initial ideal under the reverse
lexicographic order.

To describe the graded minimal free resolution of gin(Ik), for any monomial
m we will denote

max(m) =max{i : xi divides m}.

Definition 2.1 (see Construction 28.6 in [12]). Let M be a Borel-fixed
ideal minimally generated by monomials m1, . . . ,m�. For each mi and for each
sequence of natural numbers 1≤ j1 < · · ·< jp <max(mi), let S(mi;xj1 · · ·xjp)
denote a free S-module with one generator in degree deg(mi) + p. The basis
of the Eliahou–Kervaire resolution of M is given by

B =
{
S(mi;xj1 , . . . , xjp) : 1≤ j1 < · · ·< jp <max(mi),1≤ i≤ r

}
,

where S(mi;xj1 · · ·xjp) is in homological degree p.

Recalling that ginτ (I) is Borel-fixed ([6]; also see Theorem 1.27 of [8]), we
obtain the following result.

Theorem 2.2 ([5], Theorem 2.1). For any homogeneous ideal I ⊆ S, the
Eliahou–Kervaire resolution produces a minimal free resolution of ginτ (I).

Corollary 2.3. Let M be a Borel-fixed ideal minimally generated by
monomials m1, . . . ,m�. Then the graded Betti numbers of M are given by

βp,p+q(M) =
∑

deg(mi)=q,1≤i≤�

(
max(mi)− 1

p

)
.
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The following definition and theorem say that the Betti diagrams of an
ideal and any of its generic initial ideals are related by cancelling numbers
along diagonals.

Definition 2.4 (see pages 95–96 of [12]). We say that a sequence of num-
bers {qi,j} is obtained from a sequence of numbers {pi,j} by a consecutive
cancellation if there are indices s and r such that

qs,r = ps,r − 1, qs+1,r = ps+1,r − 1,

qi,j = pi,j for all other values of i, j.

Theorem 2.5 ([8], Cor. 1.21). Let I be a homogeneous ideal in S. For
any term order τ , the graded Betti numbers βi,j(I) may be obtained from the
graded Betti numbers βi,j(ginτ (I)) by a sequence of consecutive cancellations.

Example 2.6. Let I = (x2y + z3, xyz, yz2). The Betti diagram of gin(I3)
is

( 0 1 2

9 10 10 1
10 1 1 −

)
.

Theorem 2.5 says that β(I3) will be obtained by making consecutive cancel-
lations. There are two possible consecutive cancellations in this case: can-
celling β0,10(gin(I

3)) with β1,10(gin(I
3)) and cancelling β1,11(gin(I

3)) with
β2,11(gin(I

3)). Using Macaulay2, we find that only the first consecutive can-
cellation is needed and β(I3) is given by

( 0 1 2

9 10 9 1
10 − 1 −

)
.

This example demonstrates that not all possible consecutive cancellations
need to occur when we pass from the Betti diagram of gin(I) to the Betti
diagram of I . In general, there are no techniques for determining which
consecutive cancellations will occur.

Definition 2.7. A Betti number βi,i+j(I) �= 0 is called extremal if
βk,k+l(I) = 0 for all pairs (k, l) �= (i, j) with k ≥ i and l ≥ j. An extremal
Betti number is the upper left-hand corner of a block of zeros within a Betti
diagram.

Notice that if I is an equigenerated ideal, the extremal Betti numbers of Ik

occur in the same relative positions for all k� 0 by Theorem 1.2. Our interest
in extremal Betti numbers comes as a result of the following theorem, which
says that the reverse lexicographic generic initial ideal preserves extremal
Betti numbers.

Theorem 2.8 ([2], Theorem 4.3.17). Let I be a homogeneous ideal of S.
Then for any i, j ⊂N,
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(a) βi,i+j(I) is extremal if and only if βi,i+j(gin(I)) is extremal;
(b) if βi,i+j(I) is extremal, then βi,i+j(I) = βi,i+j(gin(I)).

Corollary 2.9 ([3], Theorem 2.4). Under the reverse lexicographic order,

reg(I) = reg
(
gin(I)

)
.

Another advantage of the reverse lexicographic order is that hyperplane
sections interact nicely with generic initial ideals under this order. Consider
a linear form h =

∑n
j=1 hjxj ∈ S1 such that hn �= 0. The homomorphism

φ : S =K[x1, . . . , xn]→ Ŝ =K[x1, . . . , xn−1] defined by φ(xj) = xj for j �= n

and φ(xn) =− 1
hn

(
∑

j �=n hjxj) defines an isomorphism between S/(h) and Ŝ
that preserves the degree of polynomials not in the kernel.

Definition 2.10. Given an ideal I in S, the h-hyperplane section of I is
the ideal φ(I) in Ŝ. It is denoted Ih.

Theorem 2.11 ([3], Theorem 3.4 of [8]). Let I be a homogeneous ideal in
S and let h ∈ S1 be a generic linear form. Then

gin(Ih) = gin(I)|xn→0.

3. Stabilization of β(gin(Ik))

The goal of this section is to prove Theorem 1.9 describing the stabilization
of β(gin(Ik)). Throughout, I is a homogeneous ideal of S =K[x1, . . . , xn] with
the standard grading. We denote the generic initial ideal of I with respect to
the reverse lexicographic order by gin(I).

3.1. Part (a) of Theorem 1.9 follows from part (b). The following
lemma claims that for all k � 0 the number of nonzero entries in β(gin(Ik))
is bounded. Note that it only holds for the reverse lexicographic order (see
Example 1.10).

Lemma 3.1. Suppose that I is an ideal equigenerated in degree r, and let
c and k0 be the constants such that reg(Ik) = rk + c for k > k0, guaranteed
by Theorem 1.2. Then for all k > k0, the nonzero entries of β(gin(Ik)) are
confined to the following window.

⎛
⎜⎜⎝

0 1 · · · n− 1

rk ∗ ∗ · · · ∗
rk+ 1 ∗ ∗ · · · ∗
...

...
...

...
...

rk+ c ∗ ∗ · · · ∗

⎞
⎟⎟⎠.

Proof. Fix k > k0. Since all elements of gin(Ik) are of degree at least rk, the
least row of β(gin(Ik)) containing nonzero entries is the rkth row. By Corol-
lary 2.9, reg(Ik) = reg(gin(Ik)) = rk + c so the (rk + c)th row of β(gin(Ik))
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is the greatest containing nonzero entries. Finally, since projdim(gin(Ik))≤
n − 1, the (n − 1)st column is the greatest column containing nonzero en-
tries. �

Lemma 3.1 bounds the number of nonzero entries in β(Ik) by (c+1)n. By
applying Lemma 1.7, we conclude that part (a) of Theorem 1.9 follows from
part (b) of the same theorem. Therefore, we will focus on the proof of part
(b).

3.2. Proof of part (b) of Theorem 1.9.

Proof. We will proceed by induction on the number of variables n in S.
Base Case: Result holds for 1 and 2 variables.
If I ⊆K[x] is equigenerated in degree r, it is of the form I = (xr). Then

gin(Ik) = Ik, and the only nonzero graded Betti number is β0,rk(gin(I
k)) = 1.

Suppose that I ⊆ K[x, y] is equigenerated in degree r. Then by Theo-
rem 1.5, βi,rk+i+j(I

k) is given by a polynomial Pi,j(k) for all k � 0. By
consecutive cancellation (Theorem 2.5), there exist integers ci,j(k) such that
βi,rk+i+j(gin(I

k)) = Pi,j(k) + ci,j(k).
Note that projdim(gin(Ik)) and projdim(Ik) are at most 2 for all k � 0,

so ci,j(k) = Pi,j(k) = 0 whenever i≥ 2 .

⎛
⎜⎜⎜⎝

β(gin(Ik)) 0 1

rk P0,0(k) + c0,0(k) P1,0(k) + c1,0(k)
rk+ 1 P0,1(k) + c0,1(k) P1,1(k) + c1,1(k)
rk+ 2 P0,2(k) + c0,2(k) P1,2(k) + c1,2(k)

...
...

⎞
⎟⎟⎟⎠.

We will now proceed by induction on the row index j to show that ci,j(k) is
a polynomial in k for all k� 0. This will imply that the entries in β(gin(Ik))
are given by polynomials for all k� 0.

According to Lemma 3.1, βi,rk(gin(I
k)) = 0 for all i > 0. By Theorem 2.5,

this implies that c0,0(k) = 0. Since P0,0(k) gives the number of minimal gen-
erators of gin(Ik) for k � 0, the Eliahou–Kervaire resolution implies that
P1,0(k) + c1,0(k) is the number of minimal generators of gin(Ik) of degree
rk divisible by y. We know that xrk the only generator of gin(Ik) of de-
gree rk not divisible by y, so P1,0(k) + c1,0(k) = P0,0(k) − 1. Therefore,
c1,0(k) = P0,0(k)− 1− P1,0(k) is a polynomial in k for k� 0.

Suppose that we know ci,j(k) is a polynomial in k for i= 0,1 and all j < J .
First, notice that both P0,J (k) + c0,J(k) and P1,J(k) + c1,J(k) represent the
number of generators of gin(Ik) of degree rk+J since y divides all generators
of degree greater than rk. Thus, P0,J (k) + c0,J(k) = P1,J(k) + c1,J(k) and
c1,J(k) is a polynomial for all k � 0 if c0,J(k) is. However, by consecutive
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cancellation, c0,J(k) = c1,J−1(k) is polynomial by our inductive assumption.
Therefore, Theorem 1.9 holds when I is an equigenerated ideal in K[x, y].

Inductive Step: Hyperplane Restriction
Now suppose that Theorem 1.9 holds for all equigenerated ideals in

K[x1, . . . , xn−1]. We will show that this implies the theorem for equigener-
ated ideals in K[x1, . . . , xn]. The key element of this argument is hyperplane
restriction, Theorem 2.11. Let I be an equigenerated ideal in K[x1, . . . , xn]
and let Ih be a generic hyperplane section of I . Ih is a homogeneous ideal of
K[x1, . . . , xn−1] equigenerated in degree r and

gin
(
(Ih)

k
)
= gin

((
Ik

)
h

)
= gin

(
Ik

)
|xn→0.

Since our inductive assumption applies to {Ih} ⊆K[x1, . . . , xn−1], there are
polynomials fi,j(k) such that βi,rk+i+j(gin((Ih)

k)) = βi,rk+i+j(gin((I
k)h)) =

fi,j(k) for i, j, and k� 0. From Theorem 1.5, we know that there are poly-
nomials Pi,j(k) such that βi,rk+i+j(I

k) = Pi,j(k) for all k � 0 and by con-
secutive cancellation βi,rk+i+j(gin(I

k)) = Pi,j(k) + ci,j(k) for some numbers
ci,j(k). To complete the inductive step, it is sufficient to show that the ci,j(k)
are polynomials in k for all k� 0.

⎛
⎜⎜⎜⎜⎜⎜⎝

β(gin(Ik)h) : 0 1 · · · n− 2

rk f0,0(k) f1,0(k) · · · fn−2,0(k)

rk+ 1 f0,1(k) f1,1(k) · · · fn−2,1(k)

...
...

... · · ·
...

rk+ ρ′ f0,ρ′(k) f1,ρ′(k) · · · fn−2,ρ′(k)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎝

β(gin(Ik)) : 0 1 · · · n− 1

rk P0,0(k) + c0,0(k) P1,0(k) + c1,0(k) · · · Pn−1,0(k) + cn−1,0(k)

rk+ 1 P0,1(k) + c0,1(k) P1,1(k) + c1,1(k) · · · Pn−1,1(k) + cn−1,1(k)

...
...

... · · ·
...

rk+ ρ P0,ρ(k) + c0,ρ(k) P1,ρ(k) + c1,ρ(k) · · · Pn−1,ρ(k) + cn−1,ρ(k)

⎞
⎟⎟⎟⎟⎟⎠.

By Theorem 2.11, for any δ the set of degree δ minimal generators of gin(Ik)
not divisible by xn is the same as the set of degree δ minimal generators of
gin((Ik)h). We will use this fact along with the Eliahou–Kervaire resolution
to determine how the fi,js and Pi,js are related, row-by-row.

For a monomial ideal M , let mi,δ(M) denote the number of minimal gener-
ators of M of degree δ divisible by xi and no larger-indexed variable. β0,rk(M)
gives the number of generators of M of degree rk. Since βi,rk(gin(I

k)) = 0
for all i > 0, c0,0(k) = 0 by consecutive cancellation. Then

mn,rk

(
gin

(
Ik

))
= β0,rk

(
gin

(
Ik

))
− β0,rk

(
gin

((
Ik

)
h

))
= P0,0(k)− f0,0(k).
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We know that P0,0(k) and f0,0(k) are eventually polynomial in k, so
mn,rk(gin(I

k)) is a polynomial in k for all k� 0.
Similarly, in homological degree I , Corollary 2.3 implies that[
PI,0(k) + cI,0(k)

]
− fI,0(k)

=

n∑
q=I+1

(
q− 1

I

)
mq,rk

(
gin

(
Ik

))
−

n−1∑
q=I+1

(
q− 1

I

)
mq,rk

(
gin

((
Ik

)
h

))

=

(
n− 1

I

)
mn,rk

(
gin

(
Ik

))
.

Since we know that the PI,0(k), fI,0(k), and mn,rk(gin(I
k)) are polynomial for

all k � 0, cI,0(k) must be polynomial for k � 0 as well. Therefore, we know
that the cancellation numbers ci,0(k) in the first nonzero row of β(gin(Ik))
are polynomial for all k� 0.

Now assume that we know that the cancellation numbers ci,j(k) are poly-
nomial for all k� 0 whenever j < J . By consecutive cancellation,

c0,J(k) = c1,J−1(k)− c2,J−2(k) + · · ·+ (−1)ncn−1,J−(n−1)(k).

By our assumption, this implies that c0,J(k) is also polynomial for all k� 0.
As before, [

P0,J (k) + c0,J(k)
]
− f0,J (k) =mn,rk+J

(
gin

(
Ik

))
so mn,rk+J(gin(I

k)) is polynomial for all k� 0 as well.
In column I and row rk+ J ,[
PI,J (k) + cI,J (k)

]
− fI,J (k)

=

n∑
q=I+1

(
q− 1

I

)
mq,rk+J

(
gin

(
Ik

))
−

n−1∑
q=I+1

(
q− 1

I

)
mq,rk+J

(
gin

((
Ik

)
h

))

=

(
n− 1

I

)
mn,rk+J

(
gin

(
Ik

))
.

Since mn,rk+J(gin(I
k)) is polynomial for all k� 0, we see that cI,J(k) must

also be polynomial in k for all k� 0. Therefore, all cancellation numbers in
row rk + J are polynomial for k � 0. We conclude by induction on the row
index that that all entries in the table β(gin(Ik)) are given by polynomials in
k for k� 0 when I ⊆K[x1, . . . , xn] is equigenerated.

Therefore, by induction on the number of variables, we conclude that the
theorem holds for all equigenerated ideals I in any number of variables. �

3.3. Consequences of the proof. By Theorem 1.5, the polynomials Pi,j(k)
that give the entries of β(Ik) are of degree less than �(I), the analytic spread
of I . If we follow the degrees of the polynomials in the above proof, we see
that the same can be said for the functions giving the cancellation numbers.
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Corollary 3.2. Let I be an ideal equigenerated in degree r. Then the
degree of each polynomial Qi,j(k) = βi,i+j+rk(gin(I

k)) guaranteed by Theo-
rem 1.9 is less than �(I).

Similarly, we can follow the stabilization indices in the proof to obtain the
following result.

Corollary 3.3. Let I be an equigenerated ideal with generators of de-
gree r. Then the stabilization index of {gin(Ik)} is at most the stabilization
index of {Ik}.

We may also consider the structure of the Boij–Söderberg decompositions
of β(gin(Ik)). The proof of the main result from [11] holds for any family of
ideals {Jk} such that the shape of β(Jk) stabilizes and whose entries are given
by polynomials in k. Therefore, the following is a corollary of Theorem 1.9;
see [11] for a more precise definition of translated family of chains.

Corollary 3.4. Let I be an equigenerated ideal with generators of de-
gree r. Then there are integers m and K such that for all k >K, the positive
Boij–Söderberg decomposition of β(gin(Ik)) is of the form

β
(
gin

(
Ik

))
=w1(k)π1(k) + · · ·+wm(k)πm(k),

where each wi(k) is a polynomial in k with rational coefficients and π1(k)<
π2(k)< · · ·< πm(k) is a translated family of chains. That is, each πi(k) is a
collection of pure diagrams whose nonzero entries have the same shape.
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