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FACTORIZATIONS OF BIRATIONAL EXTENSIONS OF
LOCAL RINGS

STEVEN DALE CUTKOSKY AND HEMA SRINIVASAN

In honor of Phillip Griffith

Abstract. We give a proof of local strong factorization of a birational,
monomial extension of regular local rings along a valuation of rank 1
and maximal rational rank. Our proof uses methods from linear algebra,
and is in the spirit of Christensen’s proof of this result in dimension 3.
This has also been proven by Karu using toric geometry.

1. Introduction

Suppose that R and S are regular local rings such that S dominates R
(R ⊂ S and the maximal ideal mS of S contracts to the maximal ideal mR of
R).

R → S is monomial if there exist regular parameters x1, . . . , xm in R,
y1, . . . , yn in S, an m × n matrix A = (aij) of rank m whose entries are
nonnegative integers and units δi ∈ S such that

xi =
n∏

j=1

y
aij

j δi

for 1 ≤ i ≤ m.
Suppose that P ⊂ R is a regular prime (R/P is a regular local ring) and

0 6= f ∈ P . The regular local ring R1 = R[P
f ]m, where m is a maximal ideal

of R[P
f ] containing mR, is called a monoidal transform of R.

Suppose that V is a valuation ring of the quotient field of S which dominates
S (and thus dominates R). Then given a regular prime P of R (or of S) there
exists a unique monoidal transform R1 of R (or S1 of S) obtained from P
such that V dominates R1 (or V dominates S1).
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The local monomialization theorem of [C2] and [C4] shows that given an
extension R → S ⊂ V as above such that R,S are essentially of finite type
over a field k of characteristic zero, there exists a commutative diagram

R1 → S1 ⊂ V
↑ ↑
R → S

such that the vertical arrows are products of monoidal transforms and R1 →
S1 is monomial.

Suppose that we further have that R → S is birational (the induced homo-
morphism of quotient fields is an isomorphism). If R → S is monomial and
birational, then we can find regular parameters y1, . . . , yn in S such that

xi =
n∏

j=1

y
aij

j

for 1 ≤ i ≤ n (since B = A−1 has integral coefficients).
We may now state Abhyankar’s local factorization conjecture (page 237 of

[Ab]). Suppose that R → S is a birational extension of regular local rings of
dimension n ≥ 3 and V is a valuation ring of the quotient field of S such that
V dominates R. The conjecture is that there exists a commutative diagram

(1.1)
T ⊂ V

↗ ↖
R → S

where the northeast and northwest arrows are products of monoidal trans-
forms.

It is proven in [Z] and [Ab1] that there is a direct factorization of R → S
by monoidal transforms if n = 2. However, examples of the failure of a direct
factorization of R → S by monoidal transforms are given in [Sa] and [Sh]
when n ≥ 3.

The local factorization theorem is proven when n = 3 (and R is essentially
of finite type over a field of characteristic 0) in [C1, Theorem A].

In [C2, Theorem 1.9] it is proven that the local monomialization theorem
([C2, Theorem 1.1]) and “strong factorization” of birational toric morphisms
of nonsingular toric varieties implies the local factorization theorem in all
dimensions (in characteristic zero).

There are two published proofs of “strong factorization” of birational toric
morphisms, [Mo] and [AMR]. They have both been found to have errors (as
explained in the correction [AMR1] to [AMR]).

Suppose that R is essentially of finite type over a field. In [C2], a strong ver-
sion of local monomialization is used to reduce the proof of local factorization
to the following problem, which is essentially in linear algebra.
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We assume that R → S is monomial, with respect to regular parameters
x1, . . . , xn in R and y1, . . . , yn in S, the value group of V is contained in R,
and if ν is a valuation of the quotient field of S whose valuation ring is V ,
then

τ1 = ν(y1), . . . , τn = ν(yn)

are rationally independent real numbers.
In this special case, we can assume that R = k[x1, . . . , xn](x1,...,xn) and S =

k[y1, . . . , yn](y1,...,yn), where k is a field. We have expressions xi =
∏n

j=1 y
aij

j

for 1 ≤ i ≤ n. If

f =
∑

αi1,...,inyi1
1 . . . yin

n ∈ k[y1, . . . , yn],

we have ν(f) = min{i1τ1 + · · · + inτn | αi1,...,in
6= 0}. We will call the local

factorization conjecture in this special case the “monomial problem”.
When n = 3, the monomial problem is solved by Christensen [Ch]. In

[C2, Theorem 1.6], the first author extends this to prove a weaker form of the
monomial problem for all n. By combining this with the local monomialization
theorem of [C2], it was proved in [C2] that a birational extension R → S can
be factored by n− 2 triangles of monoidal transforms.

Recently, there has been a proof by Karu [K] of this monomial problem,
using toric geometry.

In this paper, we give a self-contained proof of the monomial problem. We
solve the problem in the spirit of Christensen’s original theorem in dimension
3. In particular, the problem can be stated completely in the language of
linear algebra, and we prove it using linear algebra. As a result, we give an
explicit algorithm for the solution of the monomial problem. This theorem
(Theorem 2.1) is proven in Section 2 of this paper. The solution to the
monomial problem is given in Theorem 3.1.

We show in Theorem 3.3 of Section 3 of this paper how the local monomi-
alization theorem, [C2, Theorem 1.1] and Theorem 2.1 of this paper prove the
local factorization conjecture. This provides a complete proof to Theorem 1.9
of [C2].

A monoidal transform affects the coefficient matrix A as a column addition.
The valuation can be understood as a column vector ~v of positive rational
numbers. To preserve the property that the valuation ring dominates the
monodial transform of the local ring, we allow only those column operations
on A that keep both A and A−1~v positive. We construct an algorithm here
for finding a sequence of permissible column additions and interchanges to be
followed by a sequence of permissible subtractions that results in the identity
matrix.
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2. Matrix factorization

Suppose that A = (aij) is an n×n matrix with coefficients which are non-
negative integers and Det(A) = ±1. Further suppose that ~v = (v1, . . . , vn)t is
a n× 1 column vector with coefficients which are positive rationally indepen-
dent real numbers, and ~w = (w1, . . . , wn)t = A−1~v is a vector with positive
coefficients (which are necessarily rationally independent). (A,~v, ~w) satisfying
these conditions will be called an n-dimensional triple.

The column addition Cij of A which adds the j-th column of A to the
i-th column is called permissible for (A,~v, ~w) if wj − wi > 0. The triple
(A,~v, ~w) is transformed under the permissible column addition Cij to the
triple (A(1), ~v(1), ~w(1)), where A(1) = (a(1)ij) is obtained from A by adding
the j-th column of A to the i-th column, ~v(1) = ~v and ~w(1) =
(w(1)1, . . . , w(1)n)t = A(1)−1~v(1). ~w(1) is obtained from ~w by subtracting
the i-th coefficient wi from the j-th coefficient wj of ~w.

The row subtraction Rji of A which subtracts the i-th row of A from the
j-th row is called permissible for (A,~v, ~w) if ajk ≥ aik for 1 ≤ k ≤ n. The
triple (A,~v, ~w) is transformed under the permissible row subtraction Rji to
the triple (A(1), ~v(1), ~w(1)), where A(1) = (a(1)ij) is obtained from A by
subtracting the i-th row of A from the j-th row, ~v(1) is obtained from ~v by
subtracting the i-th coefficient vi from the j-th coefficient vj and ~w(1) =
(w(1)1, . . . , w(1)n)t = A(1)−1~v(1). We have that ~w(1) = ~w.

The row interchange Tij of A interchanges the i-th and j-th rows of A. Tij

transforms the triple (A,~v, ~w) into the triple (A(1), ~v(1), ~w(1)), where A(1) is
obtained from A by interchanging the i-th and j-th row, ~w(1) = ~w and ~v(1)
is obtained from ~v by interchanging the i-th and j-th row of ~v.

In this section, we prove the following theorem:

Theorem 2.1. Suppose that A = (aij) is an n×n matrix with coefficents
which are nonnegative integers and Det(A) = ±1. Further suppose that ~v =
(v1, . . . , vn)t is a n × 1 vector with coefficients which are positive rationally
independent real numbers. Then there exists a sequence of permissible column
additions and row interchanges

(A,~v, ~w) → (A(1), ~v, ~w(1)) → · · · → (A(s), ~v, ~w(s))

followed by a sequence of permissible row subtractions

(A(s), ~v, ~w(s)) → (A(s + 1), ~v(s + 1), ~w(s)) → · · · → (A(t), ~v(t), ~w(t))

such that A(t) is the n× n identity matrix.

We will denote the inverse of a matrix A by B = (bij) = A−1. If a
permissible column addition Cij is performed by adding the j-th column of
A to the i-th column, with a resulting transformation of triples (A,~v, ~w) →
(A(1), ~v, ~w(1)), then B(1) = (b(1)ij) = A(1)−1 is obtained from B = A−1 by
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subtracting the i-th row of B from the j-th row, since C−1
ij = Rji and

B(1) = A(1)−1 = (ACij)−1 = C−1
ij A−1 = RjiA

−1.

Similarly, if a permissible row subtraction Rji is performed by subtracting
the i-th row of A from the j-th row, with a resulting transformation of triples
(A,~v, ~w) → (A(1), ~v(1), ~w), then B(1) = (b(1)ij) = A(1)−1 is obtained from
B = A−1 by adding the j-th column of B to the i-th column.

If a permissible row interchange Tij is performed, then B(1) = A(1)−1 is
obtained from B by interchanging the i-th and j-th column.

Given a triple (A,~v, ~w), we define β = maxk{|bk1|}. We will write A =
(C1, . . . , Cn).

To simplify notation, we will denote the inverse of a matrix A(t) by B(t) =
(bij(t)), and define β(t) = maxk{|bk1(t)|}. We will denote A(t) = (C1(t),
. . . , Cn(t)).

Remark 2.2. Fix i and j. Either Cji is permissible or Cij is permissible
(but not both). If Cij is permissible, then after performing Cij a finite number
of times, Cji becomes permissible. This is because Cij decreases wj by a
positive integral multiple of wi.

Definition 2.3. A permissible Cij is allowable for the triple (A,~v, ~w) if
bi1 and bj1 are both non-zero and have the same sign.

Definition 2.4. A permissible Cij is *-allowable for the triple (A,~v, ~w)
if either bi1bj1 = 0, or Cij is allowable.

Remark 2.5. (1) If we perform a *-allowable Cij on the triple (A,~v, ~w)
to get (A(1), ~v, ~w(1)), then bj1(1) = bj1 − bi1, bk1(1) = bk1 if k 6= j and thus

β(1) = max
k
{|bk1(1)|} ≤ max

k
{|bk1|} = β.

(2) Suppose that we fix i and j. Then after a finite sequence consisting of
allowable Cij and Cji, both Cij and Cji are not allowable. If at least one of
bi1, bj1 is nonzero, then after a finite sequence consisting of *-allowable Cij

and Cji, both Cij and Cji are not *-allowable.

Proof of (2). If bi1 and bj1 are nonzero of the same sign, and we perform
Cij (or Cji) to obtain the new triple (A(1), ~v, ~w(1)), and bi1(1), bj1(1) have
the same sign, we then obtain that (|bi1|, |bj1|) > (|bi1(1)|, |bj1(1)|) in the Lex
order on Z2.

Suppose that bi1 6= 0 and bj1 = 0. If Cij is *-allowable, then after per-
forming Cij , we obtain that both Cij and Cji are not *-allowable. If Cji is
*-allowable, and we perform Cji, then bi1(1) = bi1, bj1(1) = 0. By Remark
2.2, we can only perform Cji a finite number of consecutive times. �
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Lemma 2.6. There exists a sequence of allowable column additions

(A,~v, ~w) → (A(1), ~v, ~w(1)) → · · · → (A(t), ~v, ~w(t))

such that at most two entries of the first column of B(t) are nonzero.

The proof of this lemma is immediate from [C2, Theorem 6.3].

Lemma 2.7. There exists a sequence of *-allowable column additions

(A,~v, ~w) → (A(1), ~v, ~w(1)) → · · · → (A(s), ~v, ~w(s))

such that there are indices i and j with bi1(s) = 1, bj1(s) = −1 and bl1 = 0 if
l 6= i and l 6= j.

Proof. By Lemma 2.6, there exists a sequence of allowable column additions
(A,~v, ~w) → (A(t1), ~v, ~w(t1)) such that at most two entries of the first column
of B(t1) are nonzero. Without loss of generality, we may assume that bk1 = 0
if k 6= 1 or 2.

First assume that one of b11 or b21 is zero. We may suppose that b21 = 0.
Then since Det(B) = ±1, we have that b11 = ±1. As in Remark 2.2, we can
(if necessary) perform the permissible column addition C21 a finite number of
times so that the column addition C12 is permissible. We can then perform
C12 to get a matrix which satisfies the conclusions of the lemma in this case.

Now assume that both b11 and b21 are nonzero. Since b11C1 + b21C2 = e1,
where e1 = (1, 0, . . . , 0)t, it follows that b11 and b21 have opposite signs. Recall
that β = max{|b11|, |b21|}. If β = 1, then we have obtained the conclusions of
the theorem.

Assume that β > 1. We will show that we can construct a sequence of
column additions in the first 3 columns which are *-allowable

(2.1) (A,~v, ~w) → (A(1), ~v, ~w(1)) → · · · → (A(s1), ~v, ~w(s1))

such that β(s1) < β.
Once we have established the existence of the sequence (2.1), we can apply

Lemma 2.6 to construct a sequence of allowable column additions

(2.2) (A(s1), ~v, ~w(s1)) → (A(s1 + 1), ~v, ~w(s1 + 1)) → · · · → (A(s2), ~v, ~w(s2))

such that at most two of the entries in the first column of B(s2) are nonzero,
and β(s2) ≤ β(s1) < β. We can thus alternate sequences (2.1) and (2.2) to
eventually obtain the conclusions of the theorem.

It remains to prove that we can construct a sequence (2.1).
Since Det(B) = ±1, and β > 1, we must have that the maximum β is

obtained by only one of |b11| and |b21|. Without loss of generality, we may
assume that

β = |b11| > |b21|.
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We now perform a finite sequence of *-allowable column additions C32,
followed by a *-allowable column addition C23 to obtain a sequence of trans-
formations of triples

(A,~v, ~w) → · · · → (A(t1), ~v, ~w(t1)),

where the first column of B(t1) is

(b11(t1), b21(t2), . . . , bn1(t1))t = (b11, b21,−b21, 0, . . . , 0)t,

with β(t1) = |b11(t1)| = |b11| = β, and either C13 or C31 is allowable.
If C31 is allowable on (A(t1), ~v, ~w(t1)), we perform it to get

|b11(t1 + 1)| = |b11(t1)− b31(t1)| = |b11 + b21| < β(t1) = β

and we stop.
If not, we have that C13 is allowable and after that, b11(t1 + 1) = b11 and

b31(t1 + 1) = b31(t1)− b11(t1) = −b21 − b11

have opposite signs. Further, β(t1+1) = β(t1) and w3(t1+1) = w3(t1)−w1 ≤
w3 − w1. Now, C32 or C23 must be allowable.

Now we perform a finite sequence of *-allowable column additions C32, and
*-allowable column additions C23, to obtain a sequence of transformations of
triples

(A(t1 + 1), ~v, ~w(t1 + 1)) → · · · → (A(t2), ~v, ~w(t2)),
where β(t2) = β(t1 + 1) = β,

max{| b21(t2) |, | b31(t2) |} <| b11(t2) |= β(t2) = β,

and b21(t2) and b31(t2) have opposite signs. One of C13, C31, C12 or C21 must
now be allowable.

Performing an allowable C31 or C21 decreases β and we stop. If not, we
perform C13 or C12 to get β(t2 +1) = β(t2) and none of the four C13, C31, C12

and C21 are allowable.
Further, w2(t2 + 1) or w3(t2 + 1) is reduced by w1, so that,

w2(t2 + 1) + w3(t2 + 1) = w2(t2) + w3(t2)− w1 ≤ w2 + w3 − 2w1.

Now either C32 or C32 becomes allowable and we repeat this process. Since
we can perform a C13 or a C12 at most [(w2 + w3)/w1] times, we must achieve
a reduction in β after a finite number of steps. �

Lemma 2.8. Let (A,~v, ~w) be a triple such that A = (C1, . . . , Cn) satisfies
the relation

Ck = C1 − e1

for some k, where e1 = (1, 0, . . . , 0)t. Let A11 be the matrix obtained from A
be deleting the first row and column. Then

Det(A11) = Det(A) = ±1.
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Let ṽ = (v2, . . . , vn)t and w̃ = (w̃2, . . . , w̃n) = A−1
11 ṽ. Then

w̃j = wj for j 6= k

and

w̃k = w1 + wk.

Proof. Set λ = Det(A) = ±1. Subtracting the k-th column of A from the
first column, we see that Det(A11) = λ. We thus have that B = A−1 =
λ adj(A), and A−1

11 = λ adj(A11). Let

A−1
11 = λ adj(A11) =


x22 x23 · · · x2n

x32 x33 · · · x3n

...
xn2 xn3 · · · xnn

 .

Since Ck = C1 − e1 and adj(A) = λA−1, the first column of adj(A) is

(λ, 0, . . . , 0,−λ, 0, . . . , 0)t,

where −λ occurs in the k-th row.
We will compute the entry λbij in the i-th row and j-th column of adj(A).

Let Aji be the matrix obtained from A by deleting the j-th row and i-th
column.

First suppose that i 6= 1, i 6= k and j > 1. Subtracting the k-th column
of Aji (the (k − 1)-st column of Aji if i < k) from the first column, and
expanding the determinant along the first column, we get that the (i, j)-th
entry of adj(A) is

(−1)i+j Det(Aji) = (−1)i+j Det[(Aji)11]

= (−1)i+j Det[(A11)j−1,i−1]
= λxi,j .

For j > 1, set

tj = λ(−1)1+j Det(Aj1).

We have that the (1, j)-th entry of adj(A) is λtj . We expand
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(−1)1+j Det(Aj1) = (−1)1+j Det

 a12 · · · a11 − 1 · · ·
...

an2 · · · an1 · · ·



= (−1)1+j Det

 a12 · · · a11 · · ·
...

an2 · · · an1 · · ·


+ (−1)1+j+1+k−2 Det[(A11)j−1,k−1]

= (−1)1+j+k−2 Det(Ajk) + (−1)j+k Det[(A11)j−1,k−1]

= −(−1)j+k Det(Ajk) + λxkj .

We see that, for j > 1, the (k, j)-th entry of adj(A) is λ(xk,j − tj).
In conclusion,

B = A−1 = λ adj(A) =



1 t2 · · · tn
0 x22 · · · x2n

...
−1 xk2 − t2 · · · xkn − tn

...
0 xn2 · · · xnn


.

Now we see that

w̃i = (xi2, . . . , xin)(v2, . . . , vn)t

= (0, xi2, . . . , xin)(v1, . . . , vn)t

= wi

if i 6= k, and

w̃k =
n∑

j=2

xkjvj

=

−v1 +
n∑

j=2

(xkj − tj)vj

 +

v1 +
n∑

j=2

tjvj


= wk + w1 �

Now we prove Theorem 2.1.
A quadruple (A,~v, ~w, k) is a triple (A,~v, ~w) and a number k with 1 < k ≤ n

such that if A = (C1, . . . , Cn), then Ck = C1− e1. To a quadruple (A,~v, ~w, k)
we associate an (n − 1)-dimensional triple (Ã = A11, ṽ, w̃) with the notation
of Lemma 2.8.
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A permissible transformation for the quadruple (A,~v, ~w, k) is a series of
permissible column additions and row interchanges which transform the triple
(A,~v, ~w) to a triple (A(1), ~v, ~w(1)) and a number j with 1 < j ≤ n, such that
(A(1), ~v, ~w(1), j) is a quadruple.

By Lemma 2.7, and since B = A−1, there exists a sequence of permissible
column additions, possibly followed by some row interchanges Tij , (A,~v, ~w) →
(A(1), ~v, ~w(1)), and a number k(1) such that (A(1), ~v, ~w(1), k(1)) is a quadru-
ple. Without loss of generality, we may assume that there exists a number k
such that (A,~v, ~w, k) is a quadruple.

If n = 3, then after expanding the determinant of Ã, we see that after
possibly performing the row interchange T23, there is a sequence of permissible
row subtractions Rji which transform Ã into the identity matrix. If n > 3,
we assume by induction that there exists a sequence of permissible column
additions and row interchanges

(2.3) (Ã, ṽ, w̃) → (Ã(1), ṽ, w̃(1)) → · · · → (Ã(s), ṽ, w̃(s))

followed by a sequence of permissible row subtractions

(2.4) (Ã(s), ṽ, w̃(s)) → (Ã(s + 1), ṽ(s + 1), w̃(s)) → · · · → (Ã(l), ṽ(l), w̃(s))

such that Ã(l) is the (n− 1)× (n− 1) identity matrix.
We will first construct a sequence of permissible transformations of quadru-

ples

(2.5) (A,~v, ~w, k) → (A(1), ~v, ~w(1), k(1)) → · · · → (A(s), ~v, ~w(s), k(s))

such that for 1 ≤ t ≤ s, we have A(t)11 = Ã(t) and w̃(t) = A(t)−1
11 (v2, . . . , vn)t.

Suppose that we have constructed (2.5) out to (A(t), ~v, ~w(t), k(t)), and
t < s. We will construct (A(t + 1), ~v, ~w(t + 1), k(t + 1)).

First suppose that Ã(t+1) is obtained from Ã(t) by interchanging the i-th
and j-th row. Let the triple (A(t + 1), ~v(t + 1), ~w(t + 1)) be obtained from
the triple (A(t), ~v, ~w(t)) by performing the row interchange Tij . Then the row
interchange Tij determines a permissible transformation of (A(t), ~v, ~w(t), k(t))
to (A(t + 1), ~v, ~w(t + 1), k(t)), such that A(t + 1)11 = Ã(t + 1).

Suppose that Ã(t + 1) is obtained from Ã(t) by adding the j-th column of
Ã(t) to the i-th column. We necessarily have that w̃j(t) > w̃i(t). Set k = k(t).

If i 6= k and j 6= k, then we have (by Lemma 2.8) that ~wj(t) > ~wi(t),
and thus the column addition Cij determines a permissible transformation of
(A(t), ~v, ~w(t), k(t)) to (A(t+1), ~v, ~w(t+1), k(t)), such that A(t+1)11 = Ã(t+1).

Suppose that i = k. Then w̃j(t) > w̃k(t). Since w̃k(t) = w1(t) + wk(t) and
w̃j(t) = wj(t) (by Lemma 2.8), we can construct a permissible transforma-
tion of quadruples (A(t), ~v, ~w(t), k(t)) → (A(t + 1), ~v, ~w(t + 1), k(t)) by first
performing the permissible column addition Ckj followed by the permissible
column addition C1j . We have that A(t + 1)11 = Ã(t + 1).

Suppose that j = k. Then w̃k(t) > w̃i(t).
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If w1(t) > wi(t), then we define a permissible transformation of quadruples

(A(t), ~v, ~w(t), k(t)) → (A(t + 1), ~v, ~w(t + 1), k(t))

by performing the permissible column addition Ci1.
Suppose that w1(t) < wi(t). If (A,~v, w) is the triple obtained from

(A(t), ~v, ~w(t)) by C1i, then we have that the i-th coefficient of w is wi =
wi(t)− w1(t). Since w̃k(t) > w̃i(t), we must have that w1(t) + wk(t) > wi(t),
which implies that wk(t) > wi(t). Thus we can construct a permissible trans-
formation of quadruples

(A(t), ~v, ~w(t), k(t)) → (A(t + 1), ~v, ~w(t + 1), k(t + 1) = i)

by first performing the permissible column addition C1i followed by the per-
missible column addition Cik. We have that A(t + 1)11 = Ã(t + 1).

We can thus inductively construct the sequence (2.5). Let k = k(s). Since
Ck(s) = C1(s) − e1, where Ck(s), C1(s) are the k-th and first columns of
A(s), the sequence of permissible row subtractions of (2.4) gives a sequence
of permissible row subtractions (A(s), ~v, ~w(s)) → (A(l), ~v(l), ~w(s)) such that
A(l) is a matrix, where A(l)11 is an identity matrix, a1k(l) = a11(tl) − 1,
ak1(l) = 1, and ai1(l) = 0 if i 6= 1 and i 6= k.

Now we perform the successive permissible row subtractions on A(l) of
subtracting a11(l)−1 times the k-th row from the first row, subtracting a1i(l)
times the i-th row from the first row for all i 6= k, and finally subtracting the
first row from the k-th row, to transform A(l) into the identity matrix. This
completes the proof of Theorem 2.1.

We say that a column subtraction is permissible on (A,~v, ~w) if it leaves
the entries of A nonnegative. If we subtract the i-th column from the j-th
column, then ~v is unchanged, but the coefficient wi of ~w is added to wj . So
as a corollary to Theorem 2.1, or by a simple modification of the proof of
Theorem 2.1, we obtain:

Theorem 2.9. Suppose that (A,~v, ~w) is a triple. Then there exists a
sequence of permissible column additions and interchanges, followed by a se-
quence of permissible column subtractions, that transforms A to the identity
matrix.

3. Local factorization of birational extensions

Suppose that R is a regular local ring with quotient field K, and ν is a
valuation of K, with valuation ring V , such that V dominates R (R ⊂ V
and the maximal ideal of V intersects R in its maximal ideal). A monoidal
transform of R along ν is a regular local ring R(1) such that R(1) = R[P

f ]m,
where P is a regular prime of R, f ∈ P is such that ν(f) = min{ν(g) | g ∈ P},
and m = {g ∈ R[P

f ] | ν(g) > 0}. We have that V dominates R(1) and R(1)
dominates R.
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Theorem 3.1. Suppose that k is a field, k[x1, . . . , xn], k[y1, . . . , yn] are
polynomial rings and there exists a matrix (aij) of nonnegative integers satis-
fying

xi =
n∏

j=1

y
aij

j

for 1 ≤ i ≤ n with Det(aij) = ±1. Let R = k[x1, . . . , xn](x1,...,xn) and
S = k[y1, . . . , yn](y1,...,yn). Suppose that ν is a rank 1 valuation of k(y1, . . . , yn)
with valuation ring V which dominates S, such that ν(y1), . . . , ν(yn) are ra-
tionally independent. Then there exists a commutative diagram

(3.1)
T

↗ ↖
R → S

such that T is a regular local ring dominated by V , and the northeast and
northwest arrows are products of monoidal transforms along ν.

Proof. Let A = (aij), ~v = (ν(x1), . . . , ν(xn))t and ~w = (ν(y1), . . . , ν(yn)).
By Theorem 2.1, there exists a sequence of permissible column additions and
row interchanges

(A,~v, ~w) → (A(1), ~v, ~w(1)) → · · · → (A(s), ~v, ~w(s))

followed by a sequence of permissible row subtractions

(A(s), ~v, ~w(s)) → (A(s + 1), ~v(s + 1), ~w(s)) → · · · → (A(t), ~v(t), ~w(t))

such that A(t) is the n× n identity matrix.
We will construct a diagram (3.1), in which the northwest arrow is a prod-

uct of monoidal transforms along ν,

(3.2) S → S(1) → · · · → S(s) = T,

and the northeast arrow is a product of monoidal transforms along ν

(3.3) R → R(1) → · · · → R(t− s) = T.

We inductively construct (3.2), with a system of regular parameters
(y1(l), . . . , yn(l)) in each S(l), so that xi =

∏
j yj(l)aij(l) for 1 ≤ i ≤ n,

~v(l) = (ν(x1), . . . , ν(xn))t = ~v and ~w(l) = (ν(y1(l)), . . . , ν(yn(l)))t for 1 ≤ l ≤
s.

Suppose that A(l + 1) is obtained from A(l) by the row interchange Tij .
We define S(l + 1) to be S(l), and we interchange the regular parameters xi

and xj of R.
Suppose that A(l + 1) is obtained from A(l) by the permissible column

addition Cij . We define S(l + 1) to be the local ring of the blow up of the
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prime ideal (yi(l), yj(l)) which is dominated by V . Since ν(yj(l)) > ν(yi(l)),
we have that

S(l + 1) = S(l)
[
yj(l)
yi(l)

]
(y1(l+1),...,yn(l+1))

,

where

yk(l + 1) =

yk(l) if k 6= j
yj(l)
yi(l)

if k = j

are regular parameters in S(l + 1).
We now inductively construct (3.3), with a system of regular parameters

(x1(l), . . . , xn(l)) in each R(l), so that xi(l) =
∏

j yj(s)aij(l+s) for 1 ≤ i ≤ n,
~v(l + s) = (ν(x1(l)), . . . , ν(xn(l)))t and ~w(l + s) = (ν(y1(s)), . . . , ν(yn(s)))t =
~w(s) for 1 ≤ l ≤ t− s.

Suppose that A(l + 1 + s) is obtained from A(l + s) by the permissible row
subtraction Rji. We define R(l + 1) to be the local ring of the blow up of the
prime ideal (xi(l), xj(l)) which is dominated by V . Since xi(l) divides xj(l)
in T , we have that

R(l + 1) = R(l)
[

xj(l)
(xi(l)

]
(x1(l+1),...,xn(l+1))

,

where

xk(l + 1) =

xk(l) if k 6= j
xj(l)
xi(l)

if k = j

are regular parameters in R(l + 1).
Since A(t) = Id, we have that xi(t− s) = yi(s) for 1 ≤ i ≤ n, and thus T

satisfies the conclusions of the theorem. �

Remark 3.2. If S → S(1) is a monoidal transform of a regular local
ring S, then S is called an inverse monoidal transform of S(1) (Chapter 6 of
[C2]). With the notation of Theorem 3.1, a permissible column subtraction
of A = (aij) induces an inverse monoidal transform R → S(1) → S of S.
We can use Theorem 2.9, instead of Theorem 2.1, to prove Theorem 3.1.
Theorem 2.9 proves the equivalent statement that a diagram (3.1) can be
constructed, where the northwest arrow is factored by a sequence of inverse
monoidal transforms from T to S.

Theorem 3.3. Suppose that R ⊂ S are regular local rings, essentially of
finite type over a field k of characteristic zero, with a common quotient field
K, such that S dominates R. Let V be a valuation ring of K which dominates
S. Then there exists a regular local ring T , with quotient field K, such that T
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dominates S, V dominates T , and the inclusions R → T and S → T can be
factored by sequences of monoidal transforms

(3.4)

V
↑
T

↗ ↖
R → S.

Proof. Let r = rank(V ). We can perform monoidal transforms on R and
S so that the assumptions of [C2, Theorem 5.5] hold. By [C2, Theorem 5.5],
there exists a commutative diagram of regular local rings

R′ → S′

↑ ↑
R → S

such that R′, S′ have respective regular parameters (z1, . . . , zn), (w1, . . . , wn)
satisfying the conclusions of [C2, Theorem 5.5]. In particular, there exists a
matrix aij such that zi =

∏
j w

aij

j for 1 ≤ i ≤ n, where A = (aij) has the
block form

A =



G1 0
Id

G2

Id
0 · · ·

Id
Gr


.

Here, Gi = (gjk(i)) is an si × si matrix of determinant ±1, so that we have

zt1+···+ti−1+1 = w
g11(i)
t1+···+ti−1+1 · · ·w

g1si
(i)

t1+···+ti−1+si

...

zt1+···+ti−1+si
= w

gsi1(i)
t1+···+ti−1+1 · · ·w

gsisi
(i)

t1+···+ti−1+si

for 1 ≤ i ≤ r. We further have that ν(zt1+···+ti−1+1), · · · , ν(zt1+···+ti−1+si
) are

rationally independent, and if Vi = V ∩ k(zt1+···+ti−1+1, · · · , zt1+···+ti−1+si),
then Vi has rank 1 (and rational rank si).

Let

Ri = k
[
zt1+···+ti−1+1, . . . , zt1+···+ti−1+si

]
(zt1+···+ti−1+1,...,zt1+···+ti−1+si

)
,

Si = k
[
wt1+···+ti−1+1, . . . , wt1+···+ti−1+si

]
(wt1+···+ti−1+1,...,wt1+···+ti−1+si

)
.
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By Theorem 3.1, there exists a regular local ring T i which is dominated by
Vi and a commutative diagram

Vi

↑
T i

↗ ↖
Ri → Si

such that the northeast and northwest arrows are products of monoidal trans-
forms. By performing the corresponding sequences of monoidal transforms on
R′ and S′ for 1 ≤ i ≤ r, we obtain the conclusions of the theorem. �
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