
ON THE SOLVABILITY OF SOME FACTORIZED LINEAR GROUPS

BY

OTO H. KEeE

Let G be a group with subgroups A and B such that G AB BA. To
what extent does the structure of A and B determine the structure of the
"factorized" group G?
For finite groups some results in this direction are known (cf. e.g. [21], [7],

[9], [8], [22], [23], [11]). Except for a few trivialities, there seems to be only
one general result on this subiect in the literature, viz. It6’s theorem [10]
stating that the product of two abelian groups is solvable of derived length at
most two. -In view of this result one might feel tempted to make the follow-
ing coniecture" G AB is solvable of derived length at most a - b if A
and B are nilpotent of class a and b, respectively.
Even for finite groups this coniecture still is open; although solvability has

been obtained here [23], [11]. If A and B are finite of coprime order, then the
statement of the conjecture is contained in [6]. To get near such a result in
general, it seems necessary to develop new commutator techniques generalizing
the trick It6 used in the proof of his theorem. Devoid of these tools one may
only hope to extend the solvability results from the class of finite groups to
some more general classes of groups suitably restricted by finiteness con-
ditions. One simple example of such an extension is indicated in [16].

In this paper two such extensions are given. Under suitable conditions
the solvability results on finite groups may be carried over to some "large"
subgroups of factorized locally finite groups. In particular the solvability
results carry over immediately to locally finite groups satisfying the minimum
condition for subgroups. For these groups a characterisation of solvability
may be given in terms of factorizations.
As solvable locally finite groups that satisfy the minimum condition for

subgroups admit a faithful linear representation, one may ask whether the
solvability results also extend to linear groups. In fact, one can prove"
the linear group G AB is almost solvable if A and B both are almost nil-
potent. -The methods of proof for this theorem are quite different from the
ones used before; they make strong use of the theory of algebraic linear groups.

Notation. If the group G operates by automorphisms on the group H and
if U

___
H, then Ca U denotes the centralizer of U in G, i.e. the set of all those

elements of G leaving every element of U fixed; N U is the set of all those
elements of G that transform every element of U into an element of U.
FG Y G is the product of all finitely generated normal subgroups of G.

The terms of the upper F-chain of G are defined inductively"
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F. G U<F G for limit ordinals j, and

F+ G/F G F(G/F G) otherwise.

As in similar contexts, it is easily seen that the following two statements about
the group G are equivalent.

(u) G is a [terminal] member of its upper F-chain;
(b) every epimorphic image H 1 of G has FH 1.

It is sometimes covenient to denote by F^G the terminal member of the
upper F-chain of G.

.IG intersection of all subgroups X of finite index [G: X] in G.
A group is almost abelian, if it possesses an abelian subgroup of finite index.
The element g GL(n, K) is semi-simple if the matrix g my be transformed

to diagonal form by an element of GL(n, K*), where K* is the algebraic
closure of the field K.

g GL(n, K) is unipotent, if all its eigenvalues are 1.
A Borel subgroup of the linear algebraic group G is a maximal closed con-

nected solvable subgroup of G.
A torus of G is a closed connected abelian subgroup consisting of semi-

simple elements.
It should be observed that in this paper 1 denotes the unit element of any

group as well as the unit group and thenumber "one".

1. Locally finite groups
Before taking up the problem of the structure of factorized locally finite

groups, we shall give a few very simple results on factorized groups in general.

LEMMA 1.1. If in the factorized group G AB the subgroups A and B have
normal subgroups Ao and Bo of finite index in A and B, respectively, then the
nornal closure C of {A0, Bol has finite index in G.

Remark. It would be of interest to know whether in general the subgroup
1A0, B0} has already finite index in G, or not.

Proof. As G AB, it is clear that the sets

ai Ao Bo bj a Cbj Ca b
cover all of G, if as and b. run independently over a set of representatives of A
over A0 and of B over B0, respectively. As these sets are finite, G:CI is
finite.

Evidently, every factor group GIN of the factorized group G AB inherits
the factorization GIN (AN/N) (BN/N). For certain types of subgroups
of G one can. prove a similar statement.

LEMMA 1.2 (Wielandt [23, Hilfssatz 7]). Let A0, Bo be subgroups of the
factorized group G AB with Ao< A, Bo <_ B, H Ao B0}. If for every
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pair a, b of elements, a A, b B, the statement H H implies H H H,
then the normalizer N lIa H admits the factorization

N (NnA)(NnB).

Remark. The conditions of this lemma are certainly met if either
H A0, B0/ is not contained in any proper conjugate of itself in G or if at
least one of A/Ao and B/Bo happens to be a torsion group.

Proof. If ab-le N, then H H. Hence H H H. This implies
a, beN, andN (NaA)(NB).

LEMMA 1.3. If in G AB the normal subgroups Ao Bo of A, B, respectively,
generate a finite subgroup H Ao, B0} of order h, then there exists a subgroup
F of G, generated by at most 2h elements, and such that

H F c__NaH and F- (FnA)(FaB).

Proof. Being finite, H is not contained in any proper conjugate of itself
in G; hence Lemma 1.2 applies" N llaH (N aA) (N nB). Take
A1 N f) A, B1 N B, and consider the subgroup A1H of N. By Dede-
kind’s law, one gets A H A B2 with B. A1H n B. But since H is of
finite order h, we may replaceB2 in this factorization by a subgroup B* of B
generated by at most h elements with A H AI B*. Now consider the sub-
group HB*; another application of Dedekind’s law yields a subgroup As with
As B* HB*. In the same way as before, A. may be replaced by a subgroup
A* of As generated by at most h elements with As B* A’B* F. This
subgroup F has the desired properties.

DEFINITION 1.4. The factorization G AB is an (S)-factorization if every
finite factor group U/N of any subgroup U of G with U (U a A )( U n B)N
is solvable.

An example of how this notion of (S)-factorization may be used to establish
some kind of solvability for certain subgroups of G is given by the following.

PaOPOSITION 1.5. If the locally finite group G has an (S)-factorization
G AB, then the subgroup {FA, FB} is locally solvable. -Iffurthermore A is a
member of its upper F-chain and if B FB, then G is locally solvable.

Proof. Let X and Y be arbitrary finitely generated normal subgroups of
A and B, respectively. By the local finiteness of G, the union M {X, Y}
is finite. So by Lemma 1.3, there is a finite subgroup F containing M such
that F (F n A)(F n B). Since G AB is an (S)-factorization of G, the
subgroup F is solvable, and hence also M. But then {’A, IB} is locally
solvable, since the subgroups formed like M make up a local system of
{FA, FB}.
For the second statement of the proposition, we may assume that G has

no locally solvable normal subgroup 1, as in locally finite groups local
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solvability is preserved in extensions. Then the locally solvable subgroup
F {’A, I’B} contains the normal subgroup IA of A, and the normal closure
of ’A in G is contained in F; it thus is locally solvable. This fact is contrary
to the assumption that G has no locally solvable normal subgroup 1, unless
FA 1. Hence A 1 and F B 1. -This proves the proposition.

Remarks. (1) Noting that for locally finite groups extensions of locally
solvable groups by locally solvable groups are locally solvable, one sees easily
that the same procedure of proof yielding the first part of Proposition 1.5 gives
that I’^G, the terminal member of the ascending l’-chain of G, also is locally
solvable, and so is the group

IF(AS/S), F(BS/S)}F^ (G/S)

for any locally solvable normal subgroup S of G.
(2) If in the situation of Proposition 1.5 one had lA’YAII B’IB[ < ,

and if one somehow knew that {’A, I’B} has finite index in G, then one could
easily infer that G itself is locally solvable.

In order to get information on the structure of G and not only of "large"
subgroups, we have to restrict the possible structure of G severely, concentrat-
ing on locally finite groups satisfying the minimum condition for subgroups.

PROPOSITION 1.6. For the factorized group G AB the following properties
are equivalent:
(a) G satisfies the minimum condition for subgroups and is almost abelian.
(b) A and B both satisfy the minimum condition for subgroups, and G is almost

abelian.
(c) G satisfies the minimum condition for subgroups, A and B both are almost

abelian, andAB BA G.
The author is indebted to Professor Reinhold Baer for this proposition in

its present form.

Remark. There is the conjecture that a locally finite group is almost
abelian if it satisfies the minimum condition for subgroups. -The connection
to Proposition 1.5 is given by the remark that for any almost abelian group G
one has the equality G F^G F. G.

Proof. Obviously, (b) is a consequence of (a). -Assume (b) with G also
the subgroups A and B are almost abelian. As they satisfy the minimum
condition, it is clear that .IA and .IB are abelian groups without proper sub-
groups of finite index. By assumption, there is an abelian normal subgroup V
with finite index in G. As V n .IA is of finite index in .IA, and as the latter
does not admit any proper subgroup of finite index, one has A V n .IA; and
similarly, .IB V a B. So the subgroup S AB BA of V is abelian
and satisfies the minimum condition for subgroups. Since the abelian normal
subgroup V has finite index in G, there are only finitely many conjugates of S
in G; let T be their product. Since T still is a subgroup of V, it is abelian and
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satisfies the minimum condition for subgroups. The characteristic subgroup
.IG of G contains .IA and :[B, hence also T. But since T is (because of the
finiteness of AT/T and BT/T) of finite index in G, one has T G. Now
consider N 1 S. Evidently T

___
N. Since G is a torsion group, Lemma 1.2

applies" N (N n A)(N n B). But this shows that N’SI is finite, hence
also IT’S I. As T does not have any proper subgroup of finite index, this
means T S, and G AB. Thus (c) is a consequence of (b).
Now assume (c)" .IA and .IB being abelian, ItS’s theorem [10] states that

.IG is metabelian. As a solvable group satisfying the minimum condition for
subgroups is almost abelian (cf. e.g. [3] or [1, Lemma 3.3]) and since G does
not admit any proper subgroup of finite index, .G is itself abelian. Thus G is
almost abelian; and (a) is a consequence of (c).

THEOREM 1.7. If the locally finite group G satisfies the minimum condition

for subgroups and if it admits an (S)-factorization G AB, then G is solvable.

Proof. By Proposition 1.5, the subgroup F {FA, FB} is locally solvable.
Evidently, FA JA, FB JB; and so the subgroup C IJA, JB} of G is
locally solvable. But the minimum condition implies that C is almost abelian
(cf. e.g. [1, Satz 3.4]). As in any group X, a subgroup without proper sub-
groups of finite index is contained in JX, one obtains C JC, and thus C is a
divisible abelian group.
By induction on A:JA II B:JBI we may assume that the group

N II(JA) A(N B) C

is solvable, except if N G. In case N G, the index G:N is finite; conse-
quently there is a solvable normal subgroup M of G contained in N with
G:M[ < . But since G AB is an (S)-factorization of G, the finite

factor group G/M of G is solvable, hence so is G.
Thus one may assume that JA and--for the same reasonuJB are normal in

G. But then, by Lemma 1.1, the normal subgroup C JAJB has finite
index in G; and again G is solvable.
The following theorem complements some known results on solvable groups

with minimum condition for subgroups (cf. e.g. [3], [1]).

THEOREM 1.8. For a locally finite group G satisfying the minimum condition

for subgroups the following properties are equivalent:
a G is solvable.
(b) G is a product of finitely many pairwise permutable nilpotent subgroups.
(c) G is a product of pairwise permutable locally nilpotent subgroups.

Proof. Let G be solvable. Then the intersection JG of all subgroups of
finite index in G is an abelian subgroup of finite index in G, (see [3] or [1,
Lemma 3.3]). Thus there is a finite subgroup H of G with HJG G. Since
H is a product of pairwise permutable nilpotent subgroups and JG is a normal
abelian subgroup, one obtains a factorization of G into finitely many pairwise
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permutable nilpotent subgroups. Thus (a) implies (b) and (c) is a weakened
form of (b).
To prove that in turn (c) impSes (a), it is sufficient to show that G is locally

solvable; thus it suffices to show the local solvability of any product of finitely
many locally nilpotent subgroups of G that are pairwise permutable. So con-
sider the group G* G1 Gn with G G G G. The subgroups G of
G* being locally nilpotent, it is clear by the result of [23] and [11] that the group
G. G G. has the (S)-factorization G G. G. G. Theorem 1.7 together
with property (c) of Proposition 1.6 yields that the subgroups G and G
centralize each other; thus the subgroup J I.IG i 1, ..., n} of G* is
abelian and divisible. By induction, we may assume that the subgroup
H G1... Gn_l is solvable and JH {.lG;i 1,...,n- 1}. Consider
now N lgo.(JH) by Dedekind’s law it has the form N H(N n G,). As
furthermore N _D J, it is evident that G* :NI divides G:.IGn and hence is
finite. Moreover, J is of finite index in N: for in the factor group

N/JH H(N n G,)/JH [H/JH][(N n G,)H/H]

the subgroup (N o G,)JH/JH has a finite index, and so has

J(N n G,)JH/JH Ja, JH/JH J/JH.
Consequently, J also has finite index in G*. Hence J contains an abelian
normal subgroup A of finite index in G*. In particular, A is of finite index in
J. But since J does not have any proper subgroup of finite index, J A is
normal in G*. The factor group G*/J is finite and a product of pairwise per-
mutable nilpotent subgroups; hence G*/J is solvable (eft [23] and [11]), and
so is G*. -Thus G is locally solvable, and henceby the minimum eondition
solvable.
Remark. Essentially, the proofs of 1.7 and 1.8 just yield that the group G is

almost abelian; and then the assumption of the existence of an (S)-faetoriza-
tion (in 1.7) or the result of [23] and [11] (in 1.8) establishes solvability.

Added in Proof (May 21, 1965). Since in a locally finite group G satisfying
the minimum condition for subgroups for any prime p the Sylow p-subgroups
of G form a single class of conjugate subgroups (cf. [1]), it is not difficult to
show the following fact, which, for finite groups, is proved in [22]: If the locally
finite group G satisfies the minimum condition for subgroups and admits a

factorization G AB with subgroups A and B, then there is a Sylow p-subgroup
G of G which admits a factorisation G A , where A , and B are Sylow
p-subgroups of A and B, respectively. By means of this observation, one
may extend part of Satz 1 of the author’s recent paper, Zur Struktur Mehrfach
Faktorisierter Endlicher Gruppen, Math. Zeitschrift, vol. 87 (1965), pp. 42-48,
to locally finite groups with minimum condition.

THEOREM 1.9. The locally finite group G which satisfies the minimum condi-
tion for subgroups possesses a normal Sylow p-subgroup for the prime p if and
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only if there are three subgroups A, B, C of G with normal Sylow p-subgroups
A, B, C, respectively, such that G has the form

G AB BC CA.

For the proof of this statement, one just has to show that the Sylow p-sub-
groups A and BC of G commute and hence coincide. This is done by
the same trick as in the finite case.

2. Linear groups
It is well known [12] that an abelian group A admits a faithful representation

as linear group over some field of characteristic 0 if and only if elementary
abelian subgroups of A have bounded dimensions considered as vector spaces
over the corresponding prime fields. Since an abelian group satisfying the
minimum condition for subgroups evidently meets this condition, and since
furthermore finite extensions of linear groups admit a faithful linear representa-
tion, it seems quite natural to ask whether and how Theorems 1.7 and 1.8
extend to linear groups. The simplest result in this direction--and the only
one on (S)-factorizations--is the following.

PROPOSITION 2.1. If the linear group G

_
GL(n, K) is finitely generated

and admits an S)-factorization G AB, then G is solvable.

Proof. An important theorem of Mal’cev states that the finitely generated
subgroup G of GL(n, K) has a system of normal subgroups N such that
[’l N 1 and G G/N --- U _

GL(n, Ki) where Ki ranges over suitable
finite fields. Since G AB is an (S)-factorization, each of the finite factor
groups G is solvable. But there is a function f(n) of the degree n bounding
the derived length of a solvable linear group of degree n (cf. [24, p. 295]); thus
the f(n)-th term of the derived series of G lies in each of the N and hence
equals 1. This shows that G is solvable.

For arbitrary linear groups no such approximation theorem holds, and one
must look for other tools in order to extend the solvability results. These tools
are readily found in the theory of linear algebraic groups; the following digres-
sion is intended to present these auxiliary results.

Let G be a linear group, i.e. G is a subgroup of some GL(n, K) with a given
embedding, where K is a commutative field which we assume algebraically
closed. If the group GL(n, K) is endowed with the Zariski topology (cf. [2]
or [18] for this and the following notions) then the closure G of G in GL(n, K)
is the smallest algebraic linear subgroup of GL(n, K) containing G.

Let (()0 be the component of the identity of (, then define

Go G n (G)0

to be the component of the identity of G. Evidently, it is of finite index in G.
Furthermore, one has (0 (()0, i.e. Go is dense in (()0
The notion of dimension is defined for algebraic groups, it may be carried
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over to arbitrary linear groups by setting
dim G dim ( dim (0.

The property (e of linear groups will be called algebraic, if for a linear group
G the relation G e (P implies ( e (e, and if furthermore every normal subgroup
of a (P-group is also a (-group. Solvability of finite length and nilpotency of
given class are the best known examples of algebraic properties. Another
example is the property of the matrix group G to be of (upper) triangular
form. -It should be noted that the algebraic property (e of the linear group G
(e.g. dim G <_ d) in general depends on the particular embedding of G into
GL(n, K), and need not be shared by another subgroup H of GL(n, K) iso-
morphic to G, i.e. (e is not an abstract property, in general.

LEMMA 2.2. If the linear group G GL(n, K) has a -subgroup S of finite
index, with an algebraic property of linear groups, then o--and hence Gomis a
-group, and one has dim G dim S.

Proof. The intersection J of all conjugates of S in G is of finite index in G.
Since G normalizes J, it also normalizes ], and hence also ]0. Being a finite
union of algebraic sets, G]0 is algebraic, i.e. ( GJ0. Since (0 is the smallest
closed subgroup of finite index of (, one has 0 ]0. -The statement about
the dimensions follows directly from the definitions.
An example of the situation described in Lemrna 2.2 is given by the following

result which is probably well known, but which we were unable to find in print.

PROPOSITION 2.3. If L is a locally nilpotent subgroup of GL(n, K), then L
has a normal subgroup N with L’NI <_ f(n that is nilpotent of class at most
max (1, n 1).

Remark. It is an easy consequence of this proposition that a locally nil-
potent linear group is a ZA-group--a result given by GaraSuk [4].

Proof. Being locally nilpotent, L is a fortiori locally solvable, and thus even
solvable ([24, p. 295]). By the theorem of Lie-Kolchin-Mal’cev (cf. [2],
[19, Theorem 21], [13, Theorem 1]) the solvable group L has a normal subgroup
T with L’T

_
f(n) that may be assumed to have trigular form. Take any

finite set of elements of T and let E be the subgroup generated by this set.
Let/ be the closure of E in GL(n, K); then/ contains with every element g
also its unipotent component gu and its semi-simple component
g8 (g gu g8 g, gu). As T is locally nilpotent, its subgroup E is nilpotent,
and so is/. The set of all unipotent elements of/ is a normal subgroup of
since /’ has triangular form whenever E has, and by [20, Cor. 2] the semi-
simple elements form a normal subgroup of E, too. So the unipotent compo-
nents of the elements of T generate a nilpotent subgroup U of GL(n, K) of
class at most n 1 which is centralized by the set of all semi-simple corn-

This theorem usually is given in the form that the index L’TI is finite. The
existence of a bound for this index in terms of the degree n is easily obtained by the
methods of [19, Theorems 15 and 21].
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ponents of elements of T. But this set generates a subgroup S consisting
exclusively of semi-simple matrices (cf. [20]). The group S is abelian, and
so U X S is nilpotent of class at most max (1, n 1). As T is a subgroup
of U X S, its class cannot be larger.

Remark. Dr. K. W. Gruenberg pointed out that the above proposition may
also be proved by rather direct calculations.
The following lemma is taken over from [17]; we quote it in the form it is

stated in [18, expost 3] from where the main idea of the proofs of Lemma 2.5
and Proposition 2.6 are taken. -This is the only point in this paper where
algebraic geometry appears explicitly.

LEMMA 2.4. Let f be a regular mapping of the algebraic variety V into the

algebraic variety W such that W f( V), and let d dim V dim W. For
any subvariety S of W, let R be a component off-l(S) such that S f(R) then
dim R _> dim S d. -If T is the union of all the subvarieties R of V such that
dim R > dimf(R) d, then U is a closed non-dense subset of V; in particular,
dim U < dim V.

In many cases the notion of dimension may play a similar role for linear
groups as the notion of order does for finite groups.

LEMMA 2.5. If A and B are closed subgroups of the algebraic linear group G,
then for the complex AB one has

dimAB dimAB dimA +dimB- dim(AnB).

Proof. At first we show that any component of AB has the same dimension
as A0 B0, thus reducing the proof of the lemma to its proof for the connected
subgroups A0 and B0. -Every component of the affine algebraic set A X B
has the form aAo X bBo. The restriction p to A X B of the rational map of
G X G onto G defined by (g, h) gh-1 maps A X B onto AB and A0 B0
onto A0 B0 the component aAo ( bBo is mapped onto aAo Bo b-; hence the
image of every component of A X B has the same dimension as A0 B0.
-Every component of AB has a dense subset which is the union of images
under p of finitely many components of A X B. Thus this dense subset and
also the component of A- has the same dimension as A0 B0. -Now let p de-
note the restriction of the above mapping to A0 X B0. We apply Lemma 2.4,
replacing f by p, V by A0 X B0, W by A0 B0. Now take for S the subvariety 1
of A0 B0. Any component R of p-l(1) {(d, d); d e A0 n B0} has the same
dimension as A0 a B0. Lemma 2.4 yields

dim A0 a B0 >__ dim A0 dim B0 dim A0 B0.
As furthermore dim a(Ao Bo)b dim A0 a B0 for any,pair a e A0 b e B0, the
second part of Lemma 2.4 yields

dim A0 n B0

_
dim A0 dim B0 dim A0 B0.
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Both inequalities together yield the statement of the lemma.

LEMMA 2.63. Let S be a solvable linear algebraic group, So its connected com-
ponent with So UT, where U is the subgroup of So consisting of all the unipotent
elements of So and T is a maximal torus of So. Then for every almost nilpotent
subgroup N of S one has

(.) dim N _< dim U + dim Cr U.

For the following short proof the author is greatly indebted to Professor
T. A. Springer.

Proof. Since N has a nilpotent subgroup of the same dimension (Lemma
2.2), one may assume that N is nilpotent; and as the smallest closed subgroup
of S that contains N is also nilpotent, one may assume N is algebraic and even
connected. But if N is a connected closed subgroup of S it lies in So, and we
may assume S to be connected, and S UT.
By [18, exposi 6, p. 4, Th. 2], N is the direct product of its unipotent part V

and its unique maximal torus L. Evidently it is sufficient to prove the as-
sertion of the lemma for the subgroup $1 UL, which is again connected,
i.e. one may assume (and we shall do this) S $1 and T L.

It follows from [18, expos 9, p. 1, Lemma 1] that there is a chain of closed
connected subgroups V, i 0, m of N such that

(a) V= V0V-.. V= U;
(b) the normalizer of V contains V+t and T;
(e) there exists a morphism O of V onto the additive group K+, which is a

group homomorphism with kernel V_t defining an isomorphism of
V/V_ onto K+; moreover, if e T, g e V one has

O,(tot-)

where x is rational ehmeter of T.

If we define Z Cr V, hen Z0 T. We hve to prove the inequality

dim V0 + dim Z0 _< dim V + dim Z.
For this it suffices to prove

dim V_I + dim Z_I <_ dim V -t- dim Z,
or that in fact

dim Z,:_I _< dim Z, 1,

l<_i<_m,

But an element of Z_I lies also in Z if and only if x(t) 1, (of. [18, expos

A result similar to Lemma 2.6 lies behind the argument of M. Goto, Not on a char-
acterization of solvable Lie algebras, J. Sci. Hiroshima Univ., Set. A. I., vol. 26 (1962),
pp. 1-2.
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4, p. 13, Cor. 1]). Hence Zi has codimension 1 at most in Z_I, which estab-
lishes the last inequality and hence the lemma.
Now we have all the auxiliary results and shall take up again the question

of the structure of factorized groups.

THEOREM 2.7. Let the linear group G be the product of (any number of) pair-
wise permutable locally nilpotent subgroups Gx A. The product of any two
of the Gx is solvable. -G itself is solvable if and only if the product of any three
of the Gx is solvable.

To prove the second statement, it is sufficient to show that the product of
any finite number of the G is solvable, if the product of any three of them is,
i.e. that G is locally solvable; for a locally solvable linear group is well known to
be solvable [24, p. 295].
The statement of the solvability of the product F of finitely many of the

Gx will be clear if there is a solvable normal subgroup S of finite index in
F Gxl Gx. for then the finite group F/S is a product of the pairwise
permutable nilpotent subgroups SGx,/S, i 1, n, and such a group is
known to be solvable [23], [11].
The conditional existence of such a normal subgroup S for finite products F

as well as its existence in the case of two factors is contained in the following.

TI-IEOREM 2.8. If the linear group G is a product of n pairwise permutable
almost nilpotent subgroups G, i 1, n, then every subgroup of the form
Gi Gj Gj Gi has a solvable normal subgroup of finite index. -G has a solvable
normal subgroup of finite index if and only if every product of any three of the G
has such a subgroup.

Proof. The necessity is obvious. -Suppose the statement of the theorem
is false, and let G be a counterexample such that n has a minimal value (hence
either n 2 or n >_ 4). Assume the field K is algebraically closed and investi-
gate the algebraic group (. One may assume ( is semi-simple, i.e. 1 is the
only connected solvable normal subgroup of G; for otherwise let S be the largest
solvable connected normal subgroup of . Then /S is also linear, and its
dense subgroup GS/S meets all our assumptions.

Let G be the product of the n 1 subgroups Gj G. By the minimality
of n, the subgroup G has a solvable normal subgroup of finite index. Thus by
Lemma 2.2,

dim G= dim G"7 _-< dim B,
where B is a Borel subgroup of the semi-simple group G.
As G is dense in (, we have by Lemma 2.5,

dim ( dim G <_ dim G dim G, i= 1,...,n.

dimG= 2dimU+dimT.

But with B UT, where T is a maximal torus of G and U is the subgroup con-
sisting of all the unipotent elements of B, one has also [18]
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As for Borel subgroups of semi-simple groups one has dim Cr U 0; one ob-
tains dim Gi <_ dim U, by Lemma 2.6. But this means (by Lemma 2.5)

dimG dimB and dimG dimU, i= 1, ...,n;

dim (G n Gi) 0.

With this knowledge apply Lemma 2.5 again to obtain

dimG (n- 1)dimU dimB dimU+dimT.

This is possible in a semi-simple algebraic group only if n 3 (and
dim T dim U). But for this case the existence of a solvable subgroup of
finite index in G had been postulated; Lemma 2.2 yields even the existence of
such a subgroup in (. -Thus, such a counterexample cannot exist, and the
theorem is proved.

Remarks. (1) Apparently no linear groups are known that are a product
of three pairwise permutable almost nilpotent subgroups and do not have a
solvable subgroup of finite index. The above argument could be refined to
show that if such a group exists, then there is a group of this type contained in a
finite extension of PGL(2, K) for a suitable algebraically closed field K.

(2) Such an example cannot exist in the situation of Theorem 2.7 if one
assumes furthermore that G is finitely generated; the same argument yielding
Proposition 2.1 proves then that G is solvable.

Finally, a simple and well known observation should be stated.

PROPOSITION 2.9. If the linear algebraic group G has the form G XY,
where X and Y are almost solvable subgroups of G, then Go is solvable.

Proof. G XY evidently entails G I, and -0, 0 are solvable by
Lemma 2.2. But then Go 0 10 (cf. [14]). But -0 is contained in a Borel
subgroup B of Go and l0 in some conjugate Bg. Hence Go BB, which
means Go B B; and Go is solvable.
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