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1. Introduction

Given a power series --o ap zp, for each positive integer n let r, denote
the smallest modulus of a zero of -’=0 ap z p, the nth partial sum. Various
growth properties of the sequence rn} were discussed in [2]; since the present
paper is an extension of several of these results, some familiarity with [2] is
desirable.

If --0 a z has a zero in the interior of its circle of convergence, then
Hurwitz’ theorem guarantees that {rn/ converges to the smallest modulus of
such a zero. If we note that r.

_
ao/an jl/, then Hurwitz’ theorem can be

used to show that r - if and only if =oa, zp exp {g(z)} for anentire
function g(z). There is in this case an interesting connection between the
growth of {rn} and that of the maximum modulus of g(z). In [2] it was
shown that the condition

(1.1) limsupln_ d, 0 < c < ,0

_
d < ,

is satisfied if and only if

(1.2) ".7-_oaz exp {g(z)}, g(z) an entire function of growth (c, d).

(The statement that an entire function g(z) is of growth (c, d) means that
the order of g(z) does not exceed c, and that the type of g(z) does not exceed
d if g(z) is of order c.)

For each d > d, (1.1) requires that {r} should grow at least as rapidly as

log
d -j

We shall investigate the possibility of replacing (1.1) by a weaker condition
in which only a certain subsequence of {r=} is required to grow this rapidly.
One theorem of this type was obtained in [2]. There it was shown that if

c > 0 and r > n for infinitely many n, then =0a zv exp {P(z)} for
some polynomial P(z) of degree 1/c or less. No corresponding result is ob-
tainable if n is replaced by a function of slower growth. Specifically, if (n)
is a positive function such that (n) n(1) as n -- , one can construct a
power series =0 av zp of arbitrary convergence radius such that r > (n)
for infinitely many n. Such a construction is carried out in 3.

Results similar to (1.2) are obtainable if it is assumed that the values of n
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for which rn is large are not too sparsely distributed.
prove two theorems.

THEOREM 1.
If the inequality

In this direction we

Suppose that ,=o a, z is a power series, c > 0 and d > O.

(1.8)
1/c

THEOREM
series

holds for a sequence of indices n nl < n2 < n. < which satisfies

(1.4) lim
log n+l 1,

-.(R) log n
then =oa, z’ exp lg(z)} for an entire function g(z) of growth (c, d).

The previously mentioned equivMence of (1.1) nd (1.2) implies that the
conclusion of Theorem 1 cnnot be strengthened.

Suppose that =oa, z is a power series and c > O. If the

(1.5) 1

converges, then =0 a z" exp lg(z)} for an entire function g(z) of growth
(c, 0). Furthermore, the infimum of numbers c for which (1.5) converges is
equal to the order of g (z).

2. Proof of Theorems and 2
For a given power series =0a z with a0 1, it is not hard to show that

there is exactly one power series g(z) "= b z which satisfies the formal
power series identity

(2.1) exp {g(z)} 7=o [g(z)]’/p! =o a, z’.

We shall suppose from now on that a0 1 and that the series
g(z) =b z satisfies (2.1). The sequence {b} thus obtained allows us
to state concisely an upper bound for r which was obtained in [2]"

LEMMA. If 0 < k

_
n and b 0, then

This is the only information about r, which will be required for the proofs of

Theorems 1 and 2.

Proof of Theorem 1. Rewriting (2.2), we have

k lb /

_
kv(n/k)/,
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which is valid for all/c _< n. Using the sequence {n}, we choose q q(/)
so that

log nq <_ lc/c < log nq+,

and letn n(k nq
For this choice of n we have/ < n for large/c, and, from (1.4),

(2.4) log n k/c,

Making use of (1.3) and (2.3), we have

/d (n/k lb / i0gn k]
A short computation using (2.4) shows th

lim og n ee,

so that
lira sup k]b ]/ ede.

Therefore 9(z) is an entire function of growth (e, d) [1, p. 11].

Proof of Theorem 2. Suppose A > 0. The series

,= nr. n= n log n

are convergent and divergent respectively; consequently the inequMity

(2.5) r A log n

is satisfied for infinitely many n. Let

n n < n < n <
denote the values of n for which (2.5) is satisfied. We shll prove that this
sequence satisfies (1.4). If n + 1 < n+a, let j n + 1 nd i n+ 1.
Then

A(2.6)
r i log n

since (2.) is false for j N N i. Comparison of he righg hand side of (2.6)
wigh ghe integral

+ 1
dx

x log x

shows that

Flog 11
log[. ]-- _] -I- o(1)

log n
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The Cauchy convergence criterion implies that the left hand side of (2.6)
tends to zero as p -- oo. Therefore we have

lim
log np+l 1.

p* log n
Comparing (2.5) with (1.3), we see from Theorem 1 that

--0 a z exp {g(z)}

for an entire function g(z) of growth (c, l/A). Since A is arbitrary, g(z) is
of growth (c, 0).

Let p denote the order of g(z). To justify the last sentence of Theorem 2
it is necessary to show that (1.5) does converge if c > p. If we choose a so
that p < a < c and note that g(z) is of growth (a, 1/2), then from (1.1) we
have

1 1
nr. n(log n)/

for all sufficiently large n. Therefore (1.5) converges.

3. An example
Let q(n) be a positive function such that (n) --n -- 0. Given 0 _< R _< , we shall construct a power series -0a z

with convergence radius R which has the property that . > e(n) for in-
finitely many n.

Let [b,} be a sequence of complex numbers distinct from zero which satisfies

lim b [--1/k R.

We shall select a subsequence {b} in such a way that the power series

ZT=0 a z exp ZT- b z}
has the desired properties. Let k 1; suppose now that kt, k.,..., kq
have been chosen. We note that if n < kq+, then ;-0 ap z is also the
n*h partial sum of the power series for

We can therefore apply the lower bound for r which was obtained in [2,
Theorem 4.1]. From this we have

T,I/kpr, > A if n

here A i a positive numDer which depend only on b,, b,
The hypothesis on q(n) guarantees that

(3.1) A ni/;q "
for all n sufficiently large. Let nq be a value of n which satisfies (3.1) and is
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not less than kq. Let kq+ nq - 1. This determines the sequence
and we have

r, > (n) for n 1 ]c,]c,]c,

Let R denote the convergence radius of ’--0 a z. It remains to show
thatR R. ClearlyR >_ R. SupposeR > 0;sincelimsup. ,it
follows from Hurwitz’ theorem that =0 a z has no zero in the disc
zl < R. Therefore

(3.2) _7"-’1 kp bkp zkp-1,

the logarithmic derivative of -’7--0 a, z, converges for all lz < R. The
radius of convergence of (3.2) is equal to R, so that R >_ R. Therefore
R R.
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