EXTENSION OF UNITARY OPERATORS

BY

CARL E. LINDERHOLM

Let (X, \mathfrak{M}, μ) be a measure space; the space (X, \mathfrak{M}, μ) will ordinarily be written X. A measure-preserving transformation on X is a function T whose domain is X, and whose range is a subset of X, such that if E is a measurable set of X then $T^{-1}E$ is measurable and $\mu(T^{-1}E) = \mu(E)$. Let T be a measurepreserving transformation on X. If there exists a measure-preserving transformation S on X such that ST(x) = TS(x) = x a.e. then T is *invertible*.

Let T be an invertible measure-preserving transformation on X. It is well known that if $f \in \mathcal{L}^2(X)$ then $fT \in \mathcal{L}^2(X)$ and that the correspondence $f \to fT$ is a unitary operator on $\mathcal{L}^2(X)$. This is called the unitary operator induced by T.

The following theorem is due to Kakutani [5].

THEOREM. Let U be a unitary operator on a separable Hilbert space 5C. Then there exists a measure space (X, \mathfrak{M}, μ) isomorphic to the space of the interval [0, 1) with Lebesgue measure, a measure-preserving transformation T on X, and a subspace \mathfrak{K} of $\mathfrak{L}^2(X)$ invariant under the unitary operator U_T induced by T, such that the restriction of U_T to \mathfrak{K} is unitarily equivalent to U.

Remark. Kakutani's proof involves a non-trivial argument based on properties of Gauss functions. Some of the details were not published in [5]. The proof presented here has a more elementary approach, although it does not develop the facts as completely as Kakutani's does.

Proof. The proof is based on a form of the spectral theorem for unitary operators. If (Y, \mathfrak{N}, ν) is a measure space and φ is a complex-valued measurable function on Y such that $|\varphi(y)| = 1$ for every point y of Y, then for every function f in $\mathfrak{L}^2(Y)$ the product $\varphi f \in \mathfrak{L}^2(Y)$, and the mapping

 $V: f \to \varphi f$

is a unitary operator on $\mathfrak{L}^2(Y)$. By a certain form of the spectral theorem [2, pp. 911-912], [3] there exist a space Y and a function φ such that the operator V is unitarily equivalent to U. We therefore replace U and \mathfrak{K} by V and $\mathfrak{L}^2(Y)$. Moreover, in case U has no proper values we may take Y to be normal in the sense of [4]; in case the proper vectors of U span \mathfrak{K} then Y may be taken to be a countable set and we may assume that $\nu(Y) = 1$ and if $y \in Y$ then $\{y\} \in \mathfrak{M}$ and $\nu\{y\} > 0$; and if neither of these holds then we may take Y to be the normalized union of two such spaces as occur in the first two cases.

Let $(C, \mathfrak{C}, \gamma)$ be the normalized measure space of the unit circle $\{z : |z| = 1\}$

Received February 5, 1964.

in the complex plane—with the usual structure obtained from that of the measure space of [0, 1) with Lebesgue measure by means of the one-to-one correspondence $z = e^{2\pi i x}$ between C and [0, 1).

By Fubini's theorem, it is easily seen that if for every function f in $\mathfrak{L}^2(Y)$ a function f^* on $Y \times C$ is defined by $f^*(y, z) = f(y) \cdot z$, then the association $f \to f^*$ is an isometric isomorphism from $\mathfrak{L}^2(Y)$ onto a subspace of $\mathfrak{L}^2(Y \times C)$. Let this subspace be \mathfrak{K} .

If $(y, z) \in Y \times C$ write $T(y, z) = (y, \varphi(y)z)$. Then it is straightforward (using Fubini's theorem)—see, e.g., [1]—that T is an invertible measurepreserving transformation on $Y \times C$. We note that if $f \in \mathcal{L}^2(Y)$ and $(y, z) \in Y \times C$ then

$$(Vf)^*(y,z) = \varphi(y)f(y)z = f^*(y,\varphi(y)z) = f^*T(y,z) = [U_T(f^*)](y,z).$$

It follows that \mathcal{K} is invariant under U_T and that the restriction of U_T to \mathcal{K} is unitarily equivalent to V. From the nature of the space Y and the normality of C it is easily checked that $Y \times C$ is normal. By a well-known characterization theorem [4, p. 339] the space $Y \times C$ is isomorphic to the space of [0, 1) with Lebesgue measure. End of proof.

References

- 1. H. ANZAI, Ergodic skew product transformations on the torus, Osaka Math. J., vol. 3 (1951), pp. 83-89.
- 2. N. DUNFORD AND J. T. SCHWARTZ, *Linear operators: part II*, New York, Interscience, 1963.
- 3. P. R. HALMOS, What does the spectral theorem say?, Amer. Math. Monthly, vol. 70 (1963), pp. 241-247.
- 4. P. R. HALMOS AND J. VON NEUMANN, Operator methods in classical mechanics II, Ann. of Math. (2), vol. 43 (1942), pp. 332-350.
- 5. S. KAKUTANI, Spectral analysis of stationary gaussian processes, Fourth Berkeley Symposium in the Theory of Probability, vol. II (1961), pp. 239-247.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS