ON OPTIMAL STOPPING RULES FOR s,/n

BY
Y. S. Caow AND HERBERT ROBBINS

1. Introduction
Let

(1) L1, Ta,y

be a sequence of independent, identically distributed random variables on a
probability space (2, ¥, P) with

(2) P(ey =1) = P(my = —1) = 4,

and let 8, = ¢, + -+ 2,. Let7 =0, £1,--- andj =0,1,:--- be
two fixed integers. Assume that we observe the sequence (1) term by term
and can decide to stop at any point; if we stop with z, we receive the reward
(z 4+ 8.)/(j + n). What stopping rule will maximize our expected reward?

Formally, a stopping rule ¢ of (1) is any positive integer-valued random
variable such that the event {{ = n} is in ¥, (n > 1) where F, is the Borel

field generated by 2y, - -+, .. Let T denote the class of all stopping rules;
for any ¢ in T, s; is a well-defined random variable, and we set

. 1+ s . .
(3) v;(i|t) = E (:7—_5_—;) , v;(3) = sup v;(i | t).

It is by no means obvious that for given ¢ and j there exists a stopping rule
3;(2) in T such that

(4) v;(2] 3;()) = v;(4) = maxerv;(i]1t);

such a stopping rule of (1) will be called optimal for the reward sequence

7 '+' S1 7 + Sa
5 . , —_—
() J+1 J+2
Theorem 1 below asserts that for every ¢ = 0, £1,--- andj = 0,1, .-
there exists an optimal stopping rule 3;(¢) for the reward sequence (5).
We remark that for any ¢t in 7" and any 2 = 0, &1, --- andj =0, 1, -

the random variable
(6) t’=t if ’I:+8g21,

= first » > tsuchthatz + s, =1 if 74+ <0
isin T and

. 7 + Sy’ ) + St
(7) i+ sy 21, 0<E(j+t’>2E(j+t>’
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It follows that

. +
(8) (i) = sup B [%%r%]

where by definition a* = max (0, a).

2. Reduction of the problem to the study of
bounded stopping rules

For any fixed N = 1, 2, - .- let Ty denote the class of all ¢ in 7T such that
t < N. By the usual backward induction (see e.g. [1]) it may be shown that
in Ty there exists a minimal optimal stopping rule of (1) for the reward se-
quence

(1) G + 31)+’ G+ 82)‘“, .
Jj+1 J+2

that is, an element 3} (¢) of Ty such that, setting

(2) wii|¢) = E [(_%%):] ,

we have

(3) w;(3 | 37 (1)) = maXury wi(i] 1),

and such that if  is any element of Tx for which

(4) w;i(1] 1) = maxesy wi(i|1),

then 3} (i) <i. The sequence J;(i), 3;(¢) +-- is such that as N — oo,
1 <5() <50 < - = 5(6) < o

®) 0 < wi(2]35(2)) < wi(i]35(4)) < -+ — suprr wi(i ] 1) = (),

the last equality following from (1.8). It is shown in [1] that there exists
an optimal element in 7' for the reward sequence (1.5) if and only if

(6) 35(4) = limyae 35 (3)
is in T—that is, if and only if
(7) P(37(3) < ») =1

—and when (7) holds 3;(7) is the minimal element of 7 which satisfies (1.4).
The remainder of the present paper is devoted to proving that (7) holds.
3. The constants @} (i) and a, (%)

In order to study the nature of the optimal bounded stopping rules 37 (7)
of Section 2 we proceed as follows. Define for N =1, 2, --- and ¢ = 0,
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=+1, - - - the constants

-+
(i) = %,

(1) b¥(5) = max (i bata(s + 1) + ban(i — 1)
" n’ 2
(n=12---,N—1).
Then
Ny it [('L + 3t>+]> _

(2) bn(l) = max (;I,— y tes:;:]}{n E -—n—_T_—‘t—-— (n = 1, 2, ,N b 1),
. +

(3)  5¥(i) = firstn > 1such that bI( 4 5.) = ST )
J+n

and

y + . .
@ up B[ CET] 4zt 1) + 4G = D)
teTN J + ¢

In view of (2) and (3) it is convenient to introduce the constants aj (¢)
defined for N =1,2,---;¢=0, x1,---;n=1,2,---, N by

7:+
(5) an(3) = bn(i) — —;

n
then (3) becomes

(6) 5¥(4) = first n > 1 such that ai{¥ (s + s.) = 0.

From (5) and (1) it follows that the constants ab(¢) satisfy the recursion
relations

an(z) =0 (all 7),
wooy |GG+ 1) 4 anu(i — 1)
(7) an("f) "‘I: hs 2 hs
G+ D "+G@E—1D" T _
D I R TR Y

from which they may be successively computed forn = N, N — 1, ---, 1.
Moreover, from (2) and (4) we have

(8) an(d) = ,Sup {E[(—%‘tzt - g]}+ (n=12-,N—1)

and
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(¢ + st)+:|
sup B | ————
teTn t
(9) [ Jj+

i s
=%[a§i’f(i+1)+a§ﬂ(¢_1)+(%-l-l) +(z—1):|.

j+1
For any ¢ =0, &1,---and n =1, 2, --- we have

0=0an(d) <ar™(d) < -,

and letting N — « we obtain constants @.(¢) = limy.. an(¢) such that

Ny N (i+8g)+~i+:|
(10) @5(0) T ) = sup [ LEST T,
while forj = 0,1, - --
(7: -+ St)+:|
e E[ 7+t
_ ’l«+ St
(1) = sup E(j ¥ t) = (4
. + . +
[ UG DT i+ 1) + o — 1]

moreover 3} (7) 1 35 (i) where
37 (¢) = first n > 1 such that a;4.(7 + s,) = 0,

(12)
= oo if no such n exists.

Thus (2.7) holds if and only if
(13) P(a;sn(? + s») = Oforsomen > 1) = 1.

In the next section we shall prove (Lemma 4) that there exists a positive
integer no such that n > ng and ¢ > 134/n together imply that a.(i) = 0.
Hence
(14) P(ajin(? + s») = 0 for somen > 1)

> P(sn > 134/j + n — i for some n > n,).

The law of the iterated logarithm implies that the latter probability is 1 and
this establishes (13); hence 3} (7) defined by (12) is in T and is optimal for
the reward sequence (1.5). We thus have the following:

TueoreM 1. For the sequence (1.1) with the distribution (1.2) and the re-
ward sequence (1.5) there exists an optimal stopping rule 3} (3) defined by (12);
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the expected reward in using 37 (i) s

0;(8) = max B (2 8‘)

teT ]_—iTZ
. + .yt
e = %[(z * l)j O 4 i+ 1) + apuli - 1)]

(=01 ;5=0,1,-").

The constants a,(¢) = limy., an () which occur in (12) and (15) are deter-
mined by (7).

4. Lemmas
Lemma 1. a,(0) < 1//n (n=12--).
Proof. From (3.7) we have

N . N .
aﬁ(z) — an+l(7/ + 1) "iz' an+l(z - 1)

_ an+1(1) + ani(—1) + 1

2 2m 1)
_ [aﬁﬂ(’i +1) +ann(G—1) v ]+
h 2 n(n + 1)

S aﬁ"'l(i + 1) -'2_ a”?{"'l(i - 1) ('i Z 1).

(1)

Hence

_ an+1(1) + an(—1) 1

ax(0) 2 T w1

1
2(n + 1)

] -

< 55 [an+a(2) + 20542(0) + a7a(—2)] +

| = [\V]

< 5 lan+s(3) + 3an+s(1) + 3an+s(—1) + an+s(—3)]

+1+®

2(n + 1)  2%(n + 3)

(2)

[\]

2k
< .. < i k
- = =0 2%+ (n + 2k + 1)°
0. By Stirling’s formula

(3) (25) < \/i:_;

since aj ()
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and

0

1 1 (" d
@ ;;,.2Vk7(n+2k+1)Szv;fr-l/zﬁ(n+2x+1)

_ 1 (_1_r_ tan=14 /27— 1)
V2r(n + 1)\2 n+1/"

Hence

(%)
. = 2
(5) a(0) = lim a3(0) < 2, s o 1

+——1————(7—r—ta.n_1 /‘/E)
V2r(n +1) \2 n+1
For r = 1 this gives
1 1 1
(6) a.(0) < CES o < ek
LemMa 2. Forn =1,2,---
(7) 0< - < an(—2) < aa(—1) < aa(0)
2 (1) 2 aa(2) 2 --- 20,

6) aa(d) 2 2F 2 (i) (all i),
Proof. For 2 < 0 we have from (3.10) and (1.7)

N ( + 8t)+:| )
@ o) = ap B[ LT >0
hence
(10) a. () > sup E[Q'——_———l—_i_:l—_zﬁ'—)—:l = a,(¢ — 1).
For 7 > 0 we have

N +'l:+8t_£ - +ns¢—it
AL L BRI T k=
+nst—-(1l+1)t]_ .
ZS}.}IT)E [W —an(’&-l-l)ZO.

(7) follows from (10) and (11). To prove (8) we shall show that forn = 1,
2,---, N,

(12) L2 ARG 2 a6 (all );
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(8) will follow from (12) on letting N — . (12) is true trivially forn = N
since ay(¢) = 0. Assume now that (12) holds; for ¢ % 0 we have by (1),

nA 1 own _ntl [aﬁii(z +1) oG —1) & T
n

n 2 T alm+1)
n+1[n+lal@G+1)+al@—1) ot T
(13) = [n + 2 2 T an+1)
an(+1) +aiG — 1) it ]*_ -
> ' L )

The case ¢ = 0 is treated similarly. Thus (12) holds with n replaced by
n — 1, and hence (12) holds for alln = N, N — 1, ---, 2, 1.

LEmMA 3. Let ¢ and j be non-negative integers such that a,.(z + j) > 0.
Let 3y denote the first integer m > 1 such that s,, = j + 1. Then for any given
t in T there exists a 3 in T such that

7 + Sy 7 + s8¢
G szy sza, B(EE)ap(ite).
Proof. We have from (3.10) and (3.11) for ¢ > 0,
N + St _ i +
1> o) =[5 (i57) -3

By (7) and (8) the inequality a,(z + 7) > 0 implies that for every positive
integer m and every integer k < 7,
(16) Onim(t + k) > 0,

and hence that there exists a stopping rule ¢, x of the sequence Tm41 y Tms2, - -
such that

t+k+ xn T Tt i1+ k
(17) (+ + +,,1,,-_|-|_m+_2|_-lt-mk + +t'k)>n_—::m‘
Let A be the event {t < o}, and define
hw) = t(w) if wed,
(18) = Hw) + twp(w) If wed,t(w) =m, s =k
(m=1,2--;k <7J).

Then #; is a stopping rule, &; > ¢, and fi(w) > #{(w) + 1if w e A. Moreover

E(i—'—sh):f 2+8¢d +Z]; 1’+st+tmk dP
t=m,s =i

n+t —n 4t k<3 M+ L+ bm
T4 s 1,+k
1 dP
(19) _f +Zf(

a-an + ¢ t=m,s,=k,t<30) T + m

_ ’L+s¢
_E(n+t)'
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Set &) = t and Ay = A. By a repetition of the preceding argument we
may define a sequence of stopping rules ¢;,

(20) t=t <t <h<-
and events 4; = {#; < 3¢} with

(21) A=A DA DA D

such that

(22) tii(w) = ti(w) if weAd,
> h(w) +1 if wed;.

Set

(23) 3= limpet;;

then {3 = o} = {J; = o}, so that 3isin T, and 3 > 5, 3 > . By the
Lebesgue dominated convergence theorem,

14+ 85\ _ . 1+ sy 1 4+ 8
(24) E(n+5>"131’2 <n+tz) n+t>’

and the proof is complete.

LemMa 4. There exists a positive integer no such thatn > ng and ¢ > 13 v/n
imply that a,(7) = 0.

Proof. Let % be a positive integer such that @.(2¢) > 0, and let 3 denote
the first integer m > 1 such that s,, = ¢. Then [2, p. 87] as ¢ — oo,

) _
(25) P(3 > 1) aﬁf e du > 1/3 >3,
™ 0 e

Hence there exists 7o > 0 such that

(26) E (ﬁ) > % (1 > 1),
and therefore
(27) E(ﬁs)”‘f (i>4,1 <n <)

By (7), a.(z) > 0, and hence by Lemma 3 (putting j = ¢) there exists a
t e T such that t > J and

7:+S; 7
(28) E<n+t)>'71,'
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Hence by Lemma 1 and (11),

%Lz%(m _>_E(nf;t)

(29) . . . ;
1 (2 (]
>ﬁ_EQ+)_ﬁEQ+)
) 3 7 . . _ 2
ZT—QE(m>>6_’I:I; (’LZ'Lo,lSnS'L).

Assume now that a.(j) > 0 for some j > 134/n and n > ny = 7 .
Then by (7), letting square brackets denote integral part,

(30) m(4ED>0, &TZnZl, @]zm

Hence, setting

in (29),

(31) [%] < 6+/n,

and therefore

(32) j<124/n+1<134/n,

a contradiction. The proof of Lemma 4, and hence of Theorem 1, is com-
plete.

5. Remarks
1. If we define forn = 1,2, ---
(1) k. = smallest integer k such that a.(k) = 0,
then from Lemma 2 it follows that
(2) 0<k<k<---
and that
(3) a,(7) =0 ifandonlyif <> ks.

It is easily seen that
37(4) = first n > 1 such that a;4.(¢ + s,) = 0

4)
( = first » > 1 such that 2 4+ s, = kjn.
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Hence the stopping rules 3; (7) are completely defined by the sequence of
positive integers k. . It is difficult to obtain an explicit formula for k. ; by
Lemma 4 we know that k, = 0(n/n) as n — «. We note also that

(5) limpaew kn = .
Otherwise we would have k, < M for some finite positive integer M and every
n=1,2 ---. If so, let ¢t = first m > 1 such that s,, = M. Then since
a (M) = 0,
M + St M

© ()<
and hence

2M M n 1
@) B(20)<¥ m(;2y) <
But asn — o,

n

(®) (2 -1

which contradicts (7).
2. We have from (3.15),

(9) vMD=@§E@)=HbHMD+mGJW
Now by (4.15), since s; < t,
"
(10) a(l) = [’i‘f}’E(ais;) - 1] =0,
and by (4.6) and (4.7),
(11) ai(—1) < a(0) <1+ 1/4/2 < 96.
Hence
(12) 2(0) < .98.

This inequality is very crude and can be greatly improved by a more detailed
analysis of the term a;(—1), but it is interesting to note that even (12) is
not easy to prove directly from the definition of v,(0).

3. In this connection let us define

st
(13) vy = max B [—i] ;

teTyN t
thenas N — «

(14) vx T 1(0) = max E (s_}t) = max E (?) .

teT t ter
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Now for any fixed N = 1, 2, - - - the value vy can be computed by recursion;
by (3.4) and (3.2),
(15) vw = 31 (1) + b7 (—=1)] = 3[1 + b (—1)],
where by (3.1)
N i
bN(i) =37
(16)
B (i) — max(f bana(d 4 1) 4 bun(i — 1)_) (n=12-- N —1)
n n’ 2 — e ) &/

The computation of the b (7) is easily programmed for a high speed computer;
the following results were kindly supplied to us by R. Bellman and S. Dreyfus:

V100 = 5815

Voo = .5835
(17)

vsoo = .H845

V1000 = .5850.

4. Remarks. (i) It would be interesting to see whether the existence of
an optimal stopping rule for s,/n can be proved for sequences x;, zz, - -
with a more general distribution than (1.2). We have some preliminary
extensions of Theorem 1 to more general cases but no definitive results as yet.

(ii) While the optimal stopping rules for s,/n and st/n are the same, the
optimal truncated rules, 1 < n < N, are quite different.

(iii) The reward sequence

(1) €81, C8ay  rv ) C'Sn,y e

where 0 < ¢ < 1 also admits an optimal stopping rule; the proof of this is
quite simple compared to that for s./n.

Added in Proof. A. Dvoretzky has recently communicated to us the proof
of the existence of an optimal stopping rule for s,/n for any sequence z; ,
Zy , - - - of independent, identically distributed random variables with a finite
second moment.
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