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1. Let G be a locally compact abelian group and S a closed subset of the
character group G^. If S is sufficiently "small", it is natural to expect that
any finite complex measure on G with Fourier-Stieltjes transform I vanish-
ing off S will be absolutely continuous. As the simplest case, one knows that

(1.1) if S has finite Haar measure, every with I 0 off S is absolutely
continuous,

since is then integrable [4]. Deeper examples are provided by the F. and
M. Riesz theorem (where G is the integer group Z and S the non-negative
integers) and Bochner’s generalization of that result (where G Z" and S is
the positive orthant) [4]. In both these results S has the property that for
all in G

(1.2) S n ( S) has finite measure;

the purpose of the present note is to point out that (1.2) alone insures some-
thing suggesting absolute continuity, specifically that is then absolutely
continuous for every measure with vanishing off S.

(In case G is metric, even Il *1] is absolutely continuous. Since
there are examples [5] of (non-negative) singular measures on the circle
group with absolutely continuous, we are of course still quite far from
concluding that (1.2) implies absolute continuity.)
Our proof is mainly measure-theoretic and depends basically on disintegra-

tion of measures [1], [2]; just about the only fact from harmonic analysis that
is needed is (1.1) itself. Indeed the result comes from the observations that
(1.2) says that certain sections of S X S (by cosets of the antidiagonal of
G X G^) have finite measure, and that on each of these sections ( X )^ is
the transform of a measure on G which is closely related to I1 *1*1 -a
fact which appears from a disintegration of X .

Since all proofs of the F. and M. Riesz theorem and Bochner’s theorem
depend (in one way or another) on the fact that there S is a proper sub-
semigroup of G^, one might hope to obtain the full analogue of these results
using such an hypothesis; as will be seen, our proof seems unsuited to pro-
ducing such a result. However, the approach can be combined with the F.
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and M. Riesz theorem for the real line to obtain some variants of Bochner’s
theorem (3).

In what follows we shall, frequently use for both a measure and the corre-
sponding integral, with (f) f f dt. For simplicity we shall take the
Fourier-Stielt]es transform to be defined without the usual coniugation, so
that () t() f d. We shall also frequently multiply a measure t
by a function h ht(f) f fh dt.
The author is indebted to Karel de Leeuw for his introduction to disin-

tegration and several other techniques used below.

2. THEOREM. Let S be a closed subset of G" for which S n ( S) has
finite Haar measure for a dense set of 0 in G^. If and , are finite complex
measures on G with Fourier-Stieltjes transforms vanishing off S, then #. , is
absolutely continuous, and if G is metrizable, even #1.1,1 is absolutely
continuous.

As an example, when G Z we might take S (- 1)n. j >_ 1}, where
{n} isa non-decreasingsequenceof positive integers with lim (n+l n) .
(Then any n in Z has only finitely many representations n n +/- n, which
implies (n S) n S is finite.)
We shall first assume G is metric and a-compact (hence satisfies the second

axiom of countability), and then indicate a reduction to this case.
Let A be the diagonal of H G X G, H0 the closed subgroup {0} X G of

H. Evidently

(gl,g) (g,g) + (O,g.-- g)
shows

(2.1) H A @ H0,

where (as is easily seen) we have a topological direct sum of these closed sub-
groups of H. Thus

(2.2) H H @ A,
where H$ (resp. A") is the subgroup of H G X G orthogonal to H0
(resp. 5). Trivially H$ G X {0}, while A-- {(0,--)’ e G^}
Let r denote the proiection of H onto H0 given by (2.1); we shall also de-

note the induced map of measures by 9. Since H satisfies the second axiom
of countability, we can disintegrate [1], [2] the measure t] X ]9] on
H G X G relative to the map r. That is, we have a map

of H into measures (of norm

_
1) on H, with each h carried by r-(h), a

map which is measurable in the sense that
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(2.3) h - k’h(f) is measurable for each f in Co(H), with

(2.4) (! z X , I)(f) fz.z X(f)(dh), f e. C0(H),

where r([z X 91). Alternatively we may write

Of course the usual monotonicity arguments show (2.3) and (2.4) con-
tinue to hold for f a bounded Baire (= Borel) function. In particular, if
we write X g(I #! i), where g is a unimodular Baire function,
we have

X’ (gf)(dh)

so that we may write

(g )(f)q(dh)

(2.5) X ,(f) I__ X(f)n(dh)
qH

for each bounded Baire f on H, where each Xh is a complex measure of norm
_

1 carried by r
-1(h).

Let us write ’, h" for generic elements of A, H. Since hh is carried by
r-l(h) h d- A, on which is constant, (2.5) applied to the general char-
acter i d- h of H yields

X ,)^(" + h’) f_ )v,(h’)(h, }(dh).(2.6) (
qH

But by (2.1), (2.2) we can identify z with H, and so for a fixed h" the
function

/. -_ ( )^( + h)
is precisely the Fourier-Stielties transform of the measure

(2.7) h(M’)(dh)
by (2.6).
Now f vanishes unless ti W h e S X S, since

( x ,,)^(#, #,,) #,()(,,.).

Writing (#, 0), h (01 0), d- h eS S amounts to
d- 1 e S, -0 e S, or 0 (-1 d- S)n (-S), and by hypothesis this last

set has finite measure for 01 lying in a dense subset of G^. Let F be the corre-
sponding (dense) set of elements h (01,0) in H$ G {0}. With
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our fixed h now taken in F, the image of (-01 -F S)n (-S) under the
topological isomorphism 0 --+ (, -) of G onto A has finite Haar measure
in A, so that f vanishes off a set of finite Haar measure.
As we saw f coincides with the transform of (2.7) so, by (1.1), (2.7) is

absolutely continuous and

(2.8) X,(h’)(dh) X(h’)(dh)
where w is the absolutely continuous component of the measure y on H0.
Thus

for all i in A" and all h" iu the dense subset F of H$, or

(, x ,,)" x,, ,o(dh)

on the dense subset A -t- F of H^, hence everywhere. So

x ,, :(2.9) n, dh

But (2.9) implies n n, for if n8 is the singular component of n we have

,oll + I1,.11 ,11 II(llxll)ll I1(1 x .,I)11 I!. x .,!1.
while x < 1 implies

so , Ii o, o.
o: ny Bi et in Ho we hw ,CE) I’l x " ICE / ’); sin

(g, g) E + ,h is equivalent to (0, g gl) E, we have

,(E) ff( ) I. (de,) (d)

where is the characteristic function of E, and thus, with

i I~(F) ! I(-F),
we have

Since I I- i* I, where -- * is the usual involution, we conclude that
I*1 *1 1 is absolutely continuous. But * is another measure with
transform vanishing off S, since (*)^ -, so that ** I.* I1 *1
is absolutely continuous, as desired. (Of course this implies is absolutely
continuous.
Now if G is metric but not a-compact we can find an open a-compact sub-
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group G1 of G carrying I and t; applying disintegration to the measure
)< on H1 G1 G1 and the map r H then yields the decomposition

),h(f)q(dh) fn ),h(f)(dh)

(since (r H)(I ] Iv l) (I ! I) is carried by the subgroup
{0} X G of H0 {0} G), valid for all bounded Baire f on H1. Since the
measures Xa are now carried by H1, (2.10) continues to hold for all bounded
locally Baire f on H, and the remainder of the proof applies.

It remains to obtain the absolute continuity of when G is not metric.
Suppose in that case that the singular component ( ). of v does not
vanish. We can find a Baire set E in G, of Haar measure zero, which carries
( * )8, and an open a-compact subgroup Go of G containing E. Now [3, G,
p. 287] there is a compact subgroup K of Go for which Go/K (and so G/K) is
metrizable while E is a union of cosets of K and (as can be seen from the
proof of [3, E, p. 285]) has as its image in Go/K a Baire subset of Go/K.

Let p denote the canonical homomorphism of G onto G/K (and also the
induced map of measures). Since pE is a Baire subset of the open subgroup
Go/K of G/K it is a Baire subset of G/K, and if m denotes Haar measure of
Go/K, mo that of Go, then evidently for some c > 0, m(F) cmo(p-F) for
all Baire F c Go/K, so m(pE) cmo(p-lpE) cmoE O. Thus pE has
Haar measure zero in Go/K, hence in G/K.

Since (# )8 0 there is some 0 in G for which

o (0o) (z

Let , O0(z ), so that ),8 (O0(z ) )8 0" (z * )8 is a measure carried
by E, and ph is a measure carried by pE, hence a singular measure if it does not
vanish; and p cannot vanish since (G/K) K, (p) K, and
,(0) 0. Since the absolutely continuous component h. of has an ab-
solutely continuous image under p, we conclude that ph ph. ph, is not
absolutely continuous.
But X 0"(#*,) (0#) * (00,), so ph p(0) *p(00,). We

thus have two measures ’ p(go ), p(go ) on the metric group
G/K for which ’, ’ is not absolutely continuous, while the transform
’ K k K (G/K) unless (0 + k") 0,(Oo) vanishes at e

so certainly vanishes unless g0 k e S; of course the same appli to v’
So the traforms of ’ and ’ vanish off

$1 Kn(S- o).

Since K" is open subgroup of G (G^/K" K^, and K is compact), Haar
measure of K is just the restriction of that of G^, and in order to see that

(2.11) (]c" $1) n Sx
has finite tIaar measure in K" for a dense set of ]" in K" we need only note
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that (2.11) is contained in

(2.12) ( + 0) n ( 0)

and show (2.12) has finite Haar measure in G for a dense set of /c.
Haar measure of (2.12) is the same as that of

The

(" + 20 S) n S,

which is finite whenever/ -{- 20 lies in a dense subset F of G^, i.e., when
k" lies in the dense subset F 20 of G^, and since K is open
K" n (F 20) is certainly dense in K.
Thus by the metric case, applied to G/K, ’, ,P, and $1 we conclude that

’ ’ is absolutely continuous, a contradiction which shows ( )8 0 and
completes our proof.
Remark. When G is a compact connected metric group the measure * ’

of our theorem is equivalent to Haar measure (when , 0).
For then (1.2) implies the transform f of (2.7) has finite support for any

h, and choosing h so that f 0, we have (2.7) simply a multiple of ttaar
measure by a non-zero trigonometric polynomial p. Thus tIaar measure is
absolutely continuous with respect to n, since otherwise nE 0 for a set E of
positive Haar measure, so that p-l(0) has positive Haar measure, which is
easily seen to be impossible.

(Indeed, when G is a torus Tk it is simple to see that a non-zero trigonometric
polynomial p has p-l(0) of measure zero using Fubini’s theorem and the fact
that, as a function of a single coordinate, p vanishes identically or has finitely
many zeroes. The general case easily reduces to this one, since if 1, n
are the characters involved in p, the map p’g -- (<g, >, (g, n>) has
pG a closed connected subgroup of Tn, hence another torus Tk, On which p
appears as a non-zero tligonometric polynomial p’ (p pPo p), so that
p’-(0) has Haar measure zero. Since the Haar measure of T pG is the
image of that of G, p-’ (0) has Haar measure zero.)

3. Disintegration can also be used to yield some variants of Bochner’s
theorem, when combined with the F. and M. Riesz theorem for the line R.

Indeed let
Gr --R

be a non-constant representation, and let S be a closed subset of G contained
in r-(R+), R+ the non-negative reals, with

-(r R n S(3.1) r +

of finite Haar measure in G for all real r.
Then if G is metric any measure on G with Fourier-Stieltjes transform

vanishing off S is absolutely continuous.

When G is compact this follows from the Helson-Lowdenslager argument (see [4]);
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We shall consider only the case in which G is also a-compact; the reduction
to that case proceeds as before. Let

be the map dual to r.
the (closed) subgroup

If we replace the diagonal in our earlier argument by

A {(r, (r)) r

(isomorphic to R) of R X G, and set H0 {0} X G, then

(r, g) (r, a(r) + (0, g (r)

leads easily to the (topological) direct sum decomposition

(3.2) H R X G A @ H0

where A+ {(-r(+) O) O+ H+ R X {0}
Let be a measure on R with 0 off Re, 1. Let be the pro-

jection of H onto H0 given by (3.2), and v( ] X ] ]). As before we
obtain

where ha, h are carried by -(h) h + 5, gX, g 1. Writing
a + h for the generic element of H (R X G)*, we have

(3.3) (, X )*( + h) f X(h)<h, >,(dh).

Now h (r, 0), (-v(), ), and (, X )(r, ) (r).j()
vanishes unless (r, ) R+ X S, so (3.3) vanishes unless

a + h (r ,(), ),+ x S,

i.e., unless j S and v() r +, or lies in (3.1). Since (3.3), as a

nevertheless our argument can yield variations which do not follow from that approach.
For example, with G Z and

S-- {(m,n) "m/2- n >_ 0, andm/2- log (1Wm) _> nwhenm >_ 0}

we can obtain the same assertion. Here (3.1) fails (r can only be taken as
(m, n) m/2 n) but (3.1) always lies in a sector of opening < r, so Bochner’s theorem
can be used in place of (3.1) where that is used in the argument which follows.
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function of ’, is the transform of

M(h*)(dh)
we conclude exactly as before that r is an absolutely continuous measure on

H0 {0} X G.
But now we can also conclude that -lmost 11 the measures M are ab-

solutely continuous with respect to m, Haar measure of A(R) translated
to the coset r-l(h) h + A of X. Once we have seen this our proof will be
complete; for if F is of Haar measure zero in A H0, which we can view as
the product space, then F n (h + X) is of measure zero m, (so M(F) 0
),’(F)), except for h in a set E of Haar measure zero in H0, whence

Thus v X 1! is absolutely continuous on R X G, so that 1/ ], its projec-
tion on G, is absolutely continuous.

In order to obtain the desired absolute continuity of almost all M rood
note that (3.1) is void for r < 0 since S c r-(R+). As we have seen, (3.3)
vanishes unless, when we write (-r(), ), we have in (3.1); so cer-
tainly (3.3) vanishes when (3.1) is void; hence

(3.4) 0 [ M(h’)<h, 8">,(dh) when h" (r, 0), r < 0,

for all * in a’-.
Since H R X G is metric and a-compact, Co(H) is separable with a

countable dense subset E; by Lusin’s theorem, for e > 0 we can find a closed
set K K, in the closed carrier of r/for which rt(Ho\K) < e and on which

3.5 ) h M(f)

is continuous for all f in E, hence with (3.5) continuous on K for all f in
Co(H) since the M are bounded in norm. Evidently it is sufficient to show
M is absolutely continuous with respect to mh for all h in K K, since
r/(H0\LI Kl/,) 0.
By (3.2) we can identify H R X {0} with ^, and 4" with Ha in fact

let Al denote (-R+) X {0}. It will be convenient notationally to rewrite
(3.2) as a direct product decomposition,

H=AXHo

with H A X H H6 X A*;thus forfLl(H) Lt(A^) ]()
((, h’)f(h*)dh" can be unambiguously interpreted as a function

h)
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on H A H0. If we take f to be supported by A

_
then by (3.4) we have

o ff ),,(h’)(h, 8"}f(h’)n(dh) dh"

f X, (:)(h, ti}n(dh)

(since ] Xfdh f CdX) for all in . or F e n(a) n(H) we thus
have

or

(3.6) 0 f hh(:)(h)(dh).

Since h ,h(]) is a bounded Baire function and such fi are dense in Co(Ho),
hence in Lx(), (3.6) holds for any Lx() and in particular, given any ele-
ment h0 of K,

(3.7) O=

where V is any compact neighborhood of h0 ((K n V) > 0 since K is con-
tained in the closed carrier of v). Now ] coincides with an element of Co(H)
on A X V; thus h -+ h(]) is continuous on K n V, so that (3.7) implies

,,.o(:) o
for any ho in K, or

f Xo(h’)f(h’) 0dh"

for any f in Lx(H) LI(A^) carried by its negative half A_. So
0(h) 0 if he translating ),0 and m0 from the coset h0 W A to A,
which we can identify with the real line R, we can thus conclude from the
F. and M. Riesz theorem that ),0 is absolutely continuous with respect to
m0, completing our proof.

Finally we note one further application of the same sort.

Suppose (for example) is a measure on R for which (x’, y) 0 when
x

_
O. Suppose

for a dense set of x’. Then is absolutely continuous.

Note that A X V carries {Xa h V} since we have replaced our direct sum decom-
position by the direct product.
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Indeed, if we write

(3.9) f (dy)

where x, y are our coordinates in R2, then

(x’, y’) f (x’)<y, y’>(dy)

so that by (3.8), for a dense set of x’,

iy(z’).(dy)

is absolutely continuous since its transform y’ --+ (x’, y’) is integrable. As
before this shows is absolutely continuous; and as in the argument just
concluded we obtain the fact that iy(x’) 0 for all x’ _< 0 since vanishes
on that half plane. So just as before, (3.9) must be absolutely continuous.
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