ADJOINT FUNCTORS AND TRIPLES¹

BY

SAMUEL EILENBERG AND JOHN C. MOORE

A triple $\mathbf{F} = (F, \eta, \mu)$ in a category α consists of a functor $F : \alpha \to \alpha$ and morphisms $\eta : 1_{\alpha} \to F, \mu : F^2 \to F$ satisfying some identities (see §2, (T.1)– (T.3)) analogous to those satisfied in a monoid. Cotriples are defined dually.

It has been recognized by Huber [4] that whenever one has a pair of adjoint functors $T: \alpha \to \alpha$, $S: \alpha \to \alpha$ (see §1), then the functor TS (with appropriate morphisms resulting from the adjointness relation) constitutes a triple in α and similarly ST yields a cotriple in α .

The main objective of this paper is to show that this relation between adjointness and triples is in some sense reversible. Given a triple \mathbf{F} in α we define a new category α^{F} and adjoint functors $T: \alpha^{F} \to \alpha, S: \alpha \to \alpha^{F}$ such that the triple given by TS coincides with F. There may be many adjoint pairs which in this way generate the triple F, but among those there is a universal one (which therefore is in a sense the "best possible one") and for this one the functor T is faithful (Theorem 2.2). This construction can best be illustrated by an example. Let a be the category of modules over a commutative ring K and let Λ be a K-algebra. The functor $F = \Lambda \otimes$ together with morphisms η and μ resulting from the morphisms $K \to \Lambda$, $\Lambda \otimes \Lambda \to \Lambda$ given by the K-algebra structure of Λ , yield then a triple **F** in α . The category α^{F} is then precisely the category of A-modules. The general construction of α^{r} closely resembles this example. As another example, let α be the category of sets and let F be the functor which to each set A assigns the underlying set of the free group generated by A. There results a triple F in α and α^{F} is the category of groups.

Let $\mathbf{G} = (\delta, \varepsilon, G)$ be a cotriple in a category A. It has been recognized by Godement [3] and Huber [4], that the iterates G^n of G together with face and degeneracy morphisms

 $G^{n+1} \to G^n, \qquad G^n \to G^{n+1}$

defined using ε and δ yield a simplicial structure which can be used to define homology and cohomology.

Now if **F** is a triple in α , then one has an adjoint pair $T: \alpha^{F} \to \alpha$, $S: \alpha \to \alpha^{F}$ and therefore one has an associated cotriple **G** in α^{F} . This in turn yields a simplicial complex for every object in α^{F} , thus paving the way for homology and cohomology in α^{F} . In §4 we show that under suitable

Received April 30, 1964.

¹ The first author was partially supported by a contract from the Office of Naval Research and by a grant from the National Science Foundation while the second author was partially supported by an Air Force contract.

conditions this complex is a projective resolution in a suitable relative sense as developed by us in [2].

For some further developments of the ideas presented here see a forthcoming dissertation of Jon M. Beck.

1. Review of adjoint functors

Given a category α we use the symbol $\alpha(A, A')$ to denote the set of all morphisms $A \to A'$ in α where A, A' are objects of α .

We shall use the notation

$$(1.1) a: S \dashv T: (a, B)$$

whenever $T : \alpha \to \beta$ and $S : \beta \to \alpha$ are functors and a is an isomorphism

$$a: \alpha(S,) \to \mathfrak{B}(, T)$$

of functors. Explicitly for each pair $A \in \alpha$, $B \in \alpha$ a yields a bijection

$$a: \alpha(S(B), A) \to \mathfrak{G}(A, T(A))$$

satisfying

(1.2)
$$a(gfS(h)) = T(g)a(f)h$$

for

$$h: B' \to B, \quad f: S(B) \to A, \quad g: A \to A'.$$

Under the relation (1.1) the functor S is said to be the coadjoint of T, and T is said to be the adjoint of S.

Setting

(1.3)
$$\alpha(A) = a^{-1}(1_{T(A)}) : ST(A) \to A$$

(1.4)
$$\beta(B) = a(1_{T(B)}) : B \to TS(B)$$

we obtain morphisms of functors

$$\alpha: ST \to 1_{\alpha}, \qquad \beta: 1_{\mathfrak{G}} \to TS$$

such that the compositions

$$S \xrightarrow{S\beta} STS \xrightarrow{\alpha S} S, \qquad T \xrightarrow{\beta T} TST \xrightarrow{T\alpha} T$$

are identities. Conversely we have:

(1.5) $a(f) = T(f)\beta(B) \text{ for } f: S(B) \to A$

(1.6)
$$a^{-1}(g) = \alpha(A)S(g) \text{ for } g: B \to T(A).$$

We shall write $a \sim (\alpha, \beta)$.

Given

$$a: S \dashv T: (\mathfrak{a}, \mathfrak{B})$$

 $c: R \dashv Q: (\mathfrak{B}, \mathfrak{C})$

we have

$$ca: SR \dashv QT: (a, c)$$

where ca is the composition

$$\mathfrak{a}(SR, \) \xrightarrow{a} \mathfrak{G}(R, T) \xrightarrow{c} \mathfrak{C}(\ , QT).$$

If $a \sim (\alpha, \beta), c \sim (\sigma, \tau)$ then

$$ca \sim (\sigma(Q\alpha R), (S\tau T)\beta).$$

Given

$$(1.7) a: S \dashv T: (\mathfrak{a}, \mathfrak{B})$$

(1.8)
$$a': S' \dashv T': (a, B)$$

and given morphisms φ : $S' \to S$, ψ : $T \to T'$ we write

(1.9) $\varphi \dashv \psi$

if the following diagram is commutative:

$$\begin{array}{ccc} \mathfrak{a}(S, &) \stackrel{a}{\longrightarrow} \mathfrak{G}(&, T) \\ \mathfrak{a}(\varphi, &) & & & \downarrow & B(&, \psi) \\ \mathfrak{a}(S', &) \stackrel{a'}{\longrightarrow} \mathfrak{G}(&, T') \end{array}$$

We note the following properties of adjointness of morphisms:

- (1.10) If in addition to the above we also have $a'' : S'' \to T'' : (\mathfrak{A}, \mathfrak{B})$ and $\varphi' \to \psi'$ for $\varphi' : S'' \to S', \psi' : T' \to T''$ then $\varphi\varphi' \to \psi\psi'$
- (1.11) If (1.7) and (1.8) hold and $\varphi : S' \to S$ then there exists a unique $\psi : T \to T'$ such that $\varphi \dashv \psi$. Further ψ is an isomorphism (or identity) if and only if φ is.
- (1.12) If (1.7), (1.8) and (1.9) hold and if $c: R \dashv Q: (\mathfrak{B}, \mathfrak{C})$ then $\varphi R \dashv Q \psi$ relative to the adjointness relations ca, ca'.

2. Triples

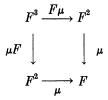
Let α be a category. A triple $\mathbf{F} = (F, \eta, \mu)$ in α consists of a functor $F : \alpha \to \alpha$ and of morphisms

$$\eta : 1_A \to F, \qquad \mu : F^2 \to F$$

such that

- (T,1) the composition $F \xrightarrow{\eta F} F^2 \xrightarrow{\mu} F$ is the identity,
- (T.2) the composition $F \xrightarrow{F\eta} F^2 \xrightarrow{\mu} F$ is the identity,

(T.3) the diagram



is commutative.

Dually a cotriple (δ, ε, F) in α is given by a triple $(F^*, \varepsilon^*, \delta^*)$ in the dual category α^* .

PROPOSITION 2.1. Let

 $(2.1) a: S \dashv T: (\mathfrak{a}, \mathfrak{B})$

with $a \sim (\alpha, \beta)$. Then

$$\nabla(a) = (TS, \beta, T\alpha S)$$

is a triple in B. Dually

$$\triangle(a) = (S\beta T, \alpha, ST)$$

is a cotriple in α .

We say that $\nabla(a)$ is generated by (2.1) and $\Delta(a)$ is cogenerated by (2.1).

Proof. Since $(T\alpha)(\beta T) = 1_T$ we have $(ST\alpha)(S\beta T) = 1_{ST}$ and (T.1) holds. Since $(\alpha S)(S\beta) = 1_S$ we have $(\alpha ST)(S\beta T) = 1_{ST}$ so that (T.2) holds. Relation (T.3) follows from the commutative diagram

THEOREM 2.2. Every triple $\mathbf{F} = (F, \eta, \mu)$ in a category \mathfrak{A} admits a generator

 $(2.2) a: S \dashv T: (\mathfrak{G}, \mathfrak{A}).$

Moreover, there exists a universal generator

(2.3) $a^{F}: S^{F} \dashv T^{F}: (\mathfrak{A}^{F}, \mathfrak{A})$

of **F** such that for any generator (2.2) of **F** there exists a unique functor $L : \mathfrak{B} \to \mathfrak{A}^{\mathbb{F}}$ such that

(2.4) $LS = S^{F}, \quad L\alpha = \alpha^{F}L.$

These relations imply

$$(2.5) T^F L = T.$$

In addition the functor T^F is faithful.

Proof. We define the objects of \mathfrak{A}^F to be the pairs (A, φ) where A is an object of \mathfrak{A} and $\varphi : F(A) \to A$ is a morphism in A satisfying

(2.6)
$$\varphi \eta(A) = 1_A, \quad \varphi F(\varphi) = \varphi \mu(A).$$

A morphism $[f] : (A, \varphi) \to (A', \varphi')$ in \mathfrak{A}^{F} is given by a morphism $f : A \to A'$ in \mathfrak{A} such that

(2.7)
$$f\varphi = \varphi' F(f).$$

If $[g] : (A', \varphi') \to (A'', \varphi'')$ then we define [g] [f] = [gf]. This defines the category $\mathfrak{A}^{\mathbb{F}}$. The functor $T^{\mathbb{F}} : \mathfrak{A}^{\mathbb{F}} \to \mathfrak{A}$ is given by

$$T^F(A,\varphi) = A, \qquad T^F[f] = f.$$

Clearly T^{F} is faithful.

The functor $S^F : \mathfrak{a} \to \mathfrak{a}^F$ is defined by

$$S^{F}(A) = (F(A), \mu(A)), \qquad S^{F}(f) = [F(f)]$$

for $f : A \to A'$ in \mathfrak{A} .

Since $T^F S^F = F$ we define

$$\beta^F = \eta : 1_A \to F = T^F S^F.$$

Since $[\varphi] : (F(A), \mu(A)) \to (A, \varphi)$ is a morphism in \mathfrak{A}^{F} we define

$$\alpha^{F}: S^{F}T^{F} \to 1_{\alpha^{F}}, \qquad \alpha^{F}(A, \varphi) = [\varphi].$$

For each A in α , the composition

$$S^{F}(A) \xrightarrow{S^{F} \beta^{F}} S^{F} T^{F} S^{F}(A) \xrightarrow{\alpha^{F} S^{F}} S^{F}(A)$$

becomes the composition

$$(F(A), \mu(A)) \xrightarrow{[F\eta(A)]} (F^2(A), \mu F(A)) \xrightarrow{[\mu(A)]} (F(A), \mu(A))$$

which is the identity. Similarly the composition

$$T^{F}(A,\varphi) \xrightarrow{\beta^{F}T^{F}} T^{F}S^{F}T^{F}(A,\varphi) \xrightarrow{T^{F}\alpha^{F}} T^{F}(A,\varphi)$$

becomes the composition

$$A \xrightarrow{\eta(A)} F(A) \xrightarrow{\varphi} A$$

which again is the identity. This yields (2.3) with $a^{F} \sim (\alpha^{F}, \beta^{F})$. Since $T^{F}\beta^{F}S^{F}(A) = T^{F}\beta^{F}(F(A), \mu(A)) = T^{F}[\mu(A)] = \mu(A)$

we have $\nabla(a^{F}) = F$ so that (2.3) is a generator for $\mathbf{F} = (F, \eta, \mu)$.

To show that (2.3) has the universal property consider an arbitrary generator (2.2) of F.

Given an object B in \mathfrak{B} we have $\alpha(B) : ST(B) \to B$ and therefore

$$T\alpha(B)$$
: $FT(B) = TST(B) \rightarrow T(B)$.

We assert that $(T(B), T\alpha(B))$ is an object in α^{F} . Firstly, the composition

$$T(B) \xrightarrow{\eta T} FT(B) \xrightarrow{T\alpha} T(B)$$

is the identity since $\eta = \beta$ and $(T\alpha)(\beta T) = 1_T$. Secondly, from the commutative diagram

$$\begin{array}{c} STST \xrightarrow{ST\alpha} ST \\ \alpha ST \downarrow \qquad \qquad \downarrow \alpha \\ ST \xrightarrow{\alpha} 1_B \end{array}$$

we deduce

$$(T\alpha)(FT\alpha) = (T\alpha)(TST\alpha) = (T\alpha)(T\alpha ST) = (T\alpha)(\mu T)$$

Thus we may define

$$L(B) = (T(B), T\alpha(B)).$$

If $f : B \to B'$ in \mathfrak{B} then

$$T(f)T\alpha(B) = T(f\alpha(B)) = T(\alpha(B')ST(f)) = (T\alpha(B'))(TST(f))$$

= $T\alpha(B')FT(f).$

Thus (2.7) holds and $[T(f)] : L(B) \to L(B')$ is a morphism in $\mathfrak{A}^{\mathbb{F}}$. Thus setting L(f) = [T(f)] we obtain a functor $L : \mathfrak{B} \to \mathfrak{A}^{\mathbb{F}}$. Clearly

$$LS(A) = (TS(A), T\alpha S(A)) = (F(A), \mu(A)) = S^{F}(A)$$
$$LS(f) = [TS(f)] = [F(f)] = S^{F}(f)$$

so that $LS = S^{F}$. Also

$$T^{F}L(B) = T^{F}(T(B), T\alpha(B)) = T(B)$$
$$T^{F}L(f) = T^{F}[T(f)] = T(f)$$

so that $T^F L = T$. Further

$$\alpha^{F}L(B) = \alpha^{F}(T(B), T\alpha(B)) = [T\alpha(B)] = L\alpha(B)$$

so that $\alpha^{F}L = L\alpha$. Thus (2.4) and (2.5) hold.

To show that L is unique consider another functor $L' : \mathfrak{B} \to \mathfrak{A}^{\mathbb{F}}$ satisfying (2.4). Let $B \in \mathfrak{B}$ and let $L'(B) = (A, \varphi)$. Then

$$A = T^{F}(A, \varphi) = T^{F}L'(B) = T(B)$$
$$\varphi = T^{F}[\varphi] = T^{F}\alpha^{F}(A, \varphi) = T^{F}\alpha^{F}L'(B) = T^{F}L'\alpha(B) = T\alpha(B)$$

and thus L'(B) = L(B). If $f: B \to B'$ then both L(f) and L'(f) are morphisms $L(B) \to L(B')$. Since $T^F L = T = T^F L'$ it follows that $T^F L(f) = T^F L'(f)$. The functor T^F being faithful it follows that L(f) = L'(f). Thus L = L'. Since the uniqueness proof uses only (2.4) while L satisfies (2.5), it follows that (2.5) is a consequence of (2.4). This concludes the proof of 2.2.

PROPOSITION 2.3. Let

 $a: S \dashv T: (a, B)$

with $a \sim (\alpha, \beta)$ and let $\mathbf{F} = (F, \eta, \mu)$ be a triple in α . Then $\mathbf{F}' = (TFS, (T\eta S)\beta, (T\mu S)(TF\alpha FS))$

is a triple in B.

Proof. A purely computational proof was given by Huber [4, p. 10]. The following proof is somewhat more conceptual. Let

 $c: R \dashv Q: (\mathfrak{C}, \mathfrak{a})$

with $c \sim (\sigma, \tau)$ be a generator of **F**. Thus $\mathbf{F} = (QR, \tau, Q\sigma R)$. We then have by §1 the adjoint relationship

 $ac: RS \dashv TQ: (\mathfrak{C}, \mathfrak{B})$

with

$$ac \sim (\sigma(R\alpha Q), (T\tau S)\beta).$$

Then by 2.1, *ac* generates the triple

$$\nabla(ac) = (TQRS, (T\tau S)\beta, (TQ\sigma RS)(TQR\alpha QRS))$$
$$= (TFS, (T\eta S)\beta, (T\mu S)(TF\alpha FS)) = \mathbf{F}'.$$

3. Adjoint triples

Let

 $(3.1) a: F \dashv G: (\alpha, \alpha).$

We define

$$a^n: F^n \to G^n: (\alpha, \alpha)$$

for $n = 0, 1, \dots$ inductively as follows. For $n = 0, F^0 = G^0 = 1$ and a^0 is the identity. For $n > 0, a^n$ is the composition

$$\alpha(F^n,) \xrightarrow{a} \alpha(F^{n-1}, G) \xrightarrow{a^{n-1}} \alpha(, G^n).$$

In particular $a^1 = a$.

If $\mathbf{F} = (F, \eta, \mu)$ is a triple in α and $\mathbf{G} = (\delta, \varepsilon, G)$ is a cotriple in α , then we write

$$a: \mathbf{F} \dashv \mathbf{G}$$

if (3.1) holds and if

 $\eta \dashv \varepsilon, \quad \mu \dashv \delta$

under a^0 , a^1 and a^2 .

PROPOSITION 3.1. If $\mathbf{F} = (F, \eta, \mu)$ is a triple in α and if $a : F \dashv G : (\alpha, \alpha)$ then there exists a unique cotriple $\mathbf{G} = (\delta, \varepsilon, G)$ such that $a : \mathbf{F} \dashv \mathbf{G}$.

Proof. We must define ε and δ by the conditions $\mu \to \delta$, $\eta \to \varepsilon$. Then by (1.12), $\eta F \to G\varepsilon$ and by (1.10) $\mu(\eta F) \to (G\varepsilon)\delta$. Since $\delta(\varepsilon F) = 1_F$ it follows that $(G\varepsilon)\delta = 1_G$. Similarly we show that $(\varepsilon G)\delta = 1_G$ and that $\delta(G\delta) = \delta(\delta G)$. Thus $G = (\delta, \varepsilon, G)$ is a cotriple as required.

PROPOSITION 3.2. Let

 $a: S \dashv T: (\alpha, \mathfrak{G})$ $c: R \dashv S: (\mathfrak{G}, \mathfrak{A})$

Then in a we have

 $ca: \nabla(c) \dashv \Delta(a).$

Proof. Let $a \sim (\alpha, \beta), c \sim (\sigma, \tau)$. Then by definition

$$\triangle(a) = (S\beta T, \alpha, ST), \qquad \nabla(c) = (SR, \tau, S\sigma R)$$

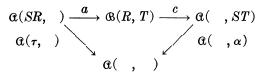
By §1 we have

 $ca:SR \dashv ST.$

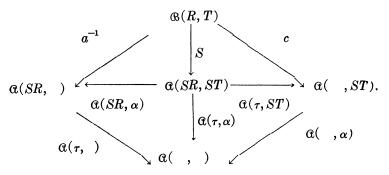
Thus it suffices to show that

$$r \dashv \alpha$$
, $S\sigma R \dashv S\beta T$.

The relation $\tau \dashv \alpha$ is the commutativity relation in the diagram



which follows from the commutative diagram



The relation $S\sigma R \dashv S\beta T$ follows from the commutativity of the diagram

$$\begin{array}{cccc} \mathfrak{a}(SR, &) & \stackrel{a}{\longrightarrow} \mathfrak{G}(R,T) & \stackrel{c}{\longrightarrow} \mathfrak{a}(&,ST) \\ \mathfrak{a}(S\sigma R, &) & & & \downarrow S & & \downarrow \mathfrak{a}(&,S\beta T) \\ \mathfrak{a}(SRSR, &) & \stackrel{ca}{\longrightarrow} \mathfrak{a}(SR,ST) & \stackrel{ca}{\longrightarrow} \mathfrak{a}(&,STST). \end{array}$$

The commutativity in the left square follows from the commutative diagram

$$\begin{array}{cccc} \mathfrak{a}(SR, &) & \xrightarrow{a} \mathfrak{G}(R, T) & \xrightarrow{1} \mathfrak{G}(R, T) \\ \mathfrak{a}(S\sigma R, &) & \downarrow & \mathfrak{G}(\sigma R, T) & \downarrow B(R\tau, T) & \downarrow & S \\ \mathfrak{a}(SRSR, &) & \xrightarrow{a} \mathfrak{G}(RSR, T) & \xrightarrow{c} \mathfrak{a}(SR, ST) \end{array}$$

and the commutativity of the right square is shown dually.

PROPOSITION 3.3. Let $\mathbf{F} = (F, \eta, \mu)$ be a triple in α with a universal generator

$$(3.2) c: R \dashv S: (\mathfrak{G}, \mathfrak{A}).$$

Then the following properties are equivalent:

(i) F has an adjoint $F \dashv G$: (α, α) ,

(ii) The triple **F** has an adjoint cotriple $\mathbf{F} \rightarrow \mathbf{G}$,

(iii) The functor S has an adjoint

$$(3.3) a: S \dashv T: (a, B).$$

If the above is the case, then (3.3) is a universal cogenerator for **G**.

Proof. The implication (i) \Rightarrow (ii) follows from 3.1 while the implication (iii) \Rightarrow (i) follows from 3.2. There remains to prove the implication (ii) \Rightarrow (iii) and the last statement.

Let

$$(3.4) a': S' \dashv T': (\mathfrak{G}', \mathfrak{a})$$

be a universal cogenerator for **G**. Assuming that $e : \mathbf{F} \dashv \mathbf{G}$ we shall construct an isomorphism $L : B \to B'$ of categories such that S'L = S. Once this is done we replace S', T', B' by S, T = T'L, B so that (3.4) becomes

$$(3.5) a: S \dashv T: (\mathfrak{G}, \mathfrak{a})$$

which is still a universal cogenerator for G.

In order to construct L we take for (3.2) and (3.4) the explicit constructions as given in §2. Thus an object of \mathfrak{B} is a pair (A, φ) with $\varphi : F(A) \to A$, satisfying

 $\varphi\eta(A) = 1_A$, $\varphi F(\varphi) = \varphi\eta(A)$.

Dually, an object of \mathfrak{B}' is a pair (ψ, A) with $\psi : A \to G(A)$ such that

$$\varepsilon(A)\psi = 1_A, \qquad G(\psi)\psi = \delta(A)\psi.$$

Now given $(A, \varphi) \in \mathfrak{G}$, let $L(A, \varphi) = (e\varphi, A)$. Since $\eta \dashv \varepsilon$ we have the commutative diagram

$$\begin{array}{ccc} \mathfrak{a}(F(A),A) & \stackrel{e}{\longrightarrow} \mathfrak{a}(A,G(A)) \\ \mathfrak{a}(\eta(A),A) & & & \mathfrak{a}(A,\varepsilon(A)) \\ \mathfrak{a}(A,A) & & & & \end{array}$$

so that

$$\varepsilon(A)e\varphi = \varphi\eta(A) = 1_A$$

Since $\mu \dashv \delta$ we have the commutative diagram

so that

$$e^{2}(\varphi\eta(A)) = \delta(A)e\varphi.$$

On the other hand

$$e^2(\varphi F(\varphi)) = e[e(\varphi)\varphi] = G(e\varphi)e\varphi.$$

Thus $G(e\varphi)e\varphi = \delta(A)e\varphi$ so that $L(A, \varphi) \in \mathfrak{G}'$.

Let $[f]: (A, \varphi) \to (A', \varphi')$ be a morphism in \mathfrak{B} . Then by definition $f: A \to A'$ and $\varphi' F(f) = f \varphi$. Then

$$G(f)e\varphi = e(f\varphi) = e(\varphi'F(f)) = (e\varphi')f$$

so that $[f]: (e\varphi, A) \to (e\varphi', A')$ is a morphism in \mathfrak{G}' . This yields the required functor L.

4. Relations with projective classes

We rapidly review some of the notions discussed in [2] and needed here. Let α be a pointed category. A sequence in α is a diagram

such that gf = 0. The sequence (*) is *exact* if f admits a factorization f = kl where k is a kernel of g and l is an epimorphism.

Let \mathcal{E} be a class of sequences (*) in \mathcal{A} . An object P of \mathfrak{A} is \mathcal{E} -projective if for every sequence (*) in \mathcal{E} the sequence

$$(**) \qquad \qquad A(P, A') \to A(P, A) \to A(P, A'')$$

is exact in the category of pointed sets. The class \mathcal{E} is called *projective* if the following two conditions hold: (1) If (*) is sequence in \mathfrak{A} such that (**) is exact for every \mathcal{E} -projective object P, then (*) is in \mathcal{E} ; (2) For every $g: A \to A''$ in A there exists a sequence (*) in \mathcal{E} in which A' is \mathcal{E} -projective.

If the class of all exact sequences in α is projective then α is called *projectively perfect*.

Let α be a pointed category with kernels and $\mathbf{G} = (\delta, \varepsilon, G)$ a cotriple in A, where the functor $G : A \to A$ is pointed.

We verify that for any A, $B \in \alpha$ the morphism

(4.1)
$$\alpha(G(B), \varepsilon(A)) : \alpha(G(B), G(A)) \to \alpha(G(B), A)$$

is surjective. Indeed, let $\varphi : G(B) \to A$. Then

$$\varepsilon(A)G(\varphi)\delta(B) = \varphi\varepsilon(G(B))\delta(B) = \varphi.$$

By [2, Ch. I, §6] this implies that the cotriple G determines a projective class G in α as follows. A sequence

$$A' \xrightarrow{f} A \xrightarrow{g} A''$$

(with gf = 0) is in \mathcal{G} provided the sequence

$$\alpha(G(B), A') \to \alpha(G(B), A) \to \alpha(G(B), A'')$$

is exact for every $B \in \alpha$. The g-projective objects are the objects G(B), $B \in \alpha$ and their retracts. The class g is exact if and only if $\varepsilon(A)$ is an epimorphism for every $A \in \alpha$.

The kernel functor of ε

$$0 \to K \xrightarrow{\kappa} G \xrightarrow{\varepsilon} 1_{\alpha}$$

leads to a sequence

$$(4.2) \qquad \cdots \to GK^3 \xrightarrow{d_3} GK^2 \xrightarrow{d_2} GK \xrightarrow{d_1} G \xrightarrow{\varepsilon} \mathbf{1}_a \to \mathbf{0}$$

where $K^0 = 1_a$, $K^n = KK^{n-1}$ and $d_n : GK^n \to GK^{n-1}$ is the composition

$$GK^n \xrightarrow{\varepsilon K^n} K^n \xrightarrow{\kappa K^{n-1}} GK^{n-1}.$$

Applied to any object A in \mathfrak{A} the sequence (4.2) yields a sequence in \mathfrak{G} and since $GK^n(A)$ is \mathfrak{G} -projective, there results a \mathfrak{G} -projective resolution of A, called the *canonical resolution* (relative to the cotriple \mathbf{G}).

Now consider the morphisms

$$\varepsilon^i: G^{n+1} \to G^n, \qquad \delta^i: G^{n+1} \to G^{n+2} \qquad i = 0, 1, \cdots, n$$

defined as follows

$$\varepsilon^i = G^i \varepsilon G^{n-i}, \qquad \delta^i = G^i \delta G^{n-i}.$$

The "face" operators ε^i and the "degeneracy" operators δ^i satisfy the usual simplicial identities so that there results a simplicial functor \overline{G} with G^{n+1} in degree *n*. If the category \mathfrak{a} is preadditive then we may construct the boundary operator

$$\partial_n: G^{n+1} \to G^n$$

by setting

$$\partial_n = \sum_{i=0}^n (-1)^i \varepsilon^i.$$

There results a complex

(4.3)
$$\cdots \to G^4 \xrightarrow{\partial_3} G^3 \xrightarrow{\partial_2} G^2 \xrightarrow{\partial_1} G^1 \xrightarrow{\varepsilon} 1_{\mathbf{A}} \to \mathbf{0}$$

with ε as augmentation. This is the standard complex of the cotriple G.

PROPOSITION 4.1. Let α be a preadditive category with kernels, and let $\mathbf{G} = (\delta, \varepsilon, G)$ be a cotriple in α with G an additive functor. If for each $A \in \alpha$ the morphism $G_{\kappa}(A)$ is a kernel of $G_{\varepsilon}(A)$, then for each $A \in \alpha$, the sequence (4.3) applied to A is a \mathcal{G} -projective resolution of A.

Proof. Since $(G\varepsilon)\delta = 1_{G}$ it follows from the hypothesis that

$$0 \to GK \xrightarrow{G_{\kappa}} G^2 \xrightarrow{G_{\varepsilon}} G \to 0$$

is a split exact sequence. Since the functor G is additive, it follows that

$$0 \to G^n K \xrightarrow{G^n \kappa} G^{n+1} \xrightarrow{G^n \varepsilon} G^n \to 0$$

is split exact.

We define morphisms

$$\tau_n: GK^n \to G^{n+1}$$

by induction as follows: $\tau_0 = \mathbf{1}_G : G \to G$; for $n > 0, \tau_n$ is the composition

$$GK^n \xrightarrow{\tau_{n-1}K} G^n K \xrightarrow{G^n \kappa} G^{n+1}.$$

We verify that for n > 0

$$au_{n-1} d_n = \varepsilon^0 \tau_n$$
, $\varepsilon^i \tau_n = 0$ if $i > 0$

There results a commutative diagram

The upper row is the canonical resolution. To show that the lower row also is a resolution (with augmentation $\varepsilon : G \to 1_{\mathfrak{a}}$) it suffices to show that the morphism (4.4) is a homotopy equivalence of complexes. To verify this it suffices to show that the upper row of (4.4) is the normalized subcomplex of the simplicial complex \overline{G} with τ as inclusion (for a neat exposition see [1, §3]). To do this it suffices to show that $\tau_n(A) : GK^n(A) \to G^{n+1}(A)$ is the simultaneous kernel of $\varepsilon^i(A) : G^{n+1}(A) \to G^n(A)$ for $i = 1, 2, \dots, n$. This means that if $f : C \to G^{n+1}(A)$ is such that $\varepsilon^i(A)f = 0$ for $i = 1, 2, \dots, n$, then

there exists a unique $g: C \to GK^n(A)$ such that $\tau_n g = f$. For n = 0 this is clear. We now assume that n > 0 and proceed by induction.

Since $G^n \kappa : G^n K \to G^{n+1}$ is the kernel of $\varepsilon^n = G^n \varepsilon : G^{n+1} \to G^n$, therefore, f admits a unique factorization

(4.5)
$$C \xrightarrow{f'} G^n K(A) \xrightarrow{G^n \kappa} G^{n+1}(A).$$

Let B = K(A) and consider the commutative diagrams for $i = 1, 2, \dots, n-1$:

We have $(G^{n-1}\kappa)(\varepsilon^i(B))f' = 0$ and since $G^{n-1}\kappa$ is a kernel it follows that $\varepsilon^i(B)f' = 0$ for $i = 1, 2, \dots, n-1$. Thus, by the inductive hypothesis, f' admits a unique factorization

$$C \xrightarrow{g} GK^{n-1}(B) \xrightarrow{\tau_{n-1}(B)} G^n(B).$$

Combining this with the factorization (4.5) of f we obtain a unique factorization

 $C \xrightarrow{g} GK^n(A) \xrightarrow{\tau_n(A)} G^{n+1}(A)$

of f, as required.

An alternative proof of 4.1 may be given as follows. Denote by \hat{G} the complex (4.3) with the augmentation included (i.e. with 1_A in degree -1 and with $\partial_0 = \varepsilon$). Next show that the complex $\hat{G}(G(A))$ is contractible (i.e. is split exact). This is done by defining $s_n : G^{n+1} \to G^{n+2}$ by $s_{-1} = 0$, $s_n = (-1)^{n-1}G^n\delta$ for n > 0. Then a calculation shows that

 $\partial_{n+1} s_n + s_{n-1} \partial_n = 1_{G^{n+1}}.$

It follows that for every $B \in \alpha$ we have

(4.6)
$$H\alpha(G(B), \hat{G}(G(A))) = 0.$$

Next observe that the sequence

$$0 \to K(A) \to G(A) \to A \to 0$$

is in G while the sequences

$$\mathbf{0} \to G^n K(A) \to G^{n+1}(A) \to G^n(A) \to \mathbf{0}$$

are split exact for n > 0. There results an exact sequence of complexes

$$0 \to \alpha(G(B), \, \widehat{GK}(A)) \to \alpha(G(B), \, \widehat{GG}(A)) \to \alpha(G(B), \, \widehat{G}(A)) \to 0.$$

Thus (4.6) implies an isomorphism

 $H_n \alpha(G(B), \widehat{G}(A)) \approx H_{n-1} \alpha(G(B), \widehat{G}K(A)).$

Since $H_{-2} \alpha(G(B), \hat{G}(A)) = 0$ for all $A, B \in \alpha$, it follows inductively that $H_n \alpha(G(B), \hat{G}(A)) = 0$ for all n. Thus $\hat{G}(A)$ is in \mathcal{G} , as required.

This proof has the disadvantage of not exhibiting the canonical complex as the normalized standard complex.

5. Properties of universal generators

Let $\mathbf{F} = (F, \eta, \mu)$ be a triple in a category α and let

(5.1)
$$a^F: S^F \dashv T^F: (\mathfrak{A}^F, \mathfrak{A}), \quad a^F \sim (\alpha^F, \beta^F),$$

be the universal generator of **F**. From the explicit construction given in §2 it is clear that if α is a pointed (or additive) category and if F is a pointed (or additive) functor, then α^{F} is a pointed (or additive) category and the functors S^{F} and T^{F} are pointed (or additive).

PROPOSITION 5.1. If \mathfrak{A} is a pointed category with kernels and if the functor F is pointed, then \mathfrak{A}^F is a pointed category with kernels and the functor T^F preserves and reflects kernels (i.e. g is a kernel of f in \mathfrak{A}^F if and only if T^Fg is a kernel of T^Ff in \mathfrak{A}).

Proof. Let $[f] : (A, \varphi) \to (A'', \varphi'')$ be a morphism in \mathfrak{A}^F and let $g : A' \to A$ be a kernel of f in \mathfrak{A} . Since

$$f\varphi F(g) = \varphi'' F(f)F(g) = \varphi'' F(fg) = 0,$$

it follows that there exists a unique $\varphi' : F(A') \to A'$ such that $g\varphi' = \varphi F(g)$. Since

$$g\varphi'\eta(A') = \varphi F(g)\eta(A') = \varphi \eta(A)g = g$$

and since g is a monomorphism, it follows that $\varphi'\eta(A') = 1_{A'}$. Similarly since

$$g\varphi'F(\varphi') = \varphi F(g)F(\varphi') = \varphi F(\varphi)F^2(g) = \varphi \mu(A)F^2(g)$$
$$= \varphi F(g)\mu(A') = g\varphi'\mu(A')$$

we have $\varphi' F(\varphi') = \varphi' \mu(A')$. Thus (A', φ') is in \mathfrak{A}^F and

$$[g] : (A', \varphi') \to (A, \varphi).$$

Now let $[h] : (A_1, \varphi_1) \to (A, \varphi)$ be a morphism in B such that [f] [h] = 0. Then fh = 0 and there is a unique morphism $k : A_1 \to A'$ such that h = gk. Then

$$gk\varphi_1 = h\varphi_1 = \varphi F(h) = \varphi F(g)F(k) = g\varphi'F(k)$$

and therefore $k\varphi_1 = \varphi'F(k)$. Thus $[k] : (A_1, \varphi_1) \to (A', \varphi')$, and [h] = [g] [k]. Thus [g] is a kernel of [f] and the proposition is established.

PROPOSITION 5.2. If α is a pointed category with cohernels and the functor F

is pointed and preserves cokernels, then the category \mathfrak{A}^{F} has cokernels and the functor T^{F} preserves and reflects cokernels.

Proof. Let $[g] : (A', \varphi') \to (A, \varphi)$ and let $f : A \to A''$ be a cokernel of g in \mathfrak{a} . Then F(f) is a cokernel of F(g). Since $f\varphi F(g) = fg\varphi' = 0$ it follows that there exists a unique $\varphi'' : F(A'') \to A''$ such that $f\varphi = \varphi''F(f)$. Since

$$\varphi''\eta(A'')f = \varphi''F(f)\eta(A) = f\varphi\eta(A) = f$$

it follows that $\varphi''\eta(A'') = 1_{A''}$. Similarly since

$$\varphi''F(\varphi'')F^{2}(f) = \varphi''F(f)F(\varphi) = f\varphi F(\varphi) = f\varphi \mu(A)$$
$$= \varphi''F(f)\mu(A) = \varphi''\mu(A'')F^{2}(f)$$

and since $F^2(f)$ is an epimorphism, it follows that $\varphi''F(\varphi'') = \varphi''\delta(A'')$. Thus (A', φ'') is in α^F and $[f] : (A, \varphi) \to (A'', \varphi'')$. Now let

 $[h]: (A, \varphi) \to (A_1, \varphi_1)$

be such that [h][g] = 0. Then hg = 0 and there is a unique morphism $k: A'' \to A_1$ such that h = kf. Then

$$k\varphi''F(f) = kf\varphi = h\varphi = \varphi_1F(h) = \varphi_1F(k)F(f)$$

implies that $k\varphi'' = \varphi_1 F(k)$. Thus $[k] : (A'', \varphi'') \to (A_1, \varphi_1)$ and [h] = [k] [f]. Thus [f] is a cokernel of [g] and the proposition is established.

The above two propositions and known facts about abelian categories imply

PROPOSITION 5.3. If the category α is abelian and the functor F is additive and preserves cohernels, then the category α^{F} is abelian and the functor T^{F} preserves and reflects exact sequences.

Now assume that the category α and the functor F are pointed, and let ε be a projective class in the category α . By the adjoint theorem for projective classes [2, Ch. II, §2], there results in α^F a projective class $\varepsilon^F = (T^F)^{-1}\varepsilon$. Explicitly a sequence

 $(A', \varphi') \xrightarrow{[f]} (A, \varphi) \xrightarrow{[g]} (A'', \varphi'')$

is in \mathcal{E}^{F} if and only if

 $A' \xrightarrow{f} A \xrightarrow{g} A''$

is in \mathcal{E} . The \mathcal{E}^{F} projective objects are the retracts of objects $S^{F}(A) = (F(A), \mu(A))$ where A is \mathcal{E} -projective. Since the functor T^{F} is faithful, it follows [2, Ch. II, §2] that if the class \mathcal{E} is exact then the class \mathcal{E}^{F} also is exact.

In particular, if the category α is projectively perfect, and \mathcal{E}_1 is the class of all exact sequences in α , then \mathcal{E}_1^F is the class of all exact sequences in the category α^F , which is therefore projectively perfect.

If in α we take \mathcal{E}_0 to be the class of all split exact sequences, there results a projective class \mathcal{E}_0^F in α^F . The \mathcal{E}_0^F -projective objects are the retracts of ob-

jects $S^{F}(A) = (F(A), \mu(A))$ where A is any object of \mathfrak{A} . This class \mathfrak{E}_{0}^{F} may also be arrived at in a different way as follows. The relation (5.1) induces in A^{F} a cotriple

$$\mathbf{G} = \Delta(a) = (S\beta T, \alpha, ST)$$

where the superscript F has been omitted. This cotriple defines a projective class G in A^F . The G-projective objects of \mathfrak{A}^F are the retracts of objects $ST(A, \varphi) = S(A) = (F(A), \mu(A))$ where $(A, \varphi) \in \mathfrak{A}^F$. Since the composition

$$S \xrightarrow{S\beta} STS \xrightarrow{\alpha S} S$$

is the identity, it follows that for any $A \in \alpha$, S(A) is a retract of STS(A). Thus S(A) is G-projective. It follows that the \mathcal{E}_0^F -projective and the G-projective objects coincide and thus $\mathcal{E}_0^F = \mathcal{G}$. In particular, the canonical resolution yields an \mathcal{E}_0^F -projective resolution for every object of α^F .

If the category α is preadditive and the functor F is additive then the category α^{F} also is preadditive and the functors S, T and G = ST are additive. If further α has kernels, then α^{F} has kernels. We shall show that the conditions of 4.1 are satisfied and therefore the standard complex for the cotriple **G** yields \mathcal{E}_{0}^{F} -projective resolutions.

Indeed, the exact sequence

$$0 \to K \xrightarrow{\kappa} G \xrightarrow{\epsilon} \mathbf{1}_{\mathfrak{a}^F} \to 0$$

is the exact sequence

 $0 \longrightarrow K \xrightarrow{\kappa} ST \xrightarrow{\alpha} 1_{a^{F}} \longrightarrow 0.$

Since T preserves exact sequences, it follows that

(5.2)
$$0 \to TK \xrightarrow{T_{\kappa}} TST \xrightarrow{T\alpha} T \to 0$$

is exact. Since $(T\alpha)(\beta T) = 1_T$ it follows that the sequence (5.2) is split exact and therefore since S is additive

$$0 \to STK \xrightarrow{ST\kappa} STST \xrightarrow{ST\alpha} ST \to 0$$

is exact. Thus the sequence

 $0 \to GK \xrightarrow{G\kappa} G^2 \xrightarrow{G\varepsilon} G \to 0$

is exact, as required.

6. Examples

Let K be a commutative ring and α the category of K-modules. Then α is an abelian category. α is also a K-category, so that $\alpha(A, A')$ is again an object of α . The tensor product $A \otimes B$ over K yields a functor $\alpha \times \alpha \to \alpha$

and we have the natural isomorphism

(6.1)
$$a: \alpha(\Lambda \otimes B, A) \to \alpha(B, \alpha(\Lambda, A)).$$

We shall also employ the standard identifications

(6.2)
$$K \otimes A = A, \quad \alpha(K, A) = A$$

Let Λ be a K-algebra. Then we have morphisms

(6.3)
$$\bar{\eta}: K \to \Lambda, \qquad \bar{\mu}: \Lambda \otimes \Lambda \to \Lambda$$

satisfying the usual identities. There results a triple $\mathbf{F} = (F, \eta, \mu)$ where $F = \Lambda \otimes$

$$\eta(A) = \overline{\eta} \otimes \Lambda, \qquad \mu(A) = \overline{\mu} \otimes A.$$

We also have a cotriple $\mathbf{G} = (\delta, \varepsilon, G)$ where $G = \mathfrak{A}(\Lambda,)$

$$\varepsilon(A) = \alpha(\bar{\eta}, A) : \alpha(\Lambda, A) \to \alpha(K, A) = A$$

and $\delta(A)$ is the composition

$$\mathfrak{A}(\Lambda, A) \xrightarrow{\mathfrak{A}(\overline{\mu}, A)} \mathfrak{A}(\Lambda \otimes \Lambda, A) \xrightarrow{a} \mathfrak{A}(\Lambda, \mathfrak{A}(\Lambda, A)).$$

The relation (6.1) yields $a : F \to G$. Further it is easy to verify that $\eta \to \varepsilon$ and $\mu \to \delta$. Thus we have $a : \mathbf{F} \to \mathbf{G}$.

Let $_{\Lambda}M$ be the category of left Λ -modules, $T : _{\Lambda}M \to \alpha$ the usual "forgetful" functor and let $S, R : A \to _{\Lambda}M$ be defined by $S = \Lambda \otimes, S' = \alpha(\Lambda, \)$. Then the relation (6.1) induces adjointness relations

$$a_1: S \dashv T: ({}_{\Lambda}M, \mathfrak{A})$$
$$a_2: T \dashv R: (\mathfrak{A}, {}_{\Lambda}M)$$

which are respectively the universal generator for F and the universal cogenerator for G, in agreement with 3.3.

Using theorems of Watts [5] it is easy to show that (up to isomorphisms) the K-algebras yield all the triples \mathbf{F} and all the cotriples \mathbf{G} in α such that F preserves cokernels and (arbitrary) coproducts (i.e. direct sums) while G preserves kernels and (arbitrary) products.

A K-coalgebra Λ is given by morphisms

(6.4)
$$\bar{\varepsilon}: \Lambda \to K, \quad \bar{\delta}: \Lambda \to \Lambda \otimes \Lambda$$

satisfying the usual identities. There results a cotriple $G = (\delta, \varepsilon, G)$ in α where $G = \Lambda \otimes$

$$\varepsilon(A) = \overline{\varepsilon} \otimes A, \quad \delta(A) = \overline{\delta} \otimes A.$$

We also have a triple $\mathbf{F} = (F, \eta, \mu)$ where $F = \alpha(\Lambda, \mu)$

$$\eta(A) = \alpha(\bar{\varepsilon}, A) : A = \alpha(K, A) \to \alpha(\Lambda, A)$$

and $\mu(A)$ is the composition

SAMUEL EILENBERG AND JOHN C. MOORE

$$\alpha(\Lambda, \alpha(\Lambda, A)) \xrightarrow{a^{-1}} \alpha(\Lambda \otimes \Lambda, A) \xrightarrow{\alpha(\bar{\delta}, A)} A(\Lambda, A).$$

We still have the relations $a: G \to F$, $\varepsilon \to \eta$ and $\delta \to \mu$, so that in a sense we have $\mathbf{G} \to \mathbf{F}$. However \mathbf{G} being a cotriple and \mathbf{F} being a triple, 3.3 no longer applies. Indeed, the construction of the universal generator for \mathbf{F} yields the category ${}^{\Lambda}M$ of left comodules (i.e. K-modules A with a morphism $A \to \Lambda \otimes A$ satisfying suitable identities) while the construction of the universal cogenerator for \mathbf{G} yields the category ${}^{\Lambda}M^{*}$ of Λ -contramodules (i.e. K-modules A with a morphism $\mathfrak{C}(\Lambda, A) \to A$ satisfying suitable identities) [see 2, Ch. III, §5]. These categories are in general distinct except when Λ is K-projective and finitely generated over K, in which case ${}^{\Lambda}M$ and ${}^{\Lambda}M^{*}$ are both isomorphic with the category ${}^{\Lambda}M$ where $\hat{\Lambda} = \mathfrak{C}(\Lambda, K)$ is the K-algebra dual to the coalgebra Λ .

Again it can be shown that (up to isomorphisms) the K-coalgebras yield all the triples \mathbf{F} and all the cotriples \mathbf{G} in which F preserves kernels and (arbitrary) products while G preserves cokernels and (arbitrary) coproducts.

BIBLIOGRAPHY

- 1. A. DOLD AND D. PUPPE, Homologie nicht-additiver Functoren, Ann. Inst. Fourier, vol. 11 (1961), pp. 201-312.
- 2. S. EILENBERG AND J. C. MOORE, Foundations of relative homological algebra, Mem. Amer. Math. Soc., no. 55 (1965).
- 3. R. GODEMENT, Theorie de faisceaux, Paris, Hermann 1958.
- P. J. HUBER, Homotopy theory in general categories, Math. Ann., vol. 144 (1961), pp. 361-385.
- 5. C. E. WATTS, Intrinsic characterizations of some additive functors, Proc. Amer. Math. Soc., vol. 11 (1960), pp. 5-8.

COLUMBIA UNIVERSITY NEW YORK, NEW YORK PRINCETON UNIVERSITY PRINCETON, NEW JERSEY