BOUNDARY BEHAVIOUR OF TEMPERATURES, PART 2

BY J. R. HATTEMER

In his paper, Stein [2] defined the concept of "determining polynomials" for harmonic functions. He then developed a sufficient condition on a set of polynomials to guarantee that they are determining. We will develop analogous results for temperatures on

$$E_{n+1}^+, E_{n+1}^+ = \{(x, t) : x \in E_n, t > 0\}.$$

Let D^i be the operator of partial differentiation with respect to x_i for $i=1,\dots,n$, and with respect to t for i=0. Let α be an (n+1)-dimensional multi-index, i.e., an (n+1)-tuple, each of whose entries is a non-negative integer. Let D^{α} be the product of the operators D^i each raised the respective power α_i , $i=0,1,\dots,n$. We will say that D^{α} has "index"

$$r = 2\alpha_0 + \sum_{i=1,n} \alpha_i.$$

Let M(D) be the differential operator D^{α} of index r. Then, there exists a differential operator $M^*(D)$, which is homogeneous of order r in D^1, \dots, D^n such that, for T a temperature, $M^*(D)T = M(D)T$. We obtain $M^*(D)$ from M(D) by replacing D^0 with $\sum_{i=1,n}(D^i)^2$.

Let m(x) be the polynomial obtained from $M^*(D)$ by replacing D^i by x_i . We note that m is homogeneous of degree r where r is the "index" of M. m will be called the "polynomial associated with M".

In a differential polynomial in D^0 , D^1 , \cdots , D^n has the property that each of its terms has the same "index" r, then we will say that the differential polynomial is "homogeneous of index r".

In our previous work [1] we defined the concept of parabolic limits on a set E in E_n for functions on E_{n+1}^+ .

For U, V, two vector-valued temperatures of respective dimensions k and s, we proved there (theorem 4) the following:

THEOREM A. If (a) V has parabolic limits on a set $E \subset E_n$, and (b) $(D^0)^q U = P(D)V$, where P(D) is a $k \times s$ matrix each of whose entries is a homogeneous differential polynomial in D^1, \dots, D^n of order 2q, then U has parabolic limits a.e. on E.

In view of the discussion above, we see that hypothesis (b) can be weakened to P(D) is a $k \times s$ matrix, each of whose entries is a differential polynomial in D^0 , D^1 , ..., D^n homogeneous of index 2q. It is in this form that we will use the theorem in the following.

Received April 16, 1965.

Theorem 1. (a) Suppose that $(D^0)^q T$, T a temperature on E_{n+1}^+ , has parabolic limits on a set $E \subset E_n$. Then every derivative of index 2q of T has parabolic limits a.e. on E.

(b) Suppose that $\{D^i(D^0)^qT, i=1, \cdots, n\}$ have parabolic limits on a set $E \subset E_n$. Then every derivative of index 2q+1 of T has parabolic limits a.e. on E.

Proof. It is sufficient to prove each part of the theorem for monomial derivatives of the appropriate index of T since if each term of a differential polynomial applied to T has parabolic limits on a set so does the polynomial.

- (a) Let M be a monomial of index 2q. In the theorem stated above, let U = M(D)T, $V = (D^0)^q T$, and P(D) = M(D). Then $(D^0)^q U = P(D)V$, and (a) follows from the theorem.
- (b) Let $M(D) = D^{\alpha}$ be a monomial of index 2q + 1. Then $\alpha_i \neq 0$ for some $i = 1, \dots, n$. Let $M^1(D) = D^{\beta}$, $\beta_j = \alpha_j$, for $j \neq i$, $\beta_i = \alpha_i 1$. Let U = M(D)T, $V = D^i(D^0)^q T$, and $P(D) = M^1(D)$. Then, $(D^0)^q U = P(D)V$ and the index of P(D) is 2q, so the theorem gives us part (b).

Suppose we have a set of differential polynomials $P_1(D)$, \cdots , $P_k(D)$, all homogeneous of the same index r. If the existence of parabolic limits on a set $E \subset E_n$ for the functions obtained by the application of these polynomials to a temperature T implies their existence a.e. on E for the function obtained by application of any differential polynomial homogeneous of index r to T, then we will say that the set of polynomials P_1, \dots, P_k is "determining."

Theorem 1 shows that for even index r, the single operator $(D^0)^{(1/2)r}$ is determining, and for odd index r, the set $\{D^i(D^0)^{(1/2)r-1/2}\}_{i=1,n}$ is determining.

This suggests the question: Under what conditions will a given set of polynomials be determining? A sufficient condition is given by Theorem 2 of this paper.

For a differential polynomial P(D) homogeneous of index r, we define $P^*(D)$ and the associated polynomial P(x) in the same way that we defined $M^*(D)$ and m(x) for the monomial M(D).

THEOREM 2. A sufficient condition that the k differential polynomials $P_1(D), \dots, P_k(D)$, homogeneous of index r, be determining is that the common complex zeros $z^1, \dots, z^m, m \leq r$ of the associated polynomials $p_1(x), \dots, p_k(x)$ satisfy

$$(x^{j,1})^2 + (x^{j,2})^2 + \cdots + (x^{j,n})^2 = 0, \quad j = 1, \cdots, m,$$

where $x^{i,i}$ is the i-th component of z^i , $i = 1, \dots, n$.

The technique used in the proof of this theorem is that used by Stein [2]. It is interesting to note that in some ways the arguments are simpler here than in the harmonic functions case.

Lemma. Let I be an ideal in the ring of all polynomials in x_1, \dots, x_n . For a given polynomial f(x), a sufficient condition that there exist an integer N such that $[f(x)]^N \in I$ is that f be zero at all of the common zeros of I.

This is the Hilbert "Nullstellensatz" for the complex number field. See [3, §79].

Proof of theorem. Let I be the ideal generated by $p_1(x), \dots, p_k(x)$. Let $f(x) = \sum_{i=1,n} x_i^2$. Then, by our hypothesis on the common zeros of $p_i(x), \dots, p_k(x)$ and the above lemma, there exists an integer N, and polynomials $q_1(x), \dots, q_k(x)$ such that

$$\left(\sum_{i=1,n} x_1^2\right)^N = \sum_{j=1,k} q_j(x) p_j(x).$$

Since the polynomials p_j are homogeneous of degree r, we may assume that the q_j have degree less than or equal to 2N - r. Let us now write $q_j(x) = \sum_{e} q_{j,e}(x)$, where $q_{j,e}(x)$ is homogeneous of degree e.

For r even, we may assume e to be even. Then,

$$(**) \qquad (\sum_{i} x_{i}^{2})^{N} = \sum_{j} (\sum_{e} q_{j,e}(x) p_{j}(x)).$$

Replacing x_j by $\eta^{-1/2}x_j$, we obtain

$$\eta^{-N} \left(\sum_{i} x_{i}^{2} \right)^{N} = \sum_{j} \left(\sum_{e} q_{j,e}(x) \eta^{-(1/2)e} p_{j}(x) \eta^{-(1/2)r} \right),$$

or

$$\eta^{(1/2)r} \left(\sum_{i} x_{i}^{2} \right)^{N} = \sum_{j,e} q_{j,e}(x) p_{j}(x) \eta^{N-(1/2)e}$$

Now, since $2N - r \ge e$, $2N - e \ge r \ge 1$, whence $N - \frac{1}{2}e \ge 0$. Thus, for a temperature T, replacing x_j by D^j , and η by D^0 , we have

$$(D^0)^N[(D^0)^{(1/2)r}T] = \sum_j Q_j(D)P_j^*(D)T,$$

where

$$Q_j(D) = \sum_e q_{j,e}(D) (D^0)^{N-(1/2)e}$$
.

Thus, the $Q_j(D)$ have index 2N. By Theorem A, and by part (a) of Theorem 1, all polynomial derivatives of index r of T have parabolic limits a.e. on a set $E \subset E_n$ if $P_1(D)T$, \cdots , $P_k(D)T$ have parabolic limits on E. This shows the theorem for r even.

For r odd, we obtain (*) and (**) as above. Now, however, we may assume that e is odd. Multiplying (**) by x_i , we have

$$x_i (\sum_j x_j^2)^N = \sum_j (\sum_e x_i q_{j,e}(x) p_j(x)).$$

Substituting as before,

$$\begin{split} & \eta^{-N-1/2} x_i \big(\sum_j x_j^2 \big)^N = \sum_j \big(\sum_e x_i \, q_{j,e}(x) p_j(x) \eta^{-(1/2)e-1/2-(1/2)} \big), \\ & \eta^{(1/2)r-1/2} x_i \big(\sum_j x_j^2 \big)^N = \sum_j \big(\sum_e x_i \, q_{j,e}(x) \eta^{N-(1/2)e-1/2} p_j(x) \big). \end{split}$$

Since $2N - r \ge e$, we have $2N - e - 1 \ge 0$. Thus, for a temperature T, as before, we obtain

$$(D^0)^N [D^i(D^0)^{(1/2)r-1/2}T] = \sum_j Q_j(D)P_j^*(D)T,$$

where $Q_j(D) = \sum_{e} x_i \, q_{j,e}(D) (D^0)^{N-(1/2)e-1/2}$. Using Theorem A, and part (b) of Theorem 1, the proof is completed as above.

BIBLIOGRAPHY

- 1. J. R. Hattemer, Thesis, Washington University, June, 1964.
- E. M. Stein, On the theory of harmonic functions of several variables II. Behavior near the boundary, Acta Math., vol. 106 (1961), pp. 163-168.
- 3. B. L. VAN DER WAERDEN, Modern Algebra, vol. II, Berlin, Springer, 1950.

Washington University, St. Louis, Missouri Princeton University Princeton, New Jersey