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Zeeman [6] shows that any proper combinatorial cell pair (n, k), where
n k => 3, is pieeewise linearly homeomorphie to a standard pair. This
implies the combinatorial unknotting of spheres in spheres, and of spheres in
euclidean space, provided that the eodimension is >- 3. If the eodimension 2,
then the spheres can be knotted eombinatorially. If the eodimension 1, the
unknotting problem is the same as the combinatorial Sehoenflies conjecture
which is still unsolved.

In pure topology, with a hypothesis of topological local flatness, Brown [2]
has proved the topologieM Sehoenflies theorem in all dimensions. With a
similar hypothesis, Stallings [5] has proved the topological unknotting of
/c-spheres in n-spheres for n k >= 3 and n ->_.- 5. Gluek [4] solved the ease of
a locally flat l-sphere in S4. Cantrell [3] has shown that if a (n -1)-sphere
in S (n _-> 4) is locally flat except for perhaps one point then the sphere pair
is also flat. Stallings’ result [5] also follows for sphere pairs of eodimension
>-3 where the lower dimensional sphere is locally flat except for perhaps one
point. Gluek’s result is valid if S in S is locally flat except perhaps at a
countable number of points.
Here we consider the topological analogue of the combinatorial cell pair

theory. The main results are that if a topological cell pair (A, B) of type
(n,/c) is locally flat except for perhaps one point, either in the interior of B or
its boundary, then, if n => 5 and/c n 2, (A, B) is homeomorphie to the
standard pair of type (n, lc). For/c n 2 and n >_- 6, with additional ap-
propriate hypothesis, the same conclusion follows.
The following notation and definitions are used throughout this paper.

They are similar to those used in [1] and [5], except that the phrase loeallyflat
is used instead of locally smooth, as in [5]. By an n-manifold with boundary
we will mean a separable metric space each point of which has a closed neigh-
borhood homeomorphie to I". The boundary of a manifold X is denoted by
X’. A manifold pair (X, Y) of type (n, k), n > /, is an n-manifold X, and a
subset Y which is a k-manifold. Furthermore, it is assumed that either both
of X and Y have boundary or both do not have boundary. If both do have
boundary it is assumed that Y" c X’. The boundary manifold pair (X’, Y’)
of (X, Y) is denoted by (X, Y)’.
The following examples of manifold pairs will be of primary interest. When

X is E and Y is a closed subset of X homeomorphic to E, then the pair
(X, Y) is called a string of type (n,/c). When X is an n-cell and Y is homeo-
morphic to a k-cell, then (X, Y) is called a cell pair of type (n,/c). A pair
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(X, Y) is called a punctured cell pair if there exists a cell pair (, ) and a
point p e int such that (X, Y) is homeomorphic to ( {p}, I7 {p} ).
Finally, the pair (X, Y) is called a half string of type (n,/) if X is E and Y
is a closed subset of X homeomorphic to E. The standard string of type
(n, ]), the standard cell pair of type (n,/), and the standard half string of type
(n,/) are respectively (E", E), the unit cells of E and E, and (E, E),
where E EX {0} c E.

If (X, Y) is a manifold pair of type (n, ]) then Y is locally fiat in X if each
point of Y has a neighborhood U in X such that (U, Un Y) is homeomorphic
to (E, E) or (E, E) according as the point is or is not in the interior of Y.
The pair (X, Y)" is locally collared in (X, Y) if Y is locally fiat at each point
of Y’. The pair (X, Y)" is collared in (X, Y) if there is a homeomorphism H
from (X, Y)" X [0, 1) onto a neighborhood U of (X, Y)" in (X, Y) such that
H(x, 0) x for each x e X’. A neighborhood V of (X, Y)" in U is called a sub-
collar of U if

V H((X, Y)’X [0, t))

for some 0 < < 1. We will say that the mainfold pair (X, Y) of type (n, k)
is unraveled at p e Y, if for each compact C c X {p} there is a compact D,
with C c D c X {p} such that the pair (X Y, X (Y u D) is 2-con-
nected.

LEMMA 1. Let (M, N) be a manifold pair with nonempty boundary. If the
boundary pair (M, N)" is locally collared in (M, N), then it is collared in M,N).

Proof. The proof is exactly the same as in 5. Brown’s original proof in [1]
that the boundary of a manifold with nonempty boundary is collared. It is
only necessary to check that the collar of M" can be restricted to be a collar of
N" in N. This follows from the construction of the collar plus the fact that
the local collaring, by definition, restricts to be a local collar on N" in N.

LEMMA 2. Let (X, Y) be either a locally fiat half string or a locally fiat
punctured cell pair of type (n, to). Let U be a collar of (X, Y)" in (X, Y) and
let V be a subcollar of U. Suppose A is a compact subset of X; then there exists
a homeomorphism g (X, Y) ---. (X, Y) and a compact set, B int (X V)
such that:

(i) g [x- identity (hence g ], identity), and
(ii) A n Y g(U).

Proof. The proof is similar to the proof of Lemma 5.3 of [5]. We construct
a finite sequence hi, h., hp of homeomorphisms of Y V onto itself, each
of which can be extended to a homeomorphism of X onto itself by using the
local flatness. The h’s are each to be the identity except on a small compact
subset of Y ?.
THEOaEM 1. Let (X, Y) be either a locally fiat half string or a locally fiat
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punctured cell pair of type n, with n >__ 5. If X Y, X" Y’) is (n 3)-
connected and

(i) /c __< n-- 3or
(ii) n 2 and (X, Y) is unraveled at infinity,

then (X, Y) is homeomorphic to (X, Y)" X [0, 1).

Proof. By Lemma 1 there exists u collar U of (X, Y)" in (X, Y). We
shall now construct a homeomorphism h taking (U, U Y) onto (X, Y).
The construction is similar to that carried out in proving Theorem 9.2 of
[5]. We shall now give some details.

Since U is a collar, there is a homeomorphism

Let
H" (X, Y)" X [0, 1) -- (U, U n Y).

( [U H (X,Y)’X o,i+.i for i 1, 2, 3, 4, ....
Then U is subcollur of U and (X U, Y U,) is homeomorphic to
(X, Y). Let {E}, i 1, 2, 3, be u monotone sequence of compact sub-
sets of X such that X UE,. We shall construct a sequence of homeo-
morphisms

f, (X, Y) --> (X, Y), i= 1,2,3,

such that E fi(V) ndf Iv_ f- ]_ (i >= 2).
Since (X, Y) is unraveled at infinity, either by hypothesis if l n 2 or

by making the necessary modificutions of Proposition 4.2 of [5], there exists a
compact set D X such that E D and (X Y, X (Y u D) is 2-con-
nected. In fact we will choose D so that

(X (Y f_l(U_)), X (D u Y fi_(U_)))

is 2-connected. (Recall (X U_, Y U-) is homeomorphic to (X, Y)
und hence (X f_(U_), Y f_(U_) is also homeomorphic to (X, Y),
i>=2.)
We will construct the f,’s inductively. Suppose we have already obtained

f, f, f_. Lemm 2 gives us a homeomorphism g (X, Y) -- (X, Y)
such thatD Y g of_(U) andg I-(v-) identity. We now proceed
as in Section 7 of [5].

Let T be a piecewise linear triangulation of X Y and a triangulation of

X (Y u fi_l(Ui-1))
compatible with T so that if k e , then

diam A _<_ 1/2p(A, Y u fi_.(g_)).

Let K be the union of all closed simplexes k of such that dimension (A) __< 2
and

A c st(X (Yu g of_(U))).
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We can suppose that K is a subcomplex of T also, since K misses fi_l(U_l).
Now since

D u Y c g f_(U),

it follows that the compact set D g o f_(U) is contained in

X (Y o f_l(V_l)).
Hence

K n D c st(D g o f_l(U)),

which is the union of finitely many simplexes of . We now want to apply
the Engulfing Theorem [Theorem 6.1 of 5], making the following substitutions:

:For

E
h

Substitute

X (Y U fi-l(Ui_l))
X (Y U D U fi-(Ui-1))

F1

:For Substitute

We have that

(M" C, V C) (Z (Y o f_(V_)), X (Y u D u f_(V_))
is 2-connected by our remarks above and hence we can apply the Engulfing
Theorem as indicated in the above table. We obtain a piecewise linear homeo-
morphism hi of

X Y u f_l(U_l)

onto itself and a compact set

F c X (Y u fi_4(Vi_l))

such that:

(i) h ]x-(u_(v_)u) identity and
(ii) K h(X (Y u n u f_.(U_i))).

Because of (i) we can extend h to take (X, Y) onto (X, Y) by defining it to
be the identity on Y u f_(U_). We will continue to call the extended
homeomorphism h also.

Let K be the union of K and all those closed simplexes A of T such that
AX-- (FuD). NowKh(X- (YuD)). Let L be the comple-
mentary skeleton of K1 in T. Then L g o f_(U) is compact and

dimension (L g o fi_(U) -< n 3.

Now we apply the Engulfing Theorem to engulf L. The table corresponding
to the above situation is"
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For Substitute

X-Y
g f-l(U) Y

F2

For Substitute

fi_(Ui_) Y
L

n-3

Except, possibly, for the hypothesis that (M C, U C) is p-connected,
all the hypotheses of the Engulfing Theorem are clear from the above con-
struction. Now

(M- C, V- C) (Z- Yuf_l(Ui_l)),gof_l(U) (Yufi_(U_))).

But this is homeomorphic to (int X Y, U Y u X’) and is of the same
homotopy type as (X Y, X" Y’) which is (n 3)-connected by hy-
pothesis. The Engulfing Theorem then gives that

h. Ix_(Yu) identity,

F2nC 0 and Lc h(gof_(U) Y).

Again we extend h2 by the identity to take (X, Y) onto (X, Y).
We now have

L h o g of_(U) Y, K h(X (Y u n))

and K and L are complementary complexes of T. Now applying Lemma 8.1
of [5] in the appropriate manner there exists a homeomorphism

h: X Y--.X Y
so that

h [fi--1 (Ui--1) identity,

ha(h2 g o f_(U)- Y)u h(X (Y u D)) X- Y,

and so that h can be extended by the identity to all of X.
be h-1 h o h g f_, it then follows that

If we define f to

The latter statement follows since each of h, h, ha and g is the identity on
f_(U_). Thus f satisfies the necessary requirements and inductively we
get our desired sequence of homeomorphisms {f}, i 1, 2, If we define

f limf 1, then f is a homeomorphism of (U, U Y) onto (X, Y) and
hence (X, Y) is homeomorphic to (X, Y)’ X [0, 1).

COROLLARY 1. Let (X, Y) be a cell pair of type (n, 1) which is locally fiat
except possibly at one point p e Y. If n >-_ 5 and ] <- n 3, then (X, Y) is
homeomorphic to the standard cell pair of type (n, l).
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Proof. If p e Y’, then (X {p}, Y {p} is a locally flat half string and
if p Y’, then (X {p}, Y {p} is a punctured cell pair. If n -> 6, (X, Y)"
is a locally flat string or sphere pair and by Theorem 9.2 or Corollary 9.3 of
[5] it is homeomorphic to (En-l, Ek-l) or (Sn-l, Sk-l) respectively. For n 5,
if (X, Y)" is a locally flat string or sphere pair of type (4, 1) then it follows
from [4] and the remark in the introduction that (X, Y)" is also homeomorphic
to (E4, E) or (S4, $1). The case where (X, Y)" is of type (4, 0) is trivial.
Similar arguments as those used in Proposition 4.2 of [5] will give that
z(X Y, X" Y’) 0 for all i and hence Theorem 1 applies. We then
get that (X {p}, Y {p} is homeomorphic to

(E-,E-) X [0,1) or to (S-,S-) X [0,1)
and hence (X, Y) is homeomorphic to standard cell pair of type (n,/).

COROllaRY 2. Let (X, Y) be a cell pair to type (n, n 2) such that each of
X Y and X" Y" have the homotopy type of S. If n >- 6 and either

(i) the pair (X, Y) is locally fiat, or
(ii) the pair (X, Y) is locally fiat except possibly at one point p int Y and

(X, Y) is unraveled at p, or
(iii) the pair (X, Y) is locally fiat except possibly at one point p Y" and

each of (X, Y) and (X, Y)’is unraveled at p,
then (X, Y) is homeomorphic to the standard cell pair of type (n, n 2).

Proof. The proof proceeds exactly as in the proof of Corollary 1. The
hypotheses guarantee that (X, Y)" is homeomorphic to (E-1, E-3) or
(S-, S-).
PROPOSITION 3. Let (X, Y) be a cell pair of type (n, n 1) which is locally

fiat except possibly at one point p e Y. If p e int Y and n >- 4 or if p e Y" and
n >- 5, then (X, Y) is homeomorphic to the standard pair of type (n, n 1).

Proof. The proof is iust a simple application of the results of [1], [2], [3].
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