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1. Introduction. An extremal process is defined to be a stochastic process,
{Y(t), _> 0}, having the following property"

Y(tl) Y(t.) Y(tn) has the same joint distribution law as does

U1 ;max (U1, U2); ;max (U, U2, Un),

(1.1) where 0 _< < < tn, n is arbitrary, U,..., U are inde-

pendent random variables, and

P(U, < u) P(Y(t,- t,_) < u) (to 0), i 1,..., n.

Notice the formal similarity between this definition of an extremal proc-
ess and the definition of an i.d., stationary increment process. If
"max (U1, U)" is replaced by "U1 + + U" the definition of an
extremal process becomes the definition of an i.d. process.
The motivating examples of extremal processes are studied in [2]. These

arise in connection with limiting distributions of maxima of independent and
identically distributed random variables.

Another example of an extremM process is the following. Let {Z(t), _< 0}
be an i.d. stationary increment process. Define Y(t) maximum positive
discontinuity of Z(u), 0 _< u _< t, with the understanding that this has value 0
if there are no positive discontinuities. It is easy to see that Y(t) is an ex-
tremal process.
The purpose of this paper is to describe the general structure of extremal

processes, and to generalize and unify the results of [2]. In Section 7 and
thereafter extensions are made to multivariate processes.
We also refer the reader to a paper by Lamperti [5], where the same class of

processes is studied from a somewhat different point of view.

2. The function Q. There is no loss in generality in supposing that Y(t)
is a separable process and is non-decreasing in with probability 1, [1]. (In
fact, Theorem 4.1 describes an explicit representation of the process having
these properties.) Hence, for any fixed u, P(Y(t) < u) is monotone in t.
The definition of an extremal process implies that

P(Y(h + t.) < u) P(Y(h) < u)P(Y(t) < u)
for all h, t. Hence, there exists a constant Q Q(u) such that

(2.1) P(Y(t) < u) exp-tQ(u).
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The function Q plays an important role in the analysis that follows.
main properties of Q are the following"

The

(a) Q is monotone non-increasing in u.
(b) Q is continuous from the left (by convention). Suppose [a, b] is the

smallest interval on which the total variation of Q is concentrated. (a may be
-,andbmaybe+o.) ThenQ(a- O) +o, Q(b + O) O.

Conversely, given any function Q satisying (a), (b), a separable non-
decreasing extremal process can be determined by defining P(Y(t) < u) by
(2.1) and requiring the joint distributions to be given by (1.1). It need only
be noted that such a definition of Y(t) satisfies the consistency requirements
of Kolmogorov.
We want to point out that the three examples studied in [2] have Q’s given

by (I) Q(u) u-", u > 0, a > 0; (II) Q(u) (-u)", u < 0, a > 0;
(III) Q(u) e-u.

3. Maximum discontinuity of an i.d. process. Here, we take a closer look
at the example mentioned in Section 1. Let {Z(t), _> 0} be an i.d. stationary
increment process with L6vy representation

f_( /Ou (l+u)(3.1) EexpiOZ(t) expt exp/Ou-- 1
1 u2]\ u

dG(u),

where G is a mass function with finite total mass [1].
Define

Y(t) maximum positive discontinuity of Z(u), 0 < u <_ t,

(3.2) if there are positive discontinuities,

0, if there are no positive discontinuities.

As noted in Section 1, {Y(t)} is an extremal process. We want to show that
its parameter Q is given by

Q(u) , u < O,
(3.3) f(l +x)x dG(x), u > O.

Let u > 0 be fixed. We will evaluate P(Y(t) > u) in the following way.
Given any e > 0, Z(t) can be represented as a sum of three independent
processes, Z(t) Zl(t) + Z(t) + Z3(t), with the characteristic functions
given by (3.1) except that the integral for Z(t) is f, the integral for Z(t)
is fE and the integral for Z3(t) is fL. It is possible to choose " e(u) > 0
so that the discontinuities ofZ(t) andZa(t) arelessthan u. (These are alge-
braic values of discontinuities under discussion, and not absolute values.)
Hence to evaluate P(Y(t) >_ u) there is no loss of generality in supposing that
the original Z(t) in terms of which Y(t) is defined is Z2(t). Now, Z(t) is dis-
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tributed like Z4(t) - f (l/u) dG(u), where Z4(t) isacompound Poisson pro-
cess with

N exp/0Z() exp (exp/0 1)(1 -t-- )/() dG().

Hence, we may as well suppose ghag ghe Z() in (a.2) is jusg Z(). For a com-
pound Poisson process wigh parameger X, and posigive jumps wigh e.d.f. H, he
maximum diseonginuigy in [0, ), Y(), sagisfies

P(Y() >_ ) _- (X)(exp -X)(1 II())/lt
1- exp-X(1 H()).

In pargieular, for Z(),

h (1 + x2)/(x2) dG(x), H(u) (1 -t- )/(x) dG(x).

Hence, ),(1 H(u)) f: (1 + x)/(x) gG(x), and Q is given by (3.3).

4. A representation for Y(t). We want to give an explicit representation
for Y(t), 0 < to <_ t. Suppose Y(t) is determined by Q. Define a process
Y*(t), to _< t, as follows. Let {W, n 1, 2, ...} be a sequence of inde-
pendent, exponential (parameter 1) random variables. These random vari-
ables are independent of all other random variables to be considered. Let Ry
denote the c.d.f, defined by

R.(u) O, u <_ y,

1 -Q(u)/Q(y), u > y.

(a) Y*(to) has the same distribution as does Y(to).
(b) Under the condition that Y* (t0) x, Y* (t) remains equal to x for a

random amount of time, W1/Q(x). The process then jumps to a height
Z1 > x), where Z has the c.d.f. R. The process then remains at height
random amount of time W/Q(ZI). The process then jumps to a height
Z (> Z), where the c.d.f, of Z2 (conditional on the given values of all pre-
ceding random variables) is Rzl, etc.

It should be evident that Y(t) and Y*(t) are Markov processes. We want
to show that they are essentially the same.

THEOREM 4.1. For any to < t < < t, the joint distribution laws of
(Y*(to), Y*(t), Y*(t,)) and of (Y(to), Y(t),

are the same.

Proof. It is sufficient to show that the infinitesimal generators of both
processes are the same [3]. The details are the same as those of the proof of
Theorem 4.2 of [2] and will not be repeated here.
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5. The case of continuous Q. Some interesting properties hold for extremal
processes whose parameter Q is continuous. These properties were already
shown in [2] to hold for the three examples (I), (II), (III), whose Q’s are con-
tinuous. These properties are the following.

THEOREM 5.1. Suppose Q is continuous. (This implies, incidentally, that
Q (u) approaches as u approaches a from the right.) Define

C(tl, t2)- 1 if Y(t) > Y(tl),

0 otherwise. (0 < tl < t2)

(a) If 0 < t < t2 < < tk then C(t t), C(tk_ t) are mutually
independent.

b Suppose 0 < s < u. Then Y has a finite number of discontinuities in
s, u) and this number is Poisson distributed with parameter --log s/u.

c Suppose 0 s u, x v. Let J x, v) be the number of discontinuities in
Y(t) from time s up to the timefor which Y(t) first exceeds v, subject to the condition
that Y(s) x. Then, under the condition that Y(s) x, J(x, v) is Poisson
distributed with parameter log (Q(v)/Q (x) ).

Proof. Again the proof is closely related to details in [2] and will not be
repeated. We point out the proof follows from the proofs of Theorems 4.1 and
4.5 of [2] by an appropriate change of variables on Q.

Remark.
continuous.

The assertions of Theorem 5.1 are in general not true if Q is not

6. The multivariate case. The remainder of this paper is concerned with
multivariate versions of the processes studied above.
For motivation, we first look at an example involving the limiting dis-

tribution of the/C largest of n independent and identically distributed random
variables. This exampl.e is a multivariate version of the examples which
constitute the paper [2]. Let {X, n 1, 2,...} be a sequence of inde-
pendent and identically distributed random variables and define Y() i-th
largest among X1, X, i 1, 2, .... Suppose that, for fixed k, the
random vector

(Y() a,)/b ,..., (Y(:) a,)/b,

converges in law to a non-degenerate/c-dimensional distribution. The paper
by Lamperti [5] studies the "invariance principle" in its relevance to this con-
vergence. Since, in what follows, we are interested in phenomena which
"occur in the limit" rather than in the nature of the convergence, we assume
at the outset that the Xn’S already have one of the three limit type dis-
tributions,

P(Xn < t) O, <__ O,
(6.1)

exp--kt-", > 0 (a > 0),
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or

P(X, < t) exp ,( t)", t_ 0 (a > 0)
(.2)

1, 0,

or

(6.3) P(X < t) e-(xp-t), --c < < ,
being a positive parameter. These three distributions can be combined in

one as

(6.4) P(Xn <: t) exp-Q(t),

with an appropriate identification of the function Q. Appropriate centering
and norming constants for (6.1), (6.2), (6.3) are

(an 0, b, 1/rtl/a), (an O, bn nl/a), (a.n log n, b 1),

respectively. It is easy to verify that the joint limiting distributions do exist.
The limiting probabilities are described as follows. If

v < u < vk-1 uk_l < < vl < u,
then

lim-.P( [v < (Y()il an /bn ui]
(6.5)

h’-[exp-),Q(u) exp-)xQ(v,)] I-I{--- [Q(v,) Q(u)],

with the Q as described in (6.4). This can be verified by an elementary calcu-
lation which we leave to the reader. Since v() < < v(*) the proba-
bilities (6.5) determine the probability o any Borel set in k-space. We will
refer to the -dimeusionl c.d.f, determined by (6.5) as

(6.6) F(k, Q; y,..., y).

Consider now a stochastic vector process Yn (t) defined as

(1)Y(t) (*t+- a)/b ,. (()*tt+- a)/b, 0 < .
The "limiting process" Y(t) "approached by Y,(t)" provides one example of a
multivariate extremal process. The limiting c.d.f, of Y(t) is F(kt, Q, ).
The limiting joint distribution of m vectors Y(t), Y(t) will be de-
scribed in Section 10. Just as was done in the 1-dimensional case, we will
avoid these heuristics and will directly define a /c-dimensional extremal
process Y(t) Y,(t), Y(t) to be one in which the joint distribution law
of the m/c-vectors Y(t,), Y(tm) coincides with the limiting distribution of
Y(t,), Y(t).

7. Definition of multivariate extremal distribution.
defined in Section 2.

Let Q, a and b be as
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DEFINITION 7.1. A random vector Y1,’", Yk will be said to have a
k-dimensional extremal distribution with parameters k, Q if it has the follow-
ing properties"

(a) a

_
Yk

_ _
Y1

_
b, with probability 1.

(b) Ifa < v < u < v_ < u_ < < v < u < b, then

["i=1 [3, ’ Y, < u,])
(7.1)

),k-l(exp-XQ(uk) exp-XQ(v)) II- [Q(v,) Q(u,)],

with the understanding that II=x 1.
The probability of any Borel set in k-space is determined by (7.1). Just as

in (6.6) we denote the c.d.f, of the k variables by F(, Q; y, yk). Some
of the properties of this distribution are the following"

(a) If Y1,"’, Y is extremal with parameters X, Q, then
(7.2) Yx, Yr, (r

_
k), is extremal with parameters X, Q.

(b) The marginal distribution of Y. is given by

P( Yy < u) -o Xe-X’(’)Q(u)/i!.
In case Q is absolutely continuous with respect to Lebesgue measure,

(7.3) P(Y < u) =
(j_ 1)!

x)(-Q’(x)) dx.

When Q is absolutely continuous, properties (a) and (b) can be deduced from
(7.1) in a routine way. Otherwise, the verification is somewhat tedious.
However, Theorem 9.2, below, provides a fairly easy proof. (See remarks
following Theorem 9.2.)

8. The operation.. Now we want to define an operation on vectors which
generalizes the maximum for scalars, and which arises in a natural way with
extremal processes.

DEFINITION 8.1. Suppose

a (al,...,a), b (b,...,b),a_> _> a,b_> _> bk.

By a, b is meant a new k-vector whose elements are the ordered values, in
decreasing order, of the k largest elements of the combined set of a’s and b’s.
For example, if a (7, 3, 0), b (5, 5, 3), then a b (7, 5, 5). Notice
thata,b b,aanda,(b,c) (a,b),c. Notice also that ilk 1, then
a.b max(a,b).

The connection between the operation and extremal distributions is the
following.

THEOREM 8.1. Suppose X, Y are independent extremal k-vectors with param-
eters ) Q; 2 Q respectively. Then X Y is an extremal k-vector with param-
eters , Q.
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A direct proof is quite tedious. However, this also will follow easily from
Theorem 9.2. (See remarks following that theorem.)

9. A realization of the extremal distribution. Suppose (Z(t), >_ 0) is an
i.d. stationary increment process with Lvy representation

(9.1) Eexpi0Z(t) expt expi0u-- 1 1- u] u

where G is a mass function with finite total mass. We define Yl(t), Y(t)
as follows"

Y(t) i-th largest discontinuity of Z(u), 0 u <
if this discontinuity is not _0,

0 otherwise,

i 1, ,/c. If there are fewer than i positive discontinuities, then Y(t) is
understood to equal 0.

THEOREM 9.1. Suppose > O.
distribution with parameters t, Q,

(9.2)

Then Y Y has the extremal

Q(u) , u <0,

+x
x dG(x), u >_ O.

The proof is practically the same as the proof of (3.3), so we omit
the details.
Not every extremal distribution can be realized in this way, but the dis-

tribution described in Theorem 9.1 is actually quite close to the most general
one. The facts are as follows.

THEOREM 9.2. Given any positive and Q there exists an i.d. stationary incre-
ment process Z(u), and a monotone, non-decreasing function h, such that
h Y()), h Yk()) is extremal with parameters , Q.

Proof. First choose G in (9.1) so that R(u) f [(1 + x)/x] dG(x) is
continuous and strictly decreasing in (0, ), and R(0) . This can be
done in many ways and the particular choice is irrelevant. Define g by
g(u) R-I(Q(u)). Suppose [a, b] is the carrier of Q. The function g does
not have an inverse in the conventional sense, but define g-(y)
sup (u "g(u) < y). Since g is left continuous it follows that (g(u)

_
y) if

and only if (u

_
g-(y) ). Now define h g-. Suppose

a < vk < u v u b.

Then

P(II--1 (v

_
h(Y) < u)) P(II_- [g(v)

_
Y < g(u)]).
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So by (7.1) and Theorem 9.1, h(Y1), h(Yk) is etremal with parameters
t, R(R-I(Q)) Q. Choose k and the proof is complete.

Remarks. Theorem 9.2 can be used to provide easy proofs of the properties
(7.2) and of Theorem 8.1. Since any extremal distribution can be represented
in terms of an i.d. process, the properties of i.d. processes make such verifica-
tions easy. For example, consider Theorem 8.1. Suppose X X1, Xk
and Y Y1, Yk are the/ largest discontinuities of Z(t) over the intervals
[0, ),1), [h, 1 4- 2). Then by the independence of increments for Z(t), it is
clear that X Y has the distribution of the/c largest discontinuities ofZ(t)over
[0, 1 4- 2), which proves the theorem. Property (7.2) (a) is obvious and
(7.2) (b) is verified by a direct computation in the same way.

10. Definition of extremal process.

DEFINITION 10.1. A vector-valued process Y(t) Yl(t), ..., Y(t),
>_ 0, is said to be an extremal process, with parameter Q if it has the following

properties.
(a) For any positive t, Y(t) has the k-dimensional c.d.f. F(t, Q; ).
(b) If 0 < t < t,, then the joint distribution of the m ]-vectors

Y(t), Y(tm) is the same as the joint distribution of

u, (u, u.), ..., (u ,... u),

where U1, U, are independent with distributions

F(t Q; .), F(t h, Q; .), F(t, t,_ Q; .)

respectively.

Remarks. (a) Given any Q, an extremal process can be defined on (0,
by specifying the joint distributions as in Definition 10.1. It only needs to be
noted that Theorem 8.1 guarantees that the consistency requirements of
Kolmogorov are satisfied.

(b) From Theorem 9.2, it follows that any extremal process can be realized

h(Yl(t)), h(Y(t))

where Y(t), Y(t) are the k largest discontinuities of Z(u), 0

_
u < t.

(c) From property (b) of Definition 10.1 it follows that extremal
processes are Markovian.

11. A representation for Y(t). We want to give an explicit representation
for Y(t), 0 < to

_
t, which is analogous to the representation given in the

1-dimensional case (Section 4) and which describes in a simple way the evolu-
tion of the process. We will do this by describing a process Y*(t) which is
equivalent to Y(t) in the sense that the finite-dimensional distributions agree.
What follows makes sense only for/ >_ 2. Let (W, n 1, 2,...) bea
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sequence of independent, exponential (parameter 1) random variables. These
are independent of all other random variables to be considered. Let Ry de-
note the c.d.f, defined by

Ry(u) O, u <_ y,

1 Q(u)/Q(y), u > y.

Y*(t) is described as follows.
(a) Y* (t0) has the/c-dimensional c.d.f. F(t0, Q; ).
(b) Under the condition that Y*(to) (xl,..., xk) x, the vector

Y*(t) remains equal to x for a random amount of time WI/Q(xk). The
process then jumps to a new set of heights as follows. Z (>x) is a random
variable whose c.d.f. (conditional on Y*(t0) and W) is R.

If x < Z1 _< x_, the process moves to (x, x_, xk_l, Z),

if x_ < Z _< x_., the process moves to (x, x_ Z1, x_l),

(11.1)

if x < Z _< xx, the process moves to (x, Z, x_, xk_),

if xl < Z, the process moves to (Z, xx, xk_, x_).

From this new set of heights, this procedure then repeats itself again, and so on.

THEOREM 11.1. For any 0 < to < t < t,, the joint distribution laws
of Y*(to), Y*(t,) and of Y(to), Y(t,) are the same.

Proof. Again the proof is almost the same as the proof of Theorem 4.2 of
[2], so we refer the reader to it for details.

12. The marginal process Yi(t). Here we want to describe the marginal
process Y(t) which is Markovian for any i. A simple preliminary lemma is
the following:

LEMMA 12.1. Suppose s > O. The conditional distribution of Y_(s) given
Y(s) does not depend on s. More generally, the conditional distribution of
Y(s), Y_(s) given Y(s) does not depend on s.

Proof. The second assertion is the easier one to verify. The verification is
immediate via (7.1) and (7.3) in case Q is absolutely continuous. Otherwise
the direct details are a little messy and we omit them. An indirect verification
using the representation given in Theorem 9.2 is not too difficult.

Using Lemma 12.1 we can now define

P(Y_(s) < u lYe(s) v) Fv.(u),

Fv. being a c.d.f, which does not depend on s. Now using the properties of
Y*(t) given in Section 11, it is easy to see that Y(t) evolves as follows.
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THEOREM 12.1. Suppose to > O. Given that Y(to) x, Y(t) remains
equal to x an exponential amount of time W1 (parameter Q(x) ), then jumps to a
height Z1 > x where

P(ZI < z) O, z < x,

1 --[1 F,,(z)]Q(z)/Q(x).

From this new height the procedure repeats itself again, and so on.

Proof. That W is exponential with parameter Q(x) is clear from (11.1).
The assertion about Z is verified as follows.

P(Z < z Y(to) x, Yi-(to) y)dF,i(y)

1 dF,(y) -b f’ [1 Q(z)/Q(x)] dF,(y)

1 --(1 Fx,(z))Q(z)/Q(x).

13. The discontinuity points are Poisson distributed. Here we want to
describe the discontinuities of the vector process Y(t) in (s, u), 0 < s < u.
The proofs are similar to those in [2] so we leave them to the reader. Suppose
that Q is continuous and define

C(s,u) 1 ifY(u)> Y(s),

0 otherwise,

i 1, ..., ]c, and also define C(s, u) (C(s, u), ..., C(s, u)). (It is
evident from the definition of an extremal process that C _< C2 _< _< C,
so if one of the entries in C is 1 then all the following ones are also.) Define
also

M(s, u) number of discon.tinuities of Y(t) in (s, u), i 1,

THEOREM 13.1. Suppose that Q is continuous.
(a) If O < t < < t, then C(t, t), C(t, ta), C(t,_l, tn) are

independent random vectors.
(b) M(s, u), M.(s, u), ..., Mk(s, u) has a joint multivariate Poisson

distribution. Specifically, it has the distribution of
X,X + X, ,X + + X,

where the X’s are independent random variables, each Poisson distributed with
parameter log (u/s).
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