SINGULARLY FIBERED MANIFOLDS¹

BY

Melvin C. Thornton²

1. Introduction

Singular fiberings were first introduced by Seifert [8] in the fibering of 3manifolds by 1-spheres. Singularities arose by the twisting of neighboring fibers around a center fiber. Montgomery and Samelson [7], Conner and Dyer [2], and Mahowald [6] have treated singularities caused by pinching a fiber to a point. Hu [4] defined a singularity by the breakdown of the covering homotopy property. This paper concerns singularities which generalize those of Seifert. Our singular fibers are homeomorphic to the non-singular ones and have a neighborhood which is a topological, but not a fiber, product of the fiber and a cell. We define the notion of singularity and classify singularities for a torus fiber. We are concerned mainly with the fibering of an (n + 1)-manifold by (n - 1)-tori over a closed surface. In this case we extend some results of Brody [1].

2. *n*-tori

An *n*-torus, T^n , is the topological product of *n* circles. Let

$$C^n = I_1 \times \cdots \times I_n$$

where $I_i = [0, 2\pi]$ is on the *i*-th axis of E^n . Let $\eta : C^n \to T^n$ be the identification of opposite faces of C^n . $\eta(C^n)$ will be the standard representation of T^n . Homology classes of η -images of *k*-dimensional faces of C^n form a set of generators of $H_k(T^n)$. We denote the 1-dimensional generators obtained from the oriented I_i as S_1, S_2, \dots, S_n . Generators of $H_k(T^n)$ are carried by the Cartesian product of *k* carriers of the S_i . Since $H_*(T^n)$ is torsion-free, $H^*(T^n)$ is the exterior algebra on *n* 1-dimensional generators which we take as the duals S_i^* of S_i . Generators of $H^k(T^n)$ will be cup products of *k* distinct S_i^* . Defining

$$(S_i^*S_j^*\cdots S_k^*)^* = S_i \times S_j \times \cdots \times S_k$$

gives a specified orientation for generators of $H_k(T^n)$. Poincaré duality

$$\lambda: H_p(T^n) \to H^{n-p}(T^n)$$

is given by

$$\lambda(S_i \times S_j \times \cdots \times S_k) = S_l^* S_m^* \cdots S_q^*$$

Received November 26, 1965.

¹ The material in this paper constitutes a portion of the author's doctoral dissertation directed by D. G. Bourgin and submitted to the University of Illinois.

² Partially supported by a National Science Foundation graduate fellowship.

where $(S_i^* S_j^* \cdots S_k^*)(S_l^* S_m^* \cdots S_q^*) = S_1^* S_2^* \cdots S_n^*$. The intersection product

$$H_p(T^n) \times H_q(T^n) \to H_{p+q-n}(T^n)$$

is thus easily computed.

 C^n induces a coordinate system of *n*-tuples of reals modulo 2π on T^n . A homeomorphism $h: T^n \to T^n$ is called *linear* if it is expressible as an $n \times n$ unimodular integral matrix using these coordinates. We write $h = |a_{ij}|$ and consider all matrices acting on the left. A solid *n*-torus, sT^{n+1} , is obtained from T^n by replacing the first circle by a disk. For polar coordinates (ρ, α_1) on a disk, a homeomorphism $h_s: sT \to sT$ is linear if h_s restricted to non-zero constant ρ is linear.

Linear $h = |a_{ij}|$ induces $h_1 : H_1(T^n) \to H_1(T^n)$ which, in terms of the S_i basis, is also given by $|a_{ij}|$. Thus

$$h^1: H^1(T^n) \to H^1(T^n)$$

is given by $|a_{ij}|^t$. By computing the cup product and dualizing we see that

$$h_p: H_p(T^n) \to H_p(T^n)$$

is given by

 $h_p(S_i \times S_j \times \cdots \times S_k) = \sum D(ij \cdots k; rs \cdots t)S_r \times S_s \times \cdots \times S_t$

where $D(ij \cdots k; rs \cdots t)$ is the determinant of the $p \times p$ submatrix of $|a_{ij}|$ formed by the rows r, s, \cdots, t and the columns i, j, \cdots, k . The sum is to be taken over all *p*-dimensional generators. Then choosing a basis

$$A_i = (-1)^{i+1} S_1 \times \cdots \times \hat{S}_i \times \cdots \times S_n$$

for $H_{n-1}(T^n)$, we have $h_{n-1} = (\det |a_{ij}|) |a_{ij}|^{t,-1}$ where t, -1 indicates transpose inverse.

LEMMA 2.1. A homeomorphism $f: T \to T$ can be extended to a map

$$f_s: sT \to sT$$

iff $f_{n-1}(\ker i_{n-1}) = \ker i_{n-1}$ where $i: T \to sT$ is inclusion.

Proof. Since $f_{s*}i_* = i_*f_*$ and f_* is an isomorphism, the condition is necessary. Conversely, suppose $f_1 = |a_{ij}|$ and the condition is satisfied. Then since ker i_{n-1} is generated by A_i , $i \ge 2$, we have $a_{i1} = 0$, $i \ge 2$ and $a_{11} = \pm 1$. Define the homeomorphism g as $g = |a_{ij}|$. Then $g_1 = f_1$ and hence $f \simeq g$, f homotopic to g, (see for example, Hu [5, p. 198]). Now define f_s by deforming f to g on $1 \ge \rho \ge \frac{1}{2}$ and by

$$f_s(\rho, \alpha_1, \alpha_2, \cdots, \alpha_n) = (\rho, g(\alpha_1, \alpha_2, \cdots, \alpha_n)) \quad \text{for } \frac{1}{2} \ge \rho > 0.$$

For $\rho \leq \frac{1}{2}$, $f_s(\rho, \alpha_1, \dots, \alpha_n)$ has *i*-th coordinate independent of α_1 , so f_s is uniquely defined and continuous at $\rho = 0$.

3. Singular fibers

Let F and Y be topological manifolds and I, D, and S be the closed unit interval, a closed cell, and a sphere. Given a homeomorphism

$$f: Y \to S^q \times F^r$$

define $[Y]_f$ to be the product fiber space with projection pf where

 $p: S \times F \to F$

is the natural projection. $[Y]_f$ has fiber S and base F. Consider $I \times S^q \times F^r$ with $0 \times S \times F$ viewed as $[S \times F]_f$ for a given $f : S \times F \to S \times F$. Let $\eta : I \times S \times F \to C[f]$ be the identification map which pinches the S-fibers of $[S \times F]_f$ to points. Since C[f] is homeomorphic to $\eta(1 \times f^{-1})(I \times S \times F)$, one can easily verify the following where we consider 0 as the center of Dand $\eta(0 \times S \times F) = 0 \times F$.

LEMMA 3.1. C[f] is homeomorphic to $D^{q+1} \times F^r$ and has an induced partitioning into sets homeomorphic to F such that the decomposition space is D^{q+1} and $(D-0) \times F$ is a product fiber space.

We call C[f] a singularly fibered core of type f. The singular or center fiber is $0 \times F$. All other fibers are non-singular. If f is the identity, then C[f]is the product fiber space and the center fiber will also be non-singular.

If we choose $S^q = S^1$, $F^r = T^{n-1}$ and a linear $f: S \times T \to S \times T$ given by

$$f(\alpha_1, \alpha_2, \cdots, \alpha_n) = (y\alpha_1 + d\alpha_2, -x\alpha_1 + c\alpha_2, \alpha_3, \cdots, \alpha_n)$$

where c, d, x, and y are integers with cy + dx = 1, $c \neq 0$, then the resulting C[f] is a singularly fibered solid torus, $sT^{n+1}(d/c)$. By 3.1 it is topologically a solid *n*-torus and is singularly fibered by n - 1-tori. For n = 2, the sT^3 are the fibered solid tori of Seifert [8].

Geometrically $sT^3(d/c)$ is the cylinder $D^2 \times I$ with the upper face rotated $2\pi d/c$ radians before being identified with the lower face. A similar geometric interpretation is possible for sT^{n+1} . Let $v_2/u_2, \dots, v_n/u_n$ be pairs of relatively prime integers with $u_i \neq 0$. Consider $D^2 \times I^{n-1}$ embedded in E^{n+1} with D^2 the unit disk in the x_0, x_1 -plane and $I_i = [0, 2\pi]$ in the x_i -axis, $i \geq 2$. Now rotate D^2 by $2\pi v_i/u_i$ about the x_i -axis before identifying the faces defined by $x_i = 0$ and $x_i = 2\pi$. Let $c = \text{lcm}(u_2, \dots, u_n)$. Then this process of rotation and identification forms a topological n - 1 torus from $0 \times I^{n-1}$ and a topological n - 1 torus from exactly c of the $x \times I^{n-1} \subset D^2 \times I^{n-1}$. We denote this fibered solid torus by $sT(v_i/u_i)$. Note if c = 1, we have the product fiber space.

Choose coordinates $0 \leq \rho \leq 1$, $\alpha_i \pmod{2\pi}$, on $sT(v_i/u_i)$ so that $(\rho, \alpha_1, \dots, \alpha_n)$ is on the singular fiber iff $\rho = 0$, and $(\rho, \alpha_1, \dots, \alpha_n)$ and $(\rho', \alpha'_1, \dots, \alpha'_n)$ are on the same non-singular fiber iff $\rho = \rho'$ and $c\alpha_1 - \sum v_i c\alpha_i/u_i$ is congruent modulo 2π to $c\alpha'_1 - \sum v_i c\alpha'_i/u_i$. We call

such a system of coordinates *planar*. We assume all coordinates henceforth are planar. The subset $T(\rho)$ of sT defined by ρ equals a non-zero constant is a topological *n*-torus fibered as the product $S^1 \times T^{n-1}$. Then there exists an identification map η from $C^n \subset E^n$ to $T(\rho)$ given by

$$\eta(x_1, x_2, \cdots, x_n) = (\rho, \alpha_1, \cdots, \alpha_n)$$

where $\alpha_i = x_i \pmod{2\pi}$. The η -preimage of a T^{n-1} fiber of $T(\rho)$ is a finite number of parallel equally spaced hyperplane sections in C^n .

In the following, F denotes both a fiber and its corresponding homology class and \sim denotes "homologous to".

PROPOSITION 3.2. Let F be a fiber on the boundary T^n of $sT^{n+1}(v_i/u_i)$. Then $\pm F \sim cA_1 - v_2 c/u_2 A_2 - \cdots - v_n c/u_n A_n$

on T^n .

Proof. We can assume $(1, 0, \dots, 0) \in F$. Triangulate T^n via a triangulation of C^n which induces a triangulation on each planar section of F in C^n . Each of these sections separates C^n into two components. The chain sum of the closures of all simplices in the components which contain the point $(1, 0, 2\pi, \dots, 2\pi)$ of C^n gives a chain on T^n with the desired boundary. Details of this construction and computation may be found in [9, pp. 45-50]

COROLLARY 3.3. Let F be a non-singular and F_0 the singular fiber of $sT^{n+1}(v_i/u_i)$. Then $\pm F \sim cF_0$ in sT

Proof. F is homologous in sT to a fiber on the boundary. But $A_i \sim 0$ in sT for $i \geq 2$ and $F_0 \sim A_1$ in sT, so the result follows from 3.2.

COROLLARY 3.4. A fiber preserving homeomorphism of non-trivially fibered tori takes the singular fiber onto the singular fiber.

Proof. Suppose $h: sT \to sT'$. Let F_0 , F'_0 be the singular fibers and suppose $h(F_0) = F' \neq F'_0$ and $h(F_1) = F'_0$. $F_1 \sim cF_0$ implies $h(F_1) \sim ch(F_0)$ so $h(F_1) \sim cc'F'_0$. Thus $F'_0 \sim cc'F'_0$ or cc' = 1. Therefore, c = c' = 1 and both tori are trivially fibered.

Seifert shows, [8, pp. 150–154], that $sT^3(v/u)$ and $sT^3(v'/u')$ are fiber preserving homeomorphic iff |u| = |u'| and v and v' reduced mod |u| to the interval [-|u|/2, |u|/2] have the same absolute value. For $n \ge 3$, the corresponding result is as follows.

THEOREM 3.5. For $n \geq 3$, $sT^{n+1}(v_i/u_i)$ is fiber preserving homeomorphic to $sT^{n+1}(1/c)$ iff $|c| = \text{lcm}(u_2, \dots, u_n)$.

Proof. If $|c| = \text{lcm}(u_2, \dots, u_n)$ then a linear fiber preserving homeomorphism may be constructed taking $sT^{n+1}(v_i/u_i)$ onto $sT^{n+1}(1/c)$. See [9, pp.

59–63]. Conversely suppose

$$h: sT(v_i/u_i) \rightarrow sT'(1/c')$$

is given. Let $c = \operatorname{lcm}(u_2, \cdots, u_n)$. Then $F \sim cA_1 - \sum v_i c/u_i A_i$, so

$$h(F) \sim ch(A_1) - \sum v_i c/u_i h(A_i).$$

Now $h(A_1) \sim a_{11} A'_1 + \sum a_{ij} A'_j$ with $a_{11} \neq 0$ since $h(A_1)$ does not bound on sT'. For $i \geq 2, A_i \sim 0$ on sT hence $h(A_i) \sim 0$ on sT'. Therefore, $h(A_i) \sim \sum a_{ij} A'_j$ on T' for $i, j \geq 2$. The $h(A_i)$ are a basis for $H_{n-1}(T')$ so det $|a_{ij}| = \pm 1$ and $a_{11} = \pm 1$. By 3.4, $h(F) \sim F' \sim \pm c'A'_1$ so

$$\pm c'A'_1 \sim c(a_{11}A'_1 + \sum a_{ij}A'_j) + \sum v_i c/u_i(\sum a_{ij}A'_j).$$

The A'_{j} are homologously independent, so we may equate coefficients to obtain $\pm c' = ca_{11}$. Thus c = |c'|.

We define $sT(v_i/u_i)$ to be of singularity type c > 0 iff it is fiber preserving homeomorphic to sT(1/c). The fibering is singular in the sense that if $c \neq 1$, sT(1/c) does not have the covering homotopy property. It is easy to show that a homotopy of a homeomorphism onto the singular fiber followed by the projection cannot be lifted.

4. Singularly fibered manifolds

A singularly fibered (q + r + 1)-manifold consists of a topological (q + r + 1)-manifold M, a connected q + 1-manifold B, and a map $p : M \to B$ such that $p^{-1}(b)$ is homeomorphic to a space F^r for all $b \in B$ and such that each $b \in B$ has a closed (q + 1)-cell neighborhood \bar{V} with $p^{-1}(\bar{V})$ fiber preserving homeomorphic to some C[f]. Suppose $S^q = S^1$, $F^r = T^{n-1}$ and f is linear. Then a singularly fibered M^{n+1} is partitioned into fibers $F = T^{n-1}$ so that each F has a closed neighborhood fiber preserving homeomorphic to some $sT^{n+1}(1/c)$. We call such a neighborhood, N(F), a solid fiber neighborhood. The projection of N(F) in B is a base fiber neighborhood. Here B is a closed surface.

Seifert's lemmas 1 through 4 and Theorem 1 can be easily shown to hold for fibered M^{n+1} . In particular, if N(F) and N'(F) are two solid fiber neighborhoods of F, then there is a fiber preserving isotopy of M taking N(F) onto N'(F), leaving F pointwise fixed and which is the identity outside a fixed open set containing $N(F) \cup N'(F)$.

Let N(F) be a solid fiber neighborhood of F in M. $M'' = M - \operatorname{int} N(F)$ is a manifold with an *n*-torus boundary T''. We say F has been *excised* from M to obtain M''. Given any singularly fibered sT with boundary T and a fiber preserving homeomorphism $f: T \to T''$, let M_1 be M'' with sT adjoined by f. We say M'' has been *completed* to M_1 . Hereafter a double prime shall always refer to a manifold with boundary. PROPOSITION 4.1. The result of excising F from M is independent of the N(F) used.

Proof. Let $M''_i = M - \operatorname{int} N_i(F)$, i = 1, 2. $N_i(F) \cap N_2(F)$ contains a $N_3(F)$. Then there is a fiber preserving isotopy taking $N_i(F)$ onto $N_3(F)$.

PROPOSITION 4.2. M'' obtained from M by excising a non-singular fiber is independent of the fiber excised.

Proof. Given non-singular F_1 and F_2 over b_1 and b_2 , let τ be an arc in B from b_1 to b_2 which does not contain singular points; i.e. points b where $p^{-1}(b)$ is a singular fiber. Let σ be a closed disk in B containing τ in its interior and without singular points. Then $p^{-1}(\sigma)$ is a solid fiber neighborhood of both F_1 and F_2 .

Let F'' be a fiber on the boundary T'' of M''. A subgroup $G \subset H_{n-1}(T'')$ is allowable if G is of rank n - 1, the homology class of F'', [F''], is not in G and there exists an (n - 1)-torus $P'' \subset T''$ such that [P''] and G generate $H_{n-1}(T'')$.

LEMMA 4.3. If G is allowable, then there is exactly one type of singularly fibered sT^{n+1} such that there exists a fiber preserving homeomorphism $h: T \to T''$ with $h_*(\ker i_*) = G$ where $i: T \to sT$ is inclusion of the boundary.

Proof. Let F'', P'' also denote the homology classes of F'' and P'', etc. Suppose P'', Q''_2 , \cdots , Q''_n is a basis for $H_{n-1}(T'')$ where Q''_2 , \cdots , Q''_n is a basis for G and suppose $F'' \sim b_{11} P'' + \sum b_{i1} Q''_i$. Since $F'' \notin G$, $b_{11} \neq 0$. Note that $|b_{11}|$ is independent of the Q''_i basis and the choice of P'', so $|b_{11}|$ is uniquely determined by G and the homology class of a fiber on T''. Let D''_2 , \cdots , D''_n be a collection of (n-1)-tori on T'' such that F'', D''_2 , \cdots , D''_n are a basis for $H_{n-1}(T'')$. Suppose $D''_j \sim b_{1j} P'' + \sum b_{ij} Q''_i$ for $j = 2, \cdots, n$. Then $|b_{ij}|$ is an $n \times n$ unimodular matrix.

Consider sT^{n+1} fibered by $v_i/u_i = -b_{i1}/b_{11}$ for $i = 2, \dots, n$. Then on the boundary T,

 $F \sim b_{11} A_1 + b_{21} A_2 + \cdots + b_{n1} A_n$.

Choose (n-1)-tori D_j on T for $j = 2, \dots, n$ such that

$$D_j \sim b_{1j} A_1 + b_{2j} A_2 + \cdots + b_{nj} A_n$$
.

A choice of planar coordinates on T'' defines A''_i . Suppose

 $P'' \sim a_{11} A''_1 + \dots + a_{n1} A''_n$ and $Q''_j \sim a_{1j} A''_1 + \dots + a_{nj} A''_n$.

Then $|a_{ij}|$ is unimodular and we define $h = |a_{ij}| : T \to T''$. Computation shows h(F) = F'', $h(D_i) = D''_i$, $h(A_1) = P''$ and $h(A_j) = Q''_j$ for $i, j \ge 2$. Thus $h_*(\ker i_*) = G$.

Suppose sT' is fibered by $v_i/u_i = -c_{i1}/c_{11}$ has a fiber preserving homeo-

morphism $h': T' \to T''$ with $h'_*(\ker i'_*) = G$. Then

 $F' \sim c_{11} A'_1 + \cdots + c_{n1} A'_n$

and

 $h'(F') \sim F'' \sim c_{11} h'(A'_1) + c_{21} h'(A'_2) + \cdots + c_{n1} h'(A'_n).$

Choosing $P'' = h'(A'_1)$ and $Q''_i = h'(A'_i), i \ge 2$, we have

$$F'' \sim c_{\rm in} P'' + \sum c_{\rm in} Q''_{\rm i}.$$

Hence $|b_{11}| = |c_{11}| \text{ so } sT'$ is fiber preserving homeomorphic to the constructed T.

The converse of 4.3 is not true. There exists an infinite number of distinct allowable groups G_r , $r \ge 3$, which determine sT(1/c). For example, if F'', D''_2 , \cdots , D''_n generate $H_{n-1}(T'')$, then G_r generated by $-F'' + cD''_2$, $rD''_2 + D''_3$, D''_4 , \cdots , D''_n is allowable and determines sT(1/c). Note that $G_r = G_s$ iff r = s.

Let G be allowable and $h: T \to T''$ be a linear fiber preserving homeomorphism with $h_*(\ker i_*) = G$. The completion of M'' along G, M(G) is $M'' \cup sT$ with h(x) identified with x for $x \in T$, the boundary of sT.

PROPOSITION 4.4. Given planar coordinates on T'', M(G) is uniquely determined by G and M''.

Proof. Let $g: T' \to T''$ be another linear homeomorphism with $g_*(\ker i_*) = G$ which gives M'(G). Then $(h^{-1}g)_* : \ker i_* \to \ker i_*$ so $h^{-1}g$ can be extended to a linear homeomorphism $f_*: sT' \to sT$. Then $f: M'(G) \to M(G)$ defined by $f \mid M'' = \text{identity and } f \mid sT' = f_*$ is a fiber preserving homeomorphism.

A simple closed curve $\omega \subset T^n$ is *linear* with respect to coordinates $\alpha_1, \alpha_2, \cdots, \alpha_n$ if ω is the image of a line in E^n under the map $x_i \to x_i \pmod{2\pi}$. Two linear curves are *parallel* if they are images of parallel lines in E^n . Let the boundary T'' of M'' be fibered by linear simple closed curves parallel to a given ω and let η be the natural map defined on M'' which identifies these S^1 -fibers to points. Then $\eta(M'') = M(\omega)$ is the completion of M'' along ω .

THEOREM 4.5. For each fixed planar coordinate system on T'' there exists a bijective correspondence between linear ω with intersection product of the homology class of ω and the homology class of a fiber $F'' \subset T''$ not zero, i.e., $[\omega] \cdot [F''] \neq 0$, and allowable subgroups G. If ω and G correspond, then $M(\omega)$ is fiber preserving homeomorphic with M(G) where G determines the completion by adding sT(1/c) with $c = [\omega] \cdot [F'']$.

Proof. Suppose $\omega \simeq a_{11} S_1'' + \cdots + a_{n1} S_n''$ and choose $|a_{ij}|$ to be integral unimodular. Let $|b_{ij}| = |a_{ij}|^{t,-1}$ and choose n - 1-tori Q_j'' on T'' so that

$$Q''_{j} = b_{1j} A''_{1} + \dots + b_{nj} A''_{n}, \qquad j \ge 2.$$

Then Q''_2, \dots, Q''_n generate a subgroup G. G is independent of the choice of $|a_{ij}|$ as long as the first column is $a_{11}, a_{21}, \dots, a_{n1}$. The assumption $[\omega] \cdot [F''] \neq 0$ insures $[F''] \notin G$. Hence G is a uniquely determined allowable subgroup.

Conversely, given G generated by $Q''_j \sim b_{1j} A''_1 + \cdots + b_{nj} A''_n$ for $j \geq 2$, choose

$$P'' \sim b_{11} A''_1 + \dots + b_{n1} A''_n$$

so that P'' and G generate $H_{n-1}(T'')$. Then define $|a_{ij}| = |b_{ij}|^{t,-1}$ and $\omega \simeq a_{11} S''_1 + \cdots + a_{n1} S''_n$. F'' not in G insures $[\omega] \cdot [F''] \neq 0$. Computation shows ω is independent of the basis chosen for G.

To define fiber preserving homeomorphism of $M(\omega)$ onto M(G) we first extend the planar coordinates on T'' to be a neighborhood $[1, 3] \times T'' \subset M''$. Suppose $|b_{ij}|$ expresses P'', Q''_j in terms of the A''_i . Define $f'' : M'' \to M'' + sT$ by

$$f'' \mid M'' - [1, 3] \times T'' =$$
identity,

 $f'': [2,3] \times T'' \rightarrow [1,3] \times T''$ given by

$$(\rho, \alpha_1, \alpha_2, \cdots, \alpha_n) \rightarrow (2\rho - 3, \alpha_1, \cdots, \alpha_n)$$

and f'': $[1, 2] \times T'' \rightarrow sT$ given by

$$(\rho, \alpha_1, \cdots, \alpha_n) \rightarrow (\rho - 1, |b|^t (\alpha_1, \cdots, \alpha_n)^t).$$

Let $h: T \to T''$ given by $h = |b_{ij}|^{t,-1} = |a_{ij}|$ be used to adjoin sT along G to M''. Then f'' induces a fiber preserving homeomorphism

$$f: M(\omega) \to M(G).$$

Suppose $F \sim c_1 A_1 + \cdots + c_n A_n$ on T. Since $h^{-1}(\omega) \simeq \pm S_1 \subset T$, we have $c = [\omega] \cdot [F''] = [h^{-1}(\omega)] \cdot [F] = [\pm S_1] \cdot [c_1 A_1 + \cdots + c_n A_n] = \pm c_1$.

Thus sT is of type c.

5. Manifold classes and fundamental groups

Let τ be a closed path in *B* based at b_0 which contains no singular points. Since *M* minus all singular fibers has the covering homotopy property, $F_0 = p^{-1}(b_0)$ can be isotopically deformed onto itself with projection image τ in *B*. This we call a *translation* of F_0 over τ . Any two translations of F_0 over τ give isotopic homeomorphisms of F_0 . Hence the induced isomorphism $\chi(\tau)$: $H_1(F_0) \to H_1(F_0)$ is well defined. $\chi(\tau)$ depends only on the homotopy class of τ and has the property $\chi(\tau'\tau) = \chi(\tau')\chi(\tau)$ for the path τ followed by τ' . For fixed coordinates on $F_0, \chi: \Pi_1(B, b_0) \to \operatorname{Gl}(n-1, Z)$ is a homomorphism. Change of coordinates on F_0 or basepoint in *B* alters χ by an inner automorphism. Hence *M* determines a unique inner automorphism class of $\chi: \Pi_1(B) \to \operatorname{Gl}(n-1, Z)$. The *characteristic* of *M* is defined to be this class of equivalent integral representations of $\Pi_1(B)$ of degree n-1.

196

We consider two manifolds to be in the same class if they have the same base and characteristic. The class, $\{M\}$, of M is independent of any singular fibers. Manifolds may be constructed with a pre-given base and characteristic. The construction follows the method of Seifert [8, p. 173–174] and is detailed in [9, p. 113–124]. Note that excision and completion does not alter the class of a manifold.

To classify singularly fibered (n + 1)-manifolds we first classify the manifold classes and then seek the manifolds within each class. First we make the *conjecture* (n): Two homeomorphisms $T^n \to T^n$ are isotopic iff they are homotopic. Conjecture (1) is clearly true. Conjecture (2) is a special case of a theorem of R. Baer that homotopic homeomorphisms of any closed surface are isotopic. Since two homeomorphisms on T^n are homotopic iff the induced maps on $H_1(T^n)$ are the same, conjecture (n) would imply the space of homeomorphisms of T^n with a fixed coordinate system has exactly one linear homeomorphism in each path-component. Conjecture (n) would also imply the map f_s of Lemma 2.1 can be a homeomorphism.

THEOREM 5.1. Suppose conjecture (n-1) is true. Then there is a bijective correspondence between classes $\{M\}$ of closed singularly fibered (n + 1)-manifolds and fibered (n + 1)-manifolds M''_0 with an n-torus boundary T'' and without singular fibers. The corresponding M''_0 is the class space of $\{M\}$. The base B''_0 of M''_0 is the base B of M with an open disk removed. The characteristic of M''_0 is the same as the characteristic of M. Any member of $\{M\}$ may be obtained from M''_0 by excision and completion.

Proof. Given M''_0 we may complete it to M_0 and obtain a unique class $\{M_0\}$. Conversely, let M be any member of $\{M\}$. By excising all singular fibers and completing with non-singular fibers we obtain a manifold M_0 of $\{M\}$. Excise one non-singular fiber to obtain M''_0 which has the proper base and characteristic. To show M''_0 is well defined, it suffices to show that if M_1 in $\{M\}$ contains no singular fibers and we excise a non-singular fiber to obtain M''_1 , then M''_1 is fiber preserving homeomorphic to M''_0 . Construction of this homeomorphism follows the method of Seifert [8, p. 171–173]. Both M''_1 and M''_0 are first viewed as $P'' \times T^{n-1}$, where P'' is a polygon which becomes $B''_0 = B''_1$ by identifications on its edges, and corresponding identifications are made on fibers over the edges of P''. Conjecture (n-1) is then used to isotopically deform the identifications giving M''_1 to those giving M''_0 . Details may be found in [9, p. 131–135].

COROLLARY 5.2. Compact (n + 1)-manifolds, fibered in the usual sense by (n - 1)-tori, with n-torus boundaries, are in a bijective correspondence with closed surfaces B and equivalence classes of integral representations of $\Pi_1(B, b_0)$ of degree n - 1.

COROLLARY 5.3. $(S^2 - \operatorname{int} D^2) \times T^{n-1}$ is the class space of the unique class of singularly fibered manifolds with base S^2 .

COROLLARY 5.4. Manifolds of a single class are either all orientable or all nonorientable.

There are only two classes of orientable 4-manifolds with base a sphere with one crosscap. If γ is a generator of $\Pi_1(B, b_0)$, then $\gamma^2 \simeq 0$ and $\chi(\gamma)^2 = C^2 = I$. Since the manifolds are orientable, det C = -1. Then the two conjugate classes of χ are represented by

$$C = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} ext{ and } C = egin{pmatrix} 0 & -1 \ -1 & 0 \end{pmatrix}.$$

In cases other than this one and the case $B = S^2$, there are an infinite number of non-conjugate χ and hence an infinite number of distinct manifold classes.

Suppose $M \in \{M_0\}$ has $r \geq 0$ singular fibers $\{F_j\}$ of types $\{c_j\}$. To obtain M from the class space M''_0 , we first excise r non-singular fibers to obtain M'' with r + 1 *n*-tori boundary components T''_j . For a proper choice of linear ω_j on each T''_j , the identification of the S^1 parallel to the ω_j on all T''_j will produce M. A necessary condition on the ω_j is $[\omega_j] \cdot [F''_j] = c_j$ where F''_j is a fiber on T''_j . To obtain other necessary conditions on the ω_j , we compute the fundamental group of M.

Cut the base B'' on M'' into a polygon P'' in such a way that the boundaries $J_j = p(T''_j)$ lie in the interior of P''. Let b be the vertex of the polygon and let the edges be $A_i, B_i, i = 1, \dots, h$ if B is a sphere with h handles or $C_i, i = 1, \dots, q$ if B is a sphere with q crosscaps. Let $\tau_j, j = 0, 1, \dots, r$ be paths from b to a point of J_j . Fix a coordinate system on $T^{n-1} = S_2 \times \cdots \times S_n$ and consider these coordinates on each $x \times T^{n-1}$ of $P'' \times T^{n-1}$. A choice of coordinates on each J_j gives planar coordinates on each $T''_j = J_j \times T^{n-1}$. Then M'' is obtained from $P'' \times T^{n-1}$ by identifications

 $A_i \times T^{n-1} \equiv A_i^{-1} \times T^{n-1}$ and $B_i \times T^{n-1} \equiv B_i^{-1} \times T^{n-1}$, $i = 1, \dots, h$

 $C_i \times T^{n-1} \equiv C'_i \times T^{n-1}, \qquad i = 1, \cdots, q.$

On each T''_j there is a linear simple closed curve ω_j with the property that if T''_j is fibered by one-spheres parallel to ω_j , then shrinking these to points is equivalent to replacing the original excised F_j . Note that it is necessary to choose ω_j to correspond not only to the singularity type of F_j , but also to the way in which F_j is embedded in M. Suppose the ω_j are specified by

$$\omega_j \simeq w_{1j} J_j + w_{2j} S_2 + \cdots + w_{nj} S_n \, .$$

To compute $\Pi_1(M)$ we first find $\Pi_1(P'' \times T^{n-1})$ and then $\Pi_1(M'')$. Let J_j also denote the path $\tau_j^{-1}J_j \tau_j$ in P''. The product space $P'' \times T^{n-1}$ has $\Pi_1(P'' \times T^{n-1})$ generated by $J_0, J_1, \dots, J_r, S_2, \dots, S_n$ with commutativity relations $S_k J_j = J_j S_k$ and $S_k S_l = S_l S_k$. The identification forming

or

M'' from $P'' \times T^{n-1}$ introduces new generators and relations. The new generators are A_i , B_i , $i = 1, \dots, h$ or C_i , $i = 1, \dots, q$.

$$B_h^{-1}A_h^{-1}B_h A_h \cdots B_1^{-1}A_1^{-1}B_1 A_1 = J_r \cdots J_0 \quad \text{or} \quad C_q^2 \cdots C_1^2 = J_r \cdots J_0$$

holds on B'' hence also in M''. Translation in M'' of the fiber F over b along the path A_i induces an isomorphism $\chi(A_i) : H_1(F) \to H_1(F)$ which we express in terms of the basis S_2, \dots, S_n as $\chi(A_i) = |a_{ij}|$. Let $\chi(A_i)S_k$ denote $a_{2k}S_2 + \dots + a_{nk}S_n$ written multiplicatively. Then in translating F over $A_i, S_k \subset F$ is taken into $\chi(A_i)S_k$. Thus in M'' there is the relation

 $S_k = A_i^{-1}(\chi(A_i)S_k)A_i \text{ or } A_i S_k A_i^{-1} = \chi(A_i)S_k \,.$

Likewise we have the corresponding relations for the B_i (or C_i). Closing M'' to M creates no new generators, but each ω_j on T''_j gives the relation $J_j^w S_2^s \cdots S_n^t = I$ where $w = w_{1j}$ and the exponent of S_k is w_{kj} . Thus $\Pi_1(M)$ can be given as follows.

THEOREM 5.5. Let M be a singular fibered manifold with base a sphere with h handles (or q crosscaps) obtained from the class space with r fibers excised by shrinking

$$\omega_j \simeq w_{1j} J_j + w_{2j} S_2 + \cdots + w_{nj} S_n$$

on T''_j for $j = 0, 1, \dots, r$. Then $\Pi_1(M)$ is given by Generators:

$$A_i, B_i,$$
 $i = 1, \dots, h$
 $(or \ C_i,$
 $i = 1, \dots, q)$
 $J_j,$
 $j = 0, \dots, r$
 $S_k,$
 $k = 2, \dots, n$

Relations:

$$B_{h}^{-1}A_{h}^{-1}B_{h} A_{h} \cdots B_{1}^{-1}A_{1}^{-1}B_{1} A_{1} = J_{r} \cdots J_{0}$$

$$(or \quad C_{q}^{2} \cdots C_{1}^{2} = J_{r} \cdots J_{0})$$

$$S_{k} J_{j} = J_{j} S_{k} , \qquad S_{k} S_{l} = S_{l} S_{k}$$

$$A_{i} S_{k} A_{i}^{-1} = \chi(A_{i})S_{k} , \qquad B_{i} S_{k} B_{i}^{-1} = \chi(B_{i})S_{k}$$

$$(or \quad C_{i} S_{k} C_{i}^{-1} = \chi(C_{i})S_{k})$$

$$J_{j}^{w} S_{2}^{s} \cdots S_{n}^{t} = I \qquad for \ all \quad i, j, k, l$$

where $w = w_{1j}$ and the exponent of S_k is w_{kj} .

COROLLARY 5.6. $\Pi_1(B)$ is a quotient of $\Pi_1(M)$.

COROLLARY 5.7. If $\Pi_1(M)$ is finite, B is the sphere or the projective plane.

6. Classification in special cases

By making additional assumptions on B and χ , we may determine the homeomorphism and fiber homeomorphism classes in certain cases.

THEOREM 6.1. Let M'' with boundary T'' and without singular fibers have an orientable base and trivial characteristic. Suppose

$$\omega \simeq J_0 + a_2 S_2 + \cdots + a_n S_n$$
 and $\omega' \simeq J_0 + a_2' S_2 + \cdots + a_n' S_n$

on T". Then $M(\omega)$ is fiber preserving homeomorphic to $M(\omega')$ with the identity induced on the base iff

$$gcd (a_2, \cdots, a_n) = gcd (a'_2, \cdots, a'_n).$$

Proof. $M(\omega)$ homeomorphic to $M(\omega')$ implies the first homology groups are isomorphic. Computation of these groups using Theorem 5.5 with the commutativity relations added shows that $gcd(a_2, \dots, a_n) = gcd(a'_2, \dots, a'_n)$ is a necessary condition. Conversely, suppose the gcd's are equal to d. Let $|a_{ij}|$ and $|a'_{ij}|$ be $n \times n$ unimodular integral matrices with

$$|a_{ij}|(a_1, \cdots, a_n)^t = (0, 0, \cdots, 0, d) = |a'_{ij}|(a'_1, \cdots, a'_n)^t.$$

Then $|b_{ij}| = |a'_{ij}|^{-1} |a_{ij}|$ is such that

$$|b_{ij}|(a_1, \cdots, a_n)^t = (a'_1, \cdots, a'_n)^t.$$

Thus $h: M'' \to M''$ defined by $h(b \times t) = b \times |b_{ij}| t$ for $b \in B$ and $t \in T^{n-1}$ is a fiber preserving homeomorphism with $h(\omega) = \omega'$. Hence h induces a fiber preserving homeomorphism $M(\omega) \to M(\omega')$.

Consider all fibered M_0^4 without singular fibers, with trivial characteristic and orientable base. Then each M_0^4 arises from $M_0''^4 = B'' \times T^2$ by shrinking

$$\omega \simeq J_0 + a_2 S_2 + a_3 S_3$$

on the boundary. Let $d = \text{gcd}(a_2, a_3)$ and suppose B is a sphere with $h \ge 0$ handles.

COROLLARY 6.2. The integers d and h are a complete system of topological invariants for the spaces M_0^4 . If conjecture (n-1) is true, then d and h are a complete system of topological invariants for the spaces M_0^{n+1} with orientable base, trivial characteristic and no singular fibers.

Note that for n = 2, this corollary gives Brody's result [1, p. 164] for Seifert's manifolds (0, o; h | p). A similar result, allowing one singular fiber, is given by the following.

THEOREM 6.3. Let M'' have base a sphere with two open disks removed and no singular fibers. Suppose

$$\begin{aligned} \omega_0 \simeq J_0 + \sum a_i S_i, & \omega_1 \simeq c J_1 + \sum b_i S_i, \\ \omega_0' \simeq J_0 + \sum a_i' S_i, & and & \omega_1' \cong c J_1 + \sum b_i' S_i, \end{aligned}$$

 $|c| \geq 2$ give two fiberings of the two boundary components of M''. Then $M(\omega_0, \omega_1)$ is fiber preserving homeomorphic to $M(\omega'_0, \omega'_1)$ iff the matrices

$$A = \begin{pmatrix} 1 & a_2 \cdots a_n \\ -c & b_2 \cdots b_n \end{pmatrix} \text{ and } A' = \begin{pmatrix} 1 & a'_2 \cdots a'_n \\ -c & b'_2 \cdots b'_n \end{pmatrix}$$

are equivalent, i.e., there exist unimodular matrices X and Y so that XAY = A'.

Proof. Using Theorem 5.5 we see that $H_1(M(\omega_0, \omega_1))$ can be given by generators A_i, B_i, J_0 , and S_j with $i = 1, \dots, h, j = 2, \dots, n$, and the relations $J_0 + \sum a_j S_j = 0, -cJ_0 + \sum b_j S_j = 0$. Fox [3, Theorem 3.6] shows the torsion coefficients of $H_1(M(\omega_0, \omega_1))$ are the invariant factors of the matrix A. Hence the two matrices must have the same invariant factors and thus are equivalent. To prove the converse, first note that A and A' are equivalent iff there exists an $n \times n$ unimodular matrix Z with integer entries and first column $(1, 0, \dots, 0)^t$ such that AZ = A'. See [9, p. 154–157] for the construction of Z. The base B'' is an annulus which we coordinatize by (ρ, α_1) , $1 \leq \rho \leq 2, 0 \leq \alpha_1 < 2\pi$, with $(1, \alpha_1) \in J_0$, $(2, \alpha_1) \in J_1$. Then we define $h: M'' \to M''$ by

$$h(\rho, \alpha_1, \cdots, \alpha_n) = (\rho, Z^t(\alpha_1 \cdots \alpha_n)^t), \text{ for } (\alpha_2, \cdots, \alpha_n) \in T^{n-1}.$$

Fibers are preserved since Z^t has first row $(1, 0, \dots, 0)$. Computation shows $h(\omega_0) = \omega'_0$ and $h(\omega_1) = \omega'_1$. Thus h induces a fiber preserving homeomorphism $M(\omega_0, \omega_1) \to M(\omega'_0, \omega'_1)$.

This theorem is an extension to higher dimensions of Brody's theorem [1, Theorem 3.1] for the case h = 0.

REFERENCES

- 1. E. J. BRODY, On the fibred spaces of Seifert, Quart. J. Math. Oxford Ser. (2), vol. 13 (1962), pp. 161-171.
- 2. P. E. CONNER AND E. DYER, On the singular fiberings by spheres, Michigan Math. J., vol. 6 (1959), pp. 303-311.
- 3. R. H. Fox, Free differential calculus, II, Ann. of Math. (2), vol. 59 (1954), pp. 196-210.
- 4. S. T. HU, On fiberings with singularities, Michigan Math. J., vol. 6 (1959), pp. 131-149.
- 5. ——, Homotopy theory, New York, Academic Press, 1959.
- 6. M. MAHOWALD, On singular fiberings, Canad. J. Math., vol. 15 (1963), pp. 214-219.
- D. MONTGOMERY AND H. SAMELSON, Fiberings with singularities, Duke Math. J., vol. 13 (1946), pp. 51-56.
- 8. H. SEIFERT, Topologie Dreidimensionaler Gefaster Räume, Acta Math., vol. 60 (1933), pp. 147-238.
- 9. M. C. THORNTON, Singularly Fibered Manifolds, Ph.D. dissertation, University of Illinois, 1965.

UNIVERSITY OF WISCONSIN MADISON, WISCONSIN