
SINGULARLY FIBERED MANIFOLDS

BY

MELVIN C. THORNTON

1. Introduction

Singular fiberings were first introduced by Seifert [8] in the fibering of 3-
mnifolds by 1-spheres. Singularities rose by the twisting of neighboring
fibers round center fiber. Montgomery nd Smelson [7], Conner nd
Dyer [2], nd Mhowld [6] hve treated singularities cused by pinching
fiber to point. Hu [4] defined singularity by the breakdown of the covering
homotopy property. This pper concerns singularities which generalize
those of Seifert. Our singular fibers re homeomorphic to the non-singular
ones nd hve neighborhood which is topological, but not fiber, product
of the fiber nd cell. We define the notion of singularity nd classify singu-
larities for torus fiber. We re concerned minly with the fibering of u
(n 4- 1)-mnifold by (n 1)-tori over closed surface. In this cse we ex-
tend some results of Brody [1].

2. n-tori

An n-torus, T", is the topological product of n circles. Let

C"=IX... Xl.

where I [0, 2r] is on the i-th xis of E". Let C" --, T" be the identifica-
tion of opposite faces of C. v(C) will be the. standard representation of T.
Homology classes of v-images of /c-dimensional faces of C form a set of
generators of H(T). We denote the 1-dimensional generators obtained
from the oriented I as S, S, S.. Generators of H(T) are carried
by the Cartesian product of k carriers of the S. Since H.( T) is torsion-free,
H*( T) is the exterior algebra on n 1-dimensional generators which we take
as the duals S’ of S. Generators of H(T) will be cup products of /
distinct S. Defining

SS S S X S X X S

gives a specified orientation for generators of H(T"). Poincar4 duality

k:g( T") -- g"-(T")is given by
SS,... SX(S X S. X X S) * * *
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where * * * * * * * * S*S$2(SiS Sk )(SS,n S The intersection
product

gv( T) X He( T) -- Hv+_( T)is thus easily computed.
C induces a coordinate system of n-tuples of reals modulo 2r on T. A

homeomorphism h T -- T is called linear if it is expressible as an n X n
unimodular integral matrix using these coordinates. We write h ail
and consider all matrices acting on the left. A solid n-torus, sTn+l, is obtained
from T by replacing the first circle by a disk. For polar coordinates (p, at)
on a disk, a homeomorphism h, sT -- sT is linear if h, restricted to non-zero
constant p is linear.

Linear h ai induces hl" HI( T’) HI( T) which, in terms of the
Si basis, is also given by ai I. Thus

h Hi( T) -- H( T)is given by a’ t. By computing the cup product and dualizing we see that

h" H( T) -- H( T)
is given by

hv(S X Si X X Sk) D(ij k;rs t)S X S, X X S,

where D(ij ; rs t) is the determinant of the p p submatrix of a’l
formed by the rows r, s, and the columns i, j, ,/c. The sum is to be
taken over all p-dimensional generators. Then choosing a basis

Ai (-1)+S X X X X S

for H_(T), we have h_ (det aii I)1 a. 1’- Where t, 1 indicates
transpose inverse.

LEMMX 2.1. A homeomorphism f" T -- T can be extended to a map

f sT sT

ifff,_( ker i,_ ker i,_ where i T --> sT is inclusion.

Proof. Since f,, i, i, f, and f, is an isomorphism, the condition is
necessary. Conversely, suppose f a. and the condition is satisfied.
Then since ker i_ is generated by A, i _> 2, we have ai 0, i _> 2 and
an 4-1. Define the homeomorphism g as g lair I. Then gt fl and
hence f

___
g, f homotopic to g, (see for example, Hu [5, p. 198]). Now define

f, by deforming f to g on 1 >_ p _> 1/2 and by

f(p, a, a2, ..., a,) (p, g(a, a., ..., a,,)) for 1/2 > p> O.

For p < 1/2, f,(o, a, a) has i-th coordinate independent of a, so f, is
uniquely defined and continuous at p O.
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3. Singular fibers
Let F and Y be topological manifolds and I, D, and S be the closed unit

interval, a closed cell, and a sphere. Given a homeomorphism

f" Y Sq Fr,
define [Y]] to be the product fiber space with projection pf where

p’SXF-F

is the natural projection. [Y]] has fiber S and base F. Consider I X S F
with0) S Fviewedas[S F]]foragivenf’S F-S X F. Let
v I X S X F -- C[f] be the identification map which pinches the S-fibers of
[S Eli to points. Since C[f] is homeomorphic to v(1 X f-)(I X S X F),
one can easily verify the following where we consider 0 as the center of D
andv(0) S)F) 0 XF.
LEMMA 3.1. C[f] is homeomorphic to Dq+ X F and has an induced parti-

tioning into sets homeomorphic to F such that the decomposition space is Dq+

and D O) ) F is a product fiber space.

We call C If] a singularly fibered core of type f. The singular or center fiber
is 0 ) F. All other fibers are non-singular. If f is the identity, then C[f]
is the product fiber space and the center fiber will also be non-singular.

If we choose Sq S, F T’- and a linear f S X T - S X T given by

f(a, , ..., a,) (ya - da, -xa + ca, aa, ...,
where c, d, x, and y are integers with cy - dx 1, c O, then the resulting
C[f] is a singularly fibered solid torus, sT’+(d/c). By 3.1 it is topologically a
solid n-torus and is singularly fibered by n 1-tori. For n 2, the sT
are the fibered solid tori of Seifert [8].

Geometrically sT(d/c) is the cylinder D ) I with the upper face rotated
2r d/c radians before being identified with the lower face. A similar geometric
interpretation is possible for sT+. Let v/uo., v,/u, be pairs of relatively
prime integers with u 0. Consider D I- embedded in E+ with D
the unit disk in the x0, x-plane and I [0, 2r] in the x-axis, i _> 2. Now
rotate D by 2rv/u about the x-axis before identifying the faces defined by
xi 0 and x 2r. Let c lcm (u, u). Then this process of rota-
tion and identification forms a topological n 1 torus from 0 X I- and a
topological n 1 torus from exactly c of the x X In-1 D ) In-. We
denote this fibered solid torus by sT(v/u). Note if c 1, we have the
product fiber space.

Choose coordinates 0 _< p 1, ai(mod 2r), on sT(vi/ui) so that
(p, a, a) is on the singular fiber iff p 0, and (p, a, a) and
(pC, O1, *’’, On) are on the same non-singular fiber iff p and
co.1 , vcai/u is congruent modulo 2 to ca _, vca /ui. We call
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such a system of coordinates planar. We assume all coordinates henceforth
are planar. The subset T(p) of sT defined by p equals a non-zero constant
is a topological n-torus fibered as the product S X Ts-1. Then there exists
an identification map v from C c E to T(p) given by

(x, x., x) (, , )

where a x(mod 2r). The /-preimage of a Tn-1 fiber of T(p) is a finite
number of parallel equally spaced hyperplane sections in Cs.

In the following, F denotes both a fiber and its corresponding homology
class and denotes "homologous to".

PROPOSITION 3.2. Let F be a fiber on the boundary T of sTS+(v/u). Then

F cA1 vs c/us As Vs c/us A,
on Ts.

Proof. We can assume (1, 0, 0) e F. Triangulate T via a triangula-
tion of C which induces a triangulation on each planar section of F in Cs.
Each of these sections separates C into two components. The chain sum of
the closures of all simplices in the components which contain the point
(1, 0, 2r, 2r) of C gives a chain on T with the desired boundary.
Details of this construction and computation may be found in [9, pp. 45-50]

COROLLARY 3.3. Let F be a non-singular and Fo the singular fiber of
sn+(v/ui). Then +F cFo in sT

Proof. F is homologous in sT to a fiber on the boundary. But A 0
in sT for i > 2 and F0 A in sT, so the result follows from 3.2.

COROLLARY 3.4. A fiber preserving homeomorphism of non-trivially fibered
tori takes the singular fiber onto the singular fiber.

Proof. Suppose h sT -- sT’. Let F0, F be the singular fibers and sup-
pose h(Fo) F’ F and h(F1) F. F cFo implies h(F) ch(Fo)

Cso h(F) cc Fo. Thus Fo cc’F’o or cc’ 1. Therefore, c 1 and
both tori are trivially fibered.

Seifert shows, [8, pp. 150-154], that sT(v/u) and sT(v’/u’) are fiber pre-
serving homeomorphic iff ul u’l and v and v’ reduced mod ul to the
interval [-I u I/2, u I/2] have the same absolute value. For n _> 3, the
corresponding result is as follows.

THEOREM 3.5. For n _> 3, sT’+(v/ui) is fiber preserving homeomorphic to
sTS+i(1/c) iff c lcm (u2,...,

Proof. If c lcm (us, u) then a linear fiber preserving homeomor-
phism may be constructed taking 8Tn+i(yi/ui) onto 8Tn+l(i/c). See [9, pp.
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59-63]. Conversely suppose

h" sT(v/u) ---> sT’(1/c’)

is given. Let c lcm (u, ,u). ThenF cA vc/uA,so

h(F) ch(A1) vi c/ui h(A).

Now h(A1) a A1 W a. A. with al 0 since h(A1) does not bound on
sT’. For i

_
2, A 0 on sT hence h(A) 0 on sT’. Therefore, h(A

"ajA on T’ for i, j 2. The h(Ai) are a basis for H,_(T’)so
detlal +/-1 and al +/-1. By 3.4, h(F) F’ +/-cA so

c/u( aij A’)c’A c(a A + aiiA) + v

The A are homologously independent, so we may equate coefficients to ob-
tain+/-c’ can. Thusc c’l.
We define sT(v/u) to be of singularity type c > 0 iff it is fiber preserving

homeomorphic to sT(1/c). The fibering is singular in the sense that if c 1,
sT(l/c) does not hve the covering homotopy property. It is easy to show
that a homotopy of a homeomorphism onto the singular fiber followed by the
projection cannot be lifted.

4. Singularly fibered manifolds

A singularly fibered (q - r - 1)-manifold consists of a topological
(q r 1)-manifold M, a connected q 1-manifold B, and a map p M -- Bsuch that p-l(b) is homeomorphic to a space F for all b e B and such that each
b e B has a closed (q W 1)-cell neighborhood 1 with p-l(T) fiber preserving
homeomorphic to some C[f]. Supposesq S1, F T"- andf islinear. Then
a singularly fibered Mn+l is partitioned into fibers F Tn- so that each F
has a closed neighborhood fiber preserving homeomorphic to some sTn+(l/c).
We call such a neighborhood, N(F), a solid fiber neighborhood. The projec-
tion of N(F) in B is a base fiber neighborhood. Here B is a closed surface.

Seifert’s lemmas 1 through 4 and Theorem 1 can be easily shown to hold
for fibered Mn+. In particular, if N(F) and N’(F) are two solid fiber neigh-
borhoods of F, then there is a fiber preserving isotopy of M taking N(F) onto
N’(F), leaving F pointwise fixed and which is the identity outside a fixed
open set containing N(F) u N’(F).

Let N(F) be a solid fiber neighborhood of F in M. M" M int N(F)
is a manifold with an n-torus boundary T". We say F has been excised from
M to obtain M". Given any singularly fibered sT with boundary T and a
fiber preserving homeomorphism f" T - T’, let M be M" with sT adjoined
by f. We say M" has been completed to M. Hereafter a double prime shall
always refer to a manifold with boundary.
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PROPOSITION 4.1.
N(F) used.

The result of excising F from M is independent of the

Proof.
Na(F).

Let Mpt M- intN(F) i 1,2. N(F) nN(F) containsa
Then there is a fiber preserving isotopy taking N(F) onto Na(F).

PROPOSITION 4.2. M obtained from M by excising a non-singular fiber is
independent of the fiber excised.

Proof. Given non-singular F1 and F2 over bl and b2, let r be an arc in B
from bl to bs which does not contain singular points; i.e. points b where p-l(b)
is a singular fiber. Let z be a closed disk in B containing r in its interior and
without singular points. Then p-l(z) is a solid fiber neighborhood of both
F1 and F.

Let F’ be a fiber on the boundary T" of M". A subgroup G H._(T’)
is allowable if G is of rank n 1, the homology class of F, [Ft], is not in G
and there exists an (n- 1)-torus P T such that [P"] and G generate
H,_( T").

LEMMA 4.3. If G is allowable, then there is exactly one type of singularly
fibered sTn+l such that there exists a fiber preserving homeomorphism h T -- T"
with h.(ker i.) G where i T -- sT is inclusion of the boundary.

Proof. Let F’, pt also denote the homology classes of F and P, etc.
Suppose P", Q’’, ..., Q: is a basis for H_(T") where Q’, ..., Q: is a basis
for G and suppose F b Pt b Q. Since Fp G, b 0. Note that
[b111 is independent of the Q’ basis and the choice of P’, so bl is uniquely
determined by G and the homology class of a fiber on T’. Let Dt, D: be
a collection of (n 1)-tori on T" such that F’, D, D: are a basis for
H_(T"). Suppose D b pt,

_
b Q for j 2,.... n. Then b.

is an n X n unimodular matrix.
Consider sT+ fibered by v/u -bi/b for i 2, n. Then on the

boundary T,
F bA -[- b As - + b

Choose (n 1)-tori D. on T forj 2, n such that

A choice of planar coordinates on T defines A". Suppose

Then a" is unimodular and we define h a" T -- T’. Computation
shows h(F) F", h(D) D, h(A) Pt and h(A) Q for i, j _> 2.
Thus h,(ker i,) G.
Suppose sT’ is fibered by v/u -c/c has a fiber preserving homeo-
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o!
morphism h’ T’ -- Ttt with h(ker ,) G. Then

F’ cll AI -+- - cn An
and

h’(F’) F" c h’(A’) -q- c. h’(A) - -+- Cn h’(A’).
Q’ h’Choosing P h’(A 1) and (A i), i _> 2, we have

Ft
c1 Pt - ci Q’..

Hence bn c so sT’ is fiber preserving homeomorphic to the constructed
T.

The converse of 4.3 is not true. There exists an infinite nunber of distinct
allowable groups Gr, r _> 3, which determine sT(l/c). For example, if
F", D’, D generate Hn_I(T"), then Gr generated by -F" - cD’’,
rD’’ -q- D’, D’’, Dtn is allowable and determines sT(l/c). Note that
G, Gsiffr s.
Let G be allowable and h T --> T be a linear fiber preserving homeo-

morphism with h,(ker i,) G. The completion of M’ along G, M(G) is
M t sT with h(x) identified with x for x e T, the boundary of sT.

PROPOSITION 4.4. Given planar coordinates on T, M( G) is uniquely deter-
mined by G and M.

Proof. Let g:T’--- T be another linear homeomorphism with
g,(ker i,) G which gives M’(G). Then (h-lg), ker i, -- ker i, so h-lg
can be extended to a linear homeomorphism f,:sT’-- sT. Then
f M’(G) M(G) defined byf M identity and f sT’ f, is a fiber pre-
serving homeomorphism.

A simple closed curve o T is linear with respect to coordinates
a, a, an if 0 is the image of a line in E under the map x -- x(mod 2r).
Two linear curves are parallel if they are images of parallel lines in En. Let
the boundary T’t of M’ be fibered by linear simple closed curves parallel to
given o and let v be the natural map defined on M" which identifies these
S-fibers to points. Then v(M") M(o) is the completion ofM along

THEOREM 4.5. For each fixed planar coordinate system on T" there exists a
bijective correspondence between linear oo with intersection product of the homology
class of o and the homology class of a fiber F T not zero, i.e., [o]. [F] 0,
and allowable subgroups G. If o and G correspond, then M o) isfiber preserving
homeomorphic with M( G) where G determines the completion by adding sT(l/c)
with c [o]. [Ft].

Proof. Suppose o
___
a S -t- -t- an S and choose al to be integral

unimodular. Let b] alt’- and choose n 1-tori Q on T’ so that

Q b.A + + bnA"n, j_>2.



196 MELVIN C. THORNTON

Then Q’, Q: generate a subgroup G. G is independent of the choice of
]ai] as long as the first column is au, al,..., a. The assumption
[]. [F"] 0 insures [F’] e G. Hence G is a uniquely determined allowable
subgroup.

Conversely, given G generated by Q bA + + bnj A: for j 2,
choose

P" b A b A"

so that P" and G generate H_(T’). Then define ail lbi .-1 and
a S’ + + a not in G insures [] [F’] 0. Computation

shows is independent of the bsis chosen for G.
To define fiber preserving home0morphism of M(w) onto M(G) we first

extend the planar coordinates on T" to ben neighborhood [1, 3] X T" M’.
Suppose b expresses P’, Q in terms of the A. Definef" M" M" + sT
by

f’M" [1, 3] X T" identity,

f" [2, 3] X T" --+ [1, 3] T" given by

and f" [1, 2] X T" --+ sT given by

(p,cl,...,a)-+(p- 1, bi t(a,’’’,
Let h T -- T" given by h bi t’-

ai be used to adjoin sT along G
to M’. Then f" induces a fiber preserving homeomorphism

f" M() -- M(G).Suppose F c A - cA on T. Since h-1(o)
___

4-$1 c T, we have

c [o]. [F’] [h-i(w)]. [F] [4-S]. [c A + + c A] 4-c.

Thus sT is of type c.

5. Manifold classes and fundamental groups
Let be a closed path in B based at b0 which contains no singular points.

Since M minus all singular fibers has the covering homotopy property, F0
p-l(b0) can be isotopically deformed onto itself with projection image in B.
This we call a translation of F0 over . Any two translations of F0 over r give
isotopic homeomorphisms of F0. Hence the induced isomorphism x(r)
H(Fo) -- H(Fo) is well defined, x(r) depends onlyon the homotopy class of
r and has the property x(r’r) x(r’)x(r) for the path r followed by r’.
For fixed coordinates on F0 , H,(B, b0) --+ G1 (n 1, Z) is a homomor-
phism. Change of coordinates on F0 or basepoint in B alters by an inner
automorphism. Hence M determines a unique inner automorphism class of
x II(B) -+ G1 (n 1, Z). The characteristic of M is defined to be this class
of equivalent integral representations of II(B) of degree n 1.
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We consider two manifolds to be in the same class if they have the sme base
and characteristic. The class, M}, of M is independent of any singular fibers.
Manifolds may be constructed with a pre-given base and characteristic. The
construction follows the method of Seifert [8, p. 173-174] and is detailed in [9,
p. 113-124]. Note that excision and completion does not alter the class of a
manifold.
To classify singularly fibered (n -k 1)-manifolds we first classify the mani-

fold classes and then seek the manifolds within each class. First we make the
conjecture (n): Two homeomorphisms T -- T are isotopic iff they are homo-
topic. Conjecture (1) is clearly true. Conjecture (2) is a special case of a
theorem of R. Baer that homotopic homeomorphisms of any closed surface are
isotopic. Since two homeomorphisms on T are homotopic iff the induced
maps on H1 T) are the same, conjecture (n) would imply the space of homeo-
morphisms of T with a fixed coordinate system has exactly one linear homeo-
morphism in each path-component. Conjecture (n) would also imply themap
f8 of Lemma 2.1 can be a homeomorphism.

THEOREM 5.1. Suppose conjecture n 1) is true. Then there is a bijective
correspondence between classes M of closed singularly fibered (n - 1)-manifolds
and fibered (n - 1)-manifolds Mo with an n-torus boundary T and without sin-
gular fibers. The corresponding Mo is the class space of {M}. The base Bo of
M’ is the base B ofM with an open disk removed. The characteristic of M’o is the
same as the characteristic of M. Any member of {M} may be obtained from Mo
by excision and completion.

Proof. Given M’ we may complete it to M0 and obtain a unique class
/M0}. Conversely, let M be any member of {M}. By excising all singular
fibers and completing with non-singular fiberswe obtain a manifoldM0 of M
Excise one non-singular fiber to obtainM which has the proper base and char-
acteristic. To show M’ is well defined, it suffices to show that if M1 in {M}
contains no singular fibers and we excise a non-singular fiber to obtain M’,
then M’ is fiber preserving homeomorphic to M0. Construction of this
homeomorphism follows the method of Seifert [8, p. 171-173]. Both M and
M are first viewed as P" Tn-l, where Pt is a polygon which becomes
B B’ by identifications on its edges, and corresponding identifications are
made on fibers over the edges of P. Conjecture (n 1) is then used to iso-
topically deform the identifications giving M to those giving M0. Details
may be found in [9, p. 131-135].

COROLLARY 5.2. Compact (n 1)-manifolds, fibered in the usual sense by
(n 1)-tori, with n4orus boundaries, are in a bijective correspondence with closed
surfaces B and equivalence classes of integral representations of H(B, bo) of degree
n-- 1.

COaOLLARV 5.3. (S int D) X T- is the class space of the unique class
of singularly fibered manifolds with base S.
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COROLLARY 5.4.
orientable.

Manifolds of a single class are either all orientable or all non-

There are only two classes of orientable 4-manifolds with base a sphere with
one crosscap. If , is a generator of III(B, b0), then ? ____. 0 and x(’) C I.
Since the manifolds are orientable, det C -1.
classes of x are represented by

C and C
-1

Then the two conjugate

In cases other than this one and the case B S, there are an infinite number
of non-conjugate x and hence an infinite number of distinct manifold classes.

Suppose M e {M01 has r _> 0 singular fibers {F} of types c}. To obtain M
from the class spaceMp, we first excise r non-singular fibers to obtain Mp with
r - 1 n-tori boundary components T-. For a proper choice of linear o. on
each Ts, the identification of the S parallel to the cot on all T. will produce M.
A necessary condition on the ot is [cot]. [F] ct where F is a fiber on Tt. To
obtain other necessary conditions on the o., we compute the fundamental
group of M.
Cut the base B’p on M’ into a polygon P" in such a way that the boundaries

J. p(T:) lie in the interior of P’. Let b be the vertex of the polygon and
let the edges beA, B, i 1,..., hifB is a sphere with h handles or
C, i 1, q if B is a sphere with q crosscaps. Let r., j 0, 1, r be
paths from b to a point of J.. Fix a coordinate system on Tn-I---
S S and consider these coordinates on each x T- of P X T-.
A choice of coordinates on each J gives planar coordinates on each
T J X T-1. Then M is obtained from PP’ T-1 by identifications

A X T- =- A- Tn-1 Tn-1 T"- i 1 hX and B X B-ix
or

C T"---- C X T"-, i 1,’",q.

On each T there is a linear simple closed curve cot with the property that if
T is fibered by one-spheres parallel to o., then shrinking these to points is
equivalent to replacing the original excised Ft. Note that it is necessary to
choose cot to correspond not only to the singularity type of F., but also to the
way in which Ft is embedded in M. Suppose the cot are specified by

w J. + w. 8 + + w8.

To compute III(M) we first find II(Pt X T"-1) and then II(M). Let Jt
also denote the path r-Jt r. in PPt. The product space P T"- has
II(P" Tn-) generated by J0, J1, Jr, 8, ..., S, with commuta-
tivity relations S J Jt S and S S 8 S. The identification forming
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M" from P" T-1 introduces new generators and relations. The new gener-
ators are A, B., i 1, h or C, i 1, q.

B-IA-1BA... B-IA-BIA J Jo or C C J J0

holds on B" hence also in M’. Translation in M’ of the fiber F over b along
the pathA induces an isomorphism x(A) Ht(F) - H(F) which we express
in terms of the basis S,..., S as x(A) ail. Let x(A)S denote
a S -+- + a S written multiplicatively. Then in translating F over
A, S F is taken into (A)S. Thus in M’ there is the relation

S A-(i(x(A)S)A or ASA-(= x(A)S.

Likewise we have the corresponding relations for the B (or C). Closing M’
f!to M creates no new generators, but each o. on T. gives the relation. S I where w Wl and the exponent of S is w.. Thus II(M)

can be given as follows.

THEOREM 5.5. Let M be a singular fibered manifold with base a sphere with h
handles (or q crosscaps) obtained from the class space with r fibers excised by
shrinking _

wJ -f- w2 S -4- -4- w
on T for j O, 1, r. Then III(M) is given by

Generators:
A, B, i 1, h

(or C i 1, q)

Ji, j- O,...,r

S, k= 2,...,n
Relations:

--1 --1B A B A... B-IA-BI A1 Jr"" Jo
(or Cq C1 Jr"" Jo)

Sk Jj Jj Sk

A Sk A x(A)S,

(or Ci Sk C-( x( Ci)S)

JS2".. S,, I

where w w and the exponent of S is w.

ColorAlY 5.6. II(B) is a quotient of II(M).

COROLLARY 5.7.

BS B7 x(B)S

for all i, j, k,

If II(M) is finite, B is the sphere or the projective plane.
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6. Classification in special cases

By making dditional assumptions on B and x, we may determine the
homeomorphism and fiber homeomorphism classes in certain cases.

THEOREM 6.1. Let M" with boundary T" and without singular fibers have an
orientable base and trivial characteristic. Suppose

w
__

Jo a.S + + a, S, and

on T". Then M(w) is fiber preserving homeomorphic to M(’) with the identity
induced on the base iff

gcd (a, a,) gcd (a, a,).

Proof. M(w) homeomorphic toM(w’) implies the first homology groups are
isomorphic. Computation of these groups using Theorem 5.5 with the com-
mutativity relations dded shows that gcd (a, a,) gcd (a., a,)
is a necessary condition. Conversely, suppose the gcd’s are equal to d. Let
a and a. be n X n unimodular integral matrices with

a I(a, "", a,) (0, 0,... O, d) [aj I(al ,"" a,).

Then bl a I- a is such that

b" ](al, a) (a, a)

Thus h M" -- M" defined by h(b t) b
fiber preserving homeomorphism with h(o) o’. Hence h induces a fiber
preserving homeomorphism M(o) -- M o’ ).

Consider all fibered M without singular fibers, with trivial characteristic
" B" Tand orientable base. Then each M) arises from M by shrink-

ing
o

___
J0 + a2 S -4- aa Sa

on the boundary. Let d god (a2, a) and suppose B is a sphere with h > 0
handles.

COROLLAI 6.2. The integers d and h are a complete system of topological
invariants for the spaces M If conjecture (n 1) is true, then d and h are a
complete system of topological invariants for the spacesM+ with orientable base,
trivial characteristic and no singular fibers.
Note that for n 2, this corollary gives Brody’s result [1, p. 164] for Seifert’s

manifolds (0, o; h P). A similar result, allowing one singular fiber, is given
by the following.

THEOREM 6.3. Let M" have base a sphere with two open disks removed and no
singular fibers. Suppose

cJ + b Si,wo,Jo+ aS, and w--.
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cl >_ 2 give two fiberings of the two boundary components of M". Then
M( oo, o1) is fiber preserving homeomorphic to M(ooo, o) iff the matrices

(la) (a)a 1
A and A’

c b b,, c b

are equivalent, i.e., there exist unimodular matrices X and Y so that XAY A’.
Proof. Using Theorem 5.5 we see that H(M(oo o)) can be given by

generators As, B, J0, and Si with i 1, h, j 2, n, and the rela-
tions J0 -t- a. S. 0, -cJo + b S O. Fox [3, Theorem 3.6] shows
the torsion coefficients ofH(M(o0, ) are the invariant factors of the matrix
A. Hence the two matrices must have the same invariant factors and thus
are equivalent. To prove the converse, first note that A and A’ are equivalent
iff there exists an n n unimodular matrix Z with integer entries and first
column (1, 0, 0)t such that AZ A’. See [9, p. 154-157] for the con-
struction of Z. The base B" is an annulus which we coordinatize by (p,al),
1 _< p _< 2,0 _< al < 2r, with (1, a)eJ0, (2, a)eJ. Then we define
h M" -- M by

Th(p, al, a,,) (p,Z’(a a,,)’), for (as," ,a,)e

Fibers are preserved since Z has first row 1, 0, 0). Computation shows
h(o0) oo and h() 1. Thus h induces a fiber preserving borneo-
morphism M w0, o) --+ M wo, ).

This theorem is an extension to higher dimensions of Brody’s theorem [1,
Theorem 3.1] for the case h 0.
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