CONTINUOUS SPECTRA OF AN EVEN ORDER DIFFERENTIAL
OPERATOR

BY
Do~ HinTON

We consider here a differential operator [ of order 2» defined by
(1) Wy) = (Hw){(—1)"(ry™)*™ — qu}.

The coefficients w, r, and ¢ are real continuous functions defined on a ray
[a, ©) and w and r are positive. Associated with [ is the Hilbert space H of
all complex-valued, measurable functions f satisfying

f w|f’de < .
We recall that ! determines a certain minimal closed operator Lo in H in the
following way. Let © be the set of all y ¢ H such that (i) y, o/, -+, y"™,
(ry™), -+, (ry™)™™ are absolutely continuous on compact subintervals of
[a, ©) and (ii) I(y) e H. Define Dy as the set of all y € D which have compact
support interior to (a, » ), and let L and Lo be the restrictions of ! to D and
Dy, respectively. Then Lo is a densely defined symmetric operator in H;
hence admits a closure L, with domain D,. As in [8, Section 17], it may be
shown that Ly = L.

Since each of the equations I(y) = =1y has at most 2n linearly independent
solutions in H, the theory of symmetric operators [8, Section 14] yields that
the dimension of » modulo D is finite. Furthermore, if T is a symmetric
extension of Ly, then the continuous spectrum C(T') of T is equal to C(Ly).
Thus the continuous spectrum of all self-adjoint operators generated by [ in
H is C(Ly). In this paper we give conditions for C'(Ly) to be (— o, =) or
[0, »).

Our basic tool for determining C(L,) will be to use a theorem from the theory
of symmetric operators. For each complex number N we define n, to be the
dimension of the orthogonal complement (in H) of the range of Ly, — Al,
where I denotes the identity transformation. Since Ly = L, an alternate
calculation of n, is

(2) m = dim {y | Ly = Ny}.

As in [8, Sections 14, 17] where w = 1, it may be shown that n, is actually the
same for all non-real A and that n, > n when im A £ 0. The cases A = X1
are called the deficiency indices of L,. Furthermore, L, can have no eigen-
values since all of y, 3/, -+, ¥, (ry'™), -+ (ry™ )™ have value 0 at @
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for all y e ®y. The result of symmetric operators [8, pp. 42-43] we apply is:
If for some real N\, my < n, then \ is in the continuous spectrum of L.

The approach used for showing n, < n will be to apply the asymptotic
theory given in [5]. By contrast, constructive methods have recently been
applied in the case n = 1 and C(Ly) = (—», «) [2], [7]. These construc-
tive methods use directly the definition of continuous spectrum, but they
appear cumbersome for higher order equations. A different approach using
asymptotic methods for finding C(L,) is given in [8, p. 229]; however, a weight
function is not present, and greater monotonicity is required of the coefficients
r and ¢ than we require here. We note also that M. V. Fedorjuk has developed
asymptotic formulae in [3] for solutions of the (n + 1)-term even order equa-
tion

2oi=0 (= 1) (Par(z)y™)® = 0.

When these results are applied to the 2-term equation (1) with w = 1, the
conditions on the coefficients are very similar to those required in [5]. How-
ever, in applying his asymptotic theory to yield conditions for

C(Loy) = (—, »)
[3, Th. 5.3], Fedorjuk requires the coefficient 7 in (1) to satisfy r(z) — 1 as
x — o ; again the effect of a weight function is not considered.
Some comprehensive asymptotic formulae for the fourth order equation
(") — oyl +qy = oy

have recently been given by P. W. Walker [9], [10]. It is likely that these
formulae give extensions of Theorems 1 and 2 below for the case n = 2. The
even order equation studied by Fedorjuk has also been investigated by A.
Devinatz in [1] where asymptotic solutions are given. These solutions may
too yield extensions of the results here.

Lemma 1. Suppose f is a continuously differentiable positive function on
la, ) such that f'(t)/f’(t) > 0ast— . Ife> 0and K > 0, then there is
a number B such that if t and s are >B and |t — s| < K/f(s), then

[f®f(s) — 1] <&
This is a special case of Lemma 2 of [6].

Lemma 2. If f is as on Lemma 1 except that f'(t)/f*(t) = 0(1) ast — oo,
then [3fdt = .

Proof. Let M > 0 and & be such that f'(¢)/f*(t) > —M fort > t. An
integration then yields

1/f(to) — 1/f(8) 2 —M(t — b),
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and hence
76 = 1/ (Mt = t) + (k)
which implies [§ fdt = «.

TuaeoreM 1. Suppose in (1) that r, q, and w are positive and twice continu-
ously differentiable, and the following conditions hold.

(i) w/g—0ast— =,

() (g/m)™"(g/w)(| g | /g + |7 |/r 4 |w]|/w) = 0(1) ast — .

i) f7 (/07" /)" + W/t + @)+ 1+ e+
|w”/q|1dt < =.
Then C(Ly) = (— o, ). Moreover, for n = 1 and \ real, ny, = 0; hence
every self-adjoint extension of Lo has a purely continuous spectrum.

Proof. Let \ be a real number. By (2), m is the number of linearly in-
dependent solutions y in H of I(y) = \y. Let @ = ¢ + Mw; then I(y) =
can be written as

(3) (ry(n))(n) + (_l)n—le =0

By (i), Q is eventually positive, say on [b, ), and Theorem 1 of [5] is applica-
ble if r and Q satisfy [ (Q/r)'*" dt = « and each of

Q)™ /Y, QM /QY,  LQ/)T (/)
1(Q/n™™(Q/Q)"
isin £(b, «).
For f; = (¢/r)"*", it follows that

fi/ft = (1/2n) (¢/r) 7" (¢ /q — 7'/7)
which by (i) and (ii) tends to 0 as ¢ tends to infinity; hence Lemma 2 gives

j:o (q/r)IIZn dt = .

Since (g/r)'*" = (Q/r)"™[1 + o(1)], we have [3 (Q/r)*dt = . We
also have

@Q/m™™@Q/Q)" = (g/r)™"™(¢'/q + M'/¢)"[L + o(1)],
(Q/r)™(r'/1)* = (¢/r) (/7)1 + o(1)],

(R EONEE
OO L)
an

()¢l

and
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- (9™ {%w_ 1+ o] - (L2 Y 11 4 o}

r

)L o)

Application of (iii) now yields that the left hand side of each of the above
equations is in £(b, «); hence Theorem 1 of [5] applies to yield solutions
Yr (v =1, --+,2n) of (3) satisfying as t — «,

4) 50 = {Q(t)“‘“’“"r(t ~4" exp [x, f,, t Q/r "“"]} {1+ 0(1)}

where

A = exp [wi(7 — 1)/n], 7 even.
= exp [ri(2r — 1)/2n], nodd.

Note that in either case, =7 are two such A,.
For f; = (w/Q)(Q/r)"™", we have

f/fs = (Q/w)(Q/r) ™" "w'/w — Q'/Q + (1/2n)(Q'/Q — v'/r)]
which by (i) and (ii) is O(1) as ¢t — « ; hence by Lemma 2,

(5) [ wo@m™a ==
From (4), we have for Re A\, > 0,

wlyr P > (w/Q)(Q/m[1 + o(1)];

hence (5) implies that [“w|yr|[°dt = o« if Re\ > 0. Since the set
{y- | Re A\, = 0} consists of n -+ 1 linearly independent solutions of I(y) = My,
we will have shown n, < n — 1, and thus N\ € C(Ly), if we show that no linear
combination of the y. (Re \, > 0) is in H.

Let 21 and 2, be the two solutions (4) where ), is ¢ and —< respectively. We
first prove no linear combination ¢; 21 4+ c22; is in H. Since 2, and 2, are not
in H, it is sufficient to suppose ¢; # 0 and ¢, % 0. Writing

z2=ocz+ 6z =zl + c(z/2)]; ¢ = a/c,
and noting that | z1/2; | — 1 as ¢t — o, we have that | ¢| > 1 implies z ¢ H.
Considernow | ¢| = 1,sayc = —¢"* (0 < 6 < x). Since [3 (Q/r)'*" = =,
we can choose increasing sequences {¢,} and {s,} (n > 1) so that
t
[ @™ =wn+0—x1 t=t
b
=man+0+7/4 t=s..
Then for s, <t < g,

3r/2 > 2 [j: (Q/r)'* — 0] > x/2 (mod 27)
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and

1+ /a0 = |1 =1+ ol e 0 + [ @0 ]

>1

for all sufficiently large n. Thus z ¢ H if

@ 5[ wlare - E [ @@ +owla -

As shown above, fi = (g/r)"*" satisfies f1/fi — 0 as t — «. Applying
Lemma 1 and (Q/7)'*" = (¢/7)'*"[1 + o(1)] yields a B such that if s,¢ > B
and |t — s| < 20 (Q(s)/r(s))™*", then

(7) L Q) /r()I"™Q(s) /r()T™ — 1] < 1/4.

Define A, = (Q(s,)/7(8:))™*". Now for t, > B, tas1 — 8» < 10 A, since
otherwise (7) gives

T/2 = j:tn

n

Mamm e [T @™ 2 (108, (/a8 = 1572

which is a contradiction. Similarly, s, — ¢, < 104, for ¢, 2> B.

The function f» = (w/Q)(Q/r)"*" satisfies, as shown above, fs = O0(f3);
let M be a bound for | f22° | on [b, ©). By (i) thereis a B’ > B such that
w(t)/Q(t) < 1/100M fort > B'.

Fort, > B’, consider f> on [t,, ta+a]. Let the maximum and minimum values
of f; occur at ¢ and ¢” respectively. Then

1WA = 11 = | [ f0/mE) a

< [ Mg /m) a
(8) < M(208)5(8)
= M (AIQU)/r ™) (wl) /)
< 20M(5/4)(1/100M)
- 1/4

where the last inequality uses (7).
Also by (7), it follows that

fnt1 1/2n
L@ < 5/4) (o — 58T _ 5ltwss — 50)

T B ft”-H (Q/r)ll% - (3/4)(tn+1 - tn)A;;l h 3(t"+1 - t") )

tn

(9)

NI =
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Finally, from (8) and (9) we conclude that

tatt 1/2n
[ wmerm ) s — )

[ /@y KOG =8

in

> (3/4)(3/10) > 0.

From this last inequality, (6), and f°°‘ fodt = o we have z ¢ H. This con-
cludes proving no linear combination of 2; and 2; is in H.

Consider a general linear combination 2 = D rea,» ¢, 9. Now either there
is a unique 7 = 7 so that Re \,, ¢, & 0, is a maximum or there are exactly
two such 7’s. In the former case the asymptotic behavior (4) yields
2/Yrg — €, @88t — oo ; thus z ¢ H. In the latter case the two such \’s are
complex conjugates and the argument used above for 2; and 2, is applicable.
The proof is now complete.

The moreover part of the theorem follows by the observation that if n = 1,
then we have shown ny = 0.

As an example consider when the coefficients are powers of t. For r(¢) = %,
q(t) = ¥, and w(t) = ¢, the conditions of Theorem 1 are simply 8 > §,
146284+ (a—8)/2n,anda—B8<2n. Fora=08=0andn = 1, we
obtain the familiar result: 0 < 8 < 2 implies C(Ly) = (—», »).

TaEOREM 2. Suppose in (1) that r > 0, w > 0, r, ¢, and w are twice con-
tinuously differentiable, and the following conditions hold.

(i) ¢/w—0ast— .
Gi)  (w/»)7(|w' | jw+ |7 |/r) > 0ast— .
(i) 3w/ /w) + (W/w) A+ (/) e+ 1w+
|w” | /wldt < o.

Then C(Le) = [0, ©). Moreover, for n = 1, the spectrum (0, ») s purely
continuous for every self-adjoint extension of Ly.

Proof. For N > 0, we can proceed as in the proof of Theorem 1 to show
n < n — 1. In this case

Q=gq+ M =M1+ o(1)],

and condition (ii) is used to show f = (w/r)"*" satisfies f'/f* = 0 as t — o.
In this case the functions corresponding to f; and f; coincide with f = (w/r)"*".
We omit the details, but arguments similar to those above show
0, ©) < C(Ly).

Since C(L,) is closed, the proof of Theorem 2 is complete if we
show (— o, —g) n C(Ly) = B foreache > 0. To establish this 1t is sufficient
to prove that for each £ > 0 there exists an N > a such that Ly is bounded
below by —e when restricted to those y e D, with support in [N, ) (for
w = 1, see [4, p. 34]). Since g/w — 0 as t — «, we need only choose N so that
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lg(¢)/w(t) | < efort > N. Then if y ¢ Do has support [¢, d] in [N, ), we
have by integrating by parts that

d , d
fc w(Loy)y dt = f [(=1)"(ry™)™ — gyly dt
= f ’ r(y™)* — gl dt
> fd w(—g/w)y* dt

d
> —ef wy® dt;
[

hence the lower bound for Lo is established.
As an example, for 7(¢) = t%, ¢(¢t) = &, and w(¢) = £, the conditions of
Theorem 2 are § > B8 and (a — 8)/2n < 1.
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