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We consider here a differential operator of order 2n defined by

(1) l(y) (1/w){(--1)(ry(")) () qy}.

The coefficients w, r, and q are real continuous functions defined on a ray
[a, and w and r are positive. Associated with is the Hilbert space H of
all complex-valued, measurable functions f satisfying

f.o wJ/I dx <

We recall that determines a certain minimal closed operator L0 in H in the
following way. Let g be the set of all y e H such that (i) y, y’, ...,
(ry(,)),, ", (ry()) (,-1) are absolutely continuous on compact subintervals of
[a, o ) and (ii) l(y) e H. Define 0 as the set of all y e g which have compact
support interior to (a, o ), and let L and L be the restrictions of to g and
), respectively. Then L is a densely defined Symmetric operator in H;
hence admits a closure L0 with domain 0. As in [8, Section 17], it may be
shown that L L.

Since each of the equations l(y) -4-iy has at most 2n linearly independent
solutions in H, the theory of symmetric operators [8, Section 14] yields that
the dimension of ) modulo 0 is finite. Furthermore, if T is a symmetric
extension of L0, then the continuous spectrum C(T) of T is equal to C(Lo).
Thus the continuous spectrum of all self-adjoint operators generated by in
H is C(Lo). In this paper we give conditions for C(L) to be (- o, o or
[o,
Our basic tool for determining C(L0) will be to use a theorem from the theory

of symmetric operators. For each complex number ), we define nx to be the
dimension of the orthogonal complement (in H) of the range of L0 hi,
where I denotes the identity transformation. Since L0* L, an alternate
calculation of nx is

(2) n dim y Ly 7y}

As in [8, Sections 14, 17] where w 1, it may be shown that n is actually the
same for all non-real ), and that nx

_
n when im h 0. The cases h =t=i

are called the deficiency indices of L0. Furthermore, L0 can have no eigen-
values since all of y, y’, ..., y(,,-1), (ry(,,)), (ry(.))(.-1) have value 0 at a
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for all y )0. The result of symmetric operators [8, pp. 42-43] we apply is’
Iffor some real , nx < n, then is in the continuous spectrum of Lo.
The approach used for showing nx < n will be to apply the asymptotic

theory given in [5]. By contrast, constructive methods have recently been
applied in the case n 1 and C(Lo) (-, [2], [7]. These construc-
tive methods use directly the definition of continuous spectrum, but they
appear cumbersome for higher order equations. A different approach using
asymptotic methods for finding C(Lo) is given in [8, p. 229]; however, a weight
function is not present, and greater monotonicity is required of the coefficients
r and q than we require here. We note also that M. V. Fedorjuk has developed
asymptotic formulae in [3] for solutions of the (n 1)-term even order equa-
tion

--o (-1)(P,-k(x)y()) () O.

When these results are applied to the 2-term equation (1) with w 1, the
conditions on the coefficients are very similar to those required in [5]. How-
ever, in applying his asymptotic theory to yield conditions for

C(Lo) (-o,

[3, Th. 5.3], Fedorjuk requires the coefficient r in (1) to satisfy r(x) -- 1 as
x --, oo; again the effect of a weight function is not considered.
Some comprehensive asymptotic formulae for the fourth order equation

[(ry")’ py’]’ -- qy

have recently been given by P. W. Walker [9], [10]. It is likely that these
formulae give extensions of Theorems 1 and 2 below for the case n 2. The
even order equation studied by Fedorjuk has also been investigated by A.
Devinat in [1] where asymptotic solutions are given. These solutions may
too yield extensions of the results here.

LEmVIA 1. Suppose f is a continuously differentiable positive function on
[a, ) such that f’(t)/f(t) 0 as -o . If e > 0 and K > O, then there is
a number B such that if and s are >_B and s - K/f(s), then

f(t)f-(s) 11<
This is a special case of Lemma 2 of [6].

LEMMA 2. If f is as in iemma 1 except that f(t)/f(t)

Proof. Let M > 0 and to be such that f(t)/f(t)
_
-M for

_
to. An

integration then yields

1If(to) 1If(t) >_ -M(t- to),
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and hence
f(t) > 1/(M’(t- to) q-

whieh implies f dt .
TttEOREM 1. Suppose in (1) that r, q, and w are positive and twice continu-

ously differentiable, and the following conditions hold.
(i) w/q ----) 0 as --.
(ii) (q/r)-l/2’(q/w)( q’[/q -I- r’[/r q- w’[/w) 0(1) as t-- .
(iii) f (q/r)-I/"[(q’/q) + (w’/q) q- (r’/r) q- ir"/r + q"/q q-

Iw"/qildt < .
Then C(Lo) (-o, o). Moreover, for n 1 and h real, nx 0; hence
every self-adjoint extension of Lo has a purely continuous spectrum.

Proof. Let be a real number. By (2), nx is the number of linearly in-
dependent solutions y in H of l(y) y. Let Q q q- hw; then l(y.) Xy
can be written as

(3) (ry()) () q- (-1)-XQy 0

By (i), Q is eventually positive, say on [b, . ), and Theorem 1 of [5] is applica-
ble if r and Q satisfy (Q/r)TM dt and each of

[(Q/r)-/"r’/r]’, [(Q/r)-n"Q’/Q]’, [(Q/r)-I/2"(r’/r)2],
and

[(Q/r)-/2,’ Q’/Q 21
is in 2(b, o ).

For f (q/r)TM, it follows that

f’/f (1/2n) (q/r)-m"(q’/q r’/r)

which by (i) and (ii) tends to 0 as tends to infinity; hence Lemma 2 gives

f (q/r)’ dt

Since (q/r)/2’ (Q/r)l/2’[1 -I- o(1)], we have f (Qlr)TM dt . We
also have

(Q/r)-/2"(Q’/Q) (q/r)-X/2"(q’/q -q- xw’/q)2[1 -q- o(1)],

(Q/r)-/"(r’/r)2= (q/r)-I/2"(r’/r)2[1 q-o(1)],

+
q’

i1 + o(1)] I1 + o(1)]
q r

and



CONTINUOUS SPECTRA OF A DIFFERENTIAL OPERATOR 44

[+o(1)]- a’
a

[1 -t- o(1)1 r’ [1 -t- o(1)1
Application of (iii) now yields that the left hand side of each of the above
equations is in (b, ); hence Theorem 1 of [5] applies to yield solutions
y, (r 1, ..., 2n) of (3) satisfying as --, ,

y,(t) fQ(0 (1-2)/4r(0-114n(4)

where

exp X, (Q/r)TM 11 + o(1)1

X, exp [ri(r i)/n],

exp [ui(2r 1)/2n],

Note that in either case, 4-i are two such X.
For f (w/Q) (Q/r) 1/’, we have

n even.

n odd.

A/f’ (Q/w)(Q/r)-mn[w’/w Q’/Q -t- (1/2n)(Q’/Q

which by (i) and (ii) is 0(1) as --. ;hence by Lemma 2,

(5) (w/Q)(Q/r)’ dt .
From (4), we have for Re , >_ 0,

w yr >_ (w/Q)(Q/r)"[1 + o(1)];

hence (5) implies that f*wlyr 12dr if ReX, >_ 0. Since the set
{Y, Re X, >_ 0} consists of n + 1 linearly independent solutions of l(y) y,
we will have shown nx _< n 1, and thus X e C(L0), if we show that no linear
combination of the y, (Re >_ 0) is in H.

Let z and z2 be the two solutions (4) where , is i and -i respectively. We
first prove no linear combination c z c2 z. is in H. Since z and z2 are not
in H, it is sufficient to suppose c 0 and ce 0. Writing

z c z + cz. c.z[1 + c(z/z)]; C Cl/C2

and noting that z#z. --* 1 as --, , we have that c 1 implies z H.
Considernow c 1, say c -e- (0 _< 0 < r). Since
we can choose increasing sequences Its} and {s} (n >_ 1) so that

)l/2nQ/r rn -F 0 r/4

rn+O+r/4, s,.
Then for s +,

3/2 2 (Q/r)nE- 0 /2 (mod 2)
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and

I ]i / cz,(O/,(OI [ / o()] exp 2i --# q- (Q/r)TM > 1

for all sufficiently large n. Thus z H if

(6) 2 wlz, dt _. (w/Q)(Q/r)/"[1 q- o(1)l dt oo

As shown above, f (q/r)TM satisfies f’X/fl -- 0 oo. Applying
Lemma 1 and (Q/r)" (q/r)n’[1 q- o(1) yields a B such that if s, >_ B
and s -< 20 (Q(s)/r(s) )-n., then

(7) i[Q()/r()]""[Q(s)/r(s)]-’ 11 < 1/4.

Define An (Q(sn)/r(s.))-/’. Now for >_ B, t+l s < 10 A. since
otherwise (7) gives

r/2 (Q/r)+"> ( >_ (oa.)(a/4aT’) 5/2.
8/t 8

w(t)/Q(t) < 1/100M for B’.
For ,, B’, considerf on It., t.+]. Let the mimum and imumvalues

of f occur at t’ and t" respectively. Then

(8)

If(t")/$,.(t’) 11 f(t)/f,.(t’) dt

n+

< Mf(t)/fi(t’) dt

<_ M(2Oa,,)f(t’)
20M(a,,[Q(t’)/r(t’)]/’)(w(t’)/Q(t’))

< 20M(5/4)(1/100M)

i/4

where the last inequality uses (7).
Also by (7), it follows that

f,.+l (Q/r)TM
1 (r/2) -,. (5/4)(t.+x- s.)h 5(t.+1-

f+ (Q/r)/2 (3/4)(t,,+1-2 ?r
(9) 3(t+t- t)
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Finally, from (8) and (9) we conclude that

f,,n+, (w/Q)(Q/r)l.
> fi(t")(t+l- s) > (3/4)(3/10) > 0.
f()(+- t)

(w/Q)(

From ts last inequality, (6), and ff dt we have z H. Ts con-
cludes proving no lear combation of z and z is in H.

Consider a general linear combination z a, x,0 c, y,. Now either there
is a uque 0 so that Re , c 0, is a maximum or there are exactly
two such r’s. In the former case the asymptotic behavior (4) yields
z/yo c, ; thus z H. In the latter case the two such ’s are
complex conjugates and the arment used above for z and z is applicable.
The proof is now complete.
The moreover part of the theorem follows by the observation that if n 1,

then we have shown n 0.
As an example consider when the coefficients are powers of t. For r(t) ,

q(t) , and w(t) , the conditio of Theorem 1 are simply > ,
1W + (a-)/2n, anda- < 2n. Fora= 0andn 1, we
obtain the familiar result: 0 < 2 implies C(L0) (- , ).

THEOREM 2. Suppose in (1) that r > 0, w > 0, r, q, and w are twice con-
tinuously differentiable, and the following conditions hold.

(i) q/w -- 0 as --, .
(ii) (w/r)-’( w’l/w -4- r’ /r) --* 0 as
(iii) . (w/r)-"[(q’/w) "4- (w’/w) -I- (r’/r) -t- r" /r A- q"l/w +

]w" I/wldt < .
Then C(Lo) [0, o ). Moreover, for n 1, the spectrum (0, oo is purely
continuous for every self.adjoint extension of Lo.

Proof. For X > 0, we can proceed as in the proof of Theorem 1 to show
n g n-- 1. In this case

Q q + hw hw[1 + o(1)],

and condition (ii) is used to show f (w/r) satisfies f’/f
In this case the functions corresponding to fl and f. coincide withf (w/r)’.
We omit the details, but arguments similar to those above show
(0, ) c C(io).

Since C(Lo) is closed, the proof of Theorem 2 is complete if we
show , -) n C(L0) t} for each > 0. To establish this it is sufficient
to prove that for each > 0 there exists an N > a such that L is bounded
below by - when restricted to those y e )0 with support in IN, oo (for
w 1, see [4, p. 34]). Since q/w ---. 0 as --. , we need only choose N so that
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]q(t)/w(t) - for >_ N. Then if y e )0 has support [c, d] in IN, ), we
have by integrating by parts that

f f )’(ryw(Lo y)y dt [(-1 qy]y dt

f [r(y(’)) qy] dt

hence the lower bound for L, is established.
As an example, for r() ", q() 0, and w() , ghe conditions of

Theorem 2 are > and ( )/2n < 1.
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