MEASURES WHOSE POISSON INTEGRALS ARE PLURIHARMONIC

BY
Frank FoORELLI

1. Introduction

1.1 Let V be a vector space over C of complex dimension n with an inner
product. If z and y are in V, then we will denote by (z, y) the inner product
of x and y. We will denote by B the class of all z in V such that (z, ) < 1,
by B the class of all z in V such that (z, ) < 1, and by S the class of all z
in V such that (x, ) = 1. We recall that the Poisson kernel of B is the func-
tion 8 : B X B — (0, ») defined by

Bz, y) = [(1 — (¥, ¥))/(L — {z, y)) (1 — {y, 2))]".

With regard to why 8 is called the Poisson kernel of B we refer to Proposition
2.4. (We remark that 8 is the Poisson kernel with respect to the Bergman
metric on B and not the Euclidean metric.) If Y is a locally compact Haus-
dorff space, then we will denote by M..(Y) the class of all Radon measures on
Y. Thusif peM, (Y) and E C Y, then u(E) > 0. We will denote by
M(Y, R) the real linear span of those p in M, (Y) for which u(Y) < « and
we will denote by M (Y, C) the complex linear span of those u in M .(Y) for
which u(Y) < . (Thus if Y is compact, then M (Y, C) is the complex
linear span of M.(Y).) We recall that if X and Y are sets, if f is a function
defined on the Cartesian product X X Y, and if (s, t) e X X Y, then f, and
f' are the functions defined on Y and X respectively by f.(y) = f(s, y) and
fi(z) = f(z,t). If weM(S,C), then we define u* : B— C by

w(y) = f 8’ du.
Thus x* ¢ C*°(B).
The purpose of this paper is to prove the theorems that follow (1.3, 1.5, 1.7,

1.13, 1.15, 1.17). 'These theorems with one exception (Theorem 1.5) are on
measures whose Poisson integrals are pluriharmonic.

1.2. Ifu e M(S,C), then we will denote by spt (u) the support of u.

1.3. THEOREM. Ifn > 2, if ue M(S, C), if u* is pluriharmonic, and if
u #= 0, then spt (u) = 8.

1.4. If Z is a topological space and if Y C Z, then we will denote (as is
usual) by Y?° the interior of ¥. Furthermore we will denote (as is usual) by
C(Z) the class of all continuous functions f : Z— C. We will denote by 4(B)
the class of all functions in C(B) that are holomorphic on B. We will denote
(as is usual) by T the class of all z in C such that 22 = 1.
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1.5. THEOREM. Letfand g be in A(B) and let
Y=Az:ze8 |f(x) | =]g(=) [}
If Y’ = Gand if n > 2, then f = cg where ¢ e T.

1.6. We will denote by ¢ the Radon measure on S which assigns to each
open subset of S its Euclidean volume (for the purpose of defining ¢ we regard
S as the Euclidean sphere of real dimension 2n — 1).

1.7. Trrorem. If peM(S, C), if u* is pluriharmonic, if E < S, and
if 2zE = E for every z in T, then
a(S)u(E) = u(8)a(E).

1.8. If k is a positive integer, then we will denote by H the class of all
members of the polynomial ring C[x : x ¢ V*] that are homogeneous of degree
k.

1.9. ComroLLarRY. If n > 2, if we M(S, C), if u* is pluriharmonic, if
feUimi Hy, if f % 0, and if t € [0, ), then

plz:zel, |f(z)| =4) =0.

1.10. If @ €[0, »), then we will denote by H* the Hausdorff measure on
S of dimension a.

1.11. CoroLrLARY. If ueM(S,C), if u* is pluriharmonic, if E C S, and
if H"*(E) = 0, then

uw(U,er2E) = 0.

1.12. Let W be a linear subspace of V of complex dimension m and let P
be the orthogonal projection of V onto W. We will denote by U(V) the
class of all unitary transformations of V. We remark that if z ¢ T, then
P+ 2(I — P)eU(V).

1.13. TuEorEM. Let m < n — 1, let e M(S, C), and let u* be pluri-
harmonic. If we define f: S — W — C by f(x) = u*(Pz), then feL'(c).
If E C 8, if E is ¢ measurable, and if (P 4+ 2(I — P))E = E for every z in
T, then

1
M(E) = QT(‘S—)fnfda.

IfueM (8),ifu*0,andsfxeS — W, then f(x) > 0.
1.14. We remark that if m = 0, then by Theorem 1.7 Theorem 1.13 holds.

1.15. TuporeM. Ifn > 2 if ueM(S8,C),if u* is pluriharmonic, if x € V,
andifm <n— 1,then|u|((x+W)nS8) =0.

1.16. Let 7 be a skew-Hermitian transformation of V. Thus ¢r is Hermi-
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tian. We recall that if ¢ eR, then e ¢ U(V). Furthermore let ir < 0.
We will denote by H the class of all z in C such that Im (z) > 0 and we will
denote by H™ the class of all z in C such that Im (2) > 0. Thus if z e H™
and if 2 € S, then ¢z ¢ B. Furthermore if z ¢ H and if 72 5 0, then ¢’z ¢ B.

1.17. TuegoreMm. Let v 5 0, let N be the null space of 7, let z eH,
let ue M(S, C), and let u* be pluriharmonic. If we definef: S — N — C by
f(z) = u¥(e7z),thenf e L (). IfE < 8,if E is o measurable, and if ¢"E = E
for every t in R, then

W(B) = ;(%) [ 1da.

Ifue M (8),ifus=0,andifx e S — N, thenf(z) > 0.

1.18. CoroLLARY. If 7 # 0, if we M(S8, C), if u* is pluriharmonic, if
E c 8,if ¢"E = E for every t in R, and if ¢(E) = 0, then u(E) = 0.

1.19. We will denote by G(B) the class of all holomorphic homeomorphisms
of B. With regard to G(B) we refer to Section 2.1.

1.20. CoroLLARY. Let Z e G(B), let v £ 0, let N be the null space of T,
letzeH, let ue M(8,C), and let u* be pluriharmonic. If we define

f:8—ZWNnS8)—C

by f(@) = w*((Zoe 0o Z7')(x)), thenfeL'(c). IfveZ(NnB),if EC S,
if E is ¢ measurable, if E is | u | measurable, and if (Z o €' o ZE = E for
every t in R, then

(1.1) LB” du = 0—(%—)-1;]"6” do.

IfueMy(S),if u#0,andif v e S — Z(N n 8), then f(x) > 0.
1.21. CoroLLARY. Let Z e G(B),let v # 0,let E C S, let
(Zoe o Z)E = E
for every t in R, let w e M (8), and let u* be pluriharmonic. If o(E) = 0, then
w(B) =0. Ifus=0and u(E) = 0, thens(E) = 0.

1.22. We will denote by H(B) the class of all holomorphic functions on B.
We recall the following fact of the theory of functions on B.

1.23. Proposirion. (a) If f e H(B) and Re (f) > 0, then Re (f) = u*
where weM(S). (b) If weM(S, R) and u* is pluriharmonic, then
u* = Re (f) where f e H(B).

1.24. It is because of Proposition 1.23 that theorems such as 1.3, 1.7, 1.13,
1.15, and 1.17 are of interest. If the hypotheses of Theorem 1.3 hold, then
we do not know if either (du/de) do 5% du or (do/dp) du 5 do can hold.
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2. The Poisson kernel of B
2.1. We will regard SL(2, R) as the class of all 2 X 2 matrices M of the

form
ab
M= (5 d)

where @ and b are in C and a@ — bb = 1. We define
v:8SL(2,R) X SX B— B
by

afy,z) +b 1
b +a° T by +a ¥ W ek)

and we define 6 : U(V) X SL(2,R) X S X B— Bby
8(t, M, z, y) = tly(M, z, y)] = v(M, t(x), t(y)).

With regard to the definition of ¥ we remark that if z ¢ S and y ¢ V, then
y — (y, )z is the orthogonal projection of y into V © Cz. Furthermore we
remark that 8.,x,- € G(B) for every triple (¢, M,z) in U(V) X SL(2,R) X 8.
We recall the following fact of the theory of functions on B.

‘Y(M) Z, y) =

2.2 PropositioN. If Z ¢ G(B), then there is a triple (t, M, x) in

U(V) X SL(2,R) X 8
such that
Z(y) = 6(t) M: z, y)
for all y in B.

2.3. If Y is a topological space, then we will denote by F,.(Y) the class of
all Borel functions f: Y — [0, ). The following proposition (which is
well known) follows from Proposition 2.2,

2.4. PropositioN. If (Z,f) e G(B) X F(S), then

ffoz do = [fﬁz“’)da.

(Proposition 2.4 may be proved by means of the following identity which
serves to define ¢. If z ¢ S, if
T={y:yeV,Rey,z) =0},
andif t : T — S — {—a} is defined by
W(y) = [(4y + 22)/(Ky, v) + 1)] — =,
then

[1ae = [ s sy, ) + 0P d)
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2.6. The following proposition follows from Proposition 2.4.
2.6. PropositioN. Ify e B, then o*(y) = o(8).
2.7. If f ¢ C(8), then we define f¥ : B — C by

1 "
f*(y)= ;@fﬂ Jdo.

We will denote (as is usual) by D the class of all z in C such that 22 < 1 and
by D~ the class of all z in C such that 22 < 1. We recall the following facts
(2.8, 2.9, 2.10) of the theory of Poisson integrals.

2.8. ProposiTioN. If feC(S) and if g: B — C 4s defined by g | B = f*
and g| S = f, then g ¢ C(B).

2.9. ProrosiTioN. IfueM(8,C),iffeC(8), and if z ¢ D, then

[ auta) = i [ 10) ) aoto.
2.10. ProposimioN. If ueM(S,C) and z ¢ D, then

[1u#z) | dotz) < o(8) |0l (S).

2.11. The following proposition follows from Proposition 2.8 and Proposi-
tion 2.9.

2.12. ProposiTioN. Ifue M(S,C) andif p* = 0, then p = 0.

3. The proofs of Theorems 1.3 and 1.5

3.1. We will denote by A the class of all pairs (z, ) in V X V such that
(z,y) =0andz + yeS. IfxeV andr > 0, then we will denote by B(z, r)
the class of all y in V such that |y — z | < r (where |2 | = V/(z, z)).

3.2. LeEmMA. LetveSandletre(0,1). If (x,y) A, ifx e B(v, r), and
if 2z e D7, then x + 2y ¢ B(v, 34/7).

Proof. We have
Wy =1—(z)=~0A+|z|)1A—|=z]|)

<21 —laf)=2(|v|=lz|) < 2]v—2| < 2n
hence
le+zy —v| < |z—v|+]|2y| <r+ V(2r) <3vr

3.3. We will now prove Theorem 1.3. Let G be an open subset of S, let
v e @G, and let r in (0, 1) be such that B(v, 34/r) n 8 C G. Furthermore let
zeB(v, r) n B. Since n > 2, there is a y in V such that (z, y) eA. If
z €T, then (by Lemma 3.2) 2 4+ 2y ¢ G.

If | u| (@) = 0 and if we define u* on G by p*(w) = 0 (w € G), then it
follows from the definition of 8 that u* e C(B u G). We define f: D™ — C
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by f(z) = u*(x + 2y). It follows that f ¢ C(D™), that f is harmonic on D,
and that f = 0 on T. Hence f(0) = 0, that is to say u*(z) = 0. Thus
u* = 0on B(v,7) n B. It follows by Proposition 1.23 or by the fact that u*
is analytic that u* = 0. Thus 4 = 0 by Proposition 2.12. This completes
the proof of Theorem 1.3.

3.4. We will denote by A(D) the class of all functions in C(D™) that are
holomorphic on D.

3.5. We will now prove Theorem 1.5. (With regard to the following proof
we refer to the proof of Theorem 1.3.) If g(z) = 0 for all z in Y°, then
g =0andf = 0. We suppose then that there is a vector v in ¥° such that
g(v) % 0. Letrin (0,1) besuchthat B(v, 34/7) n S< Y and f(w)g(w) %0
if w e B(v, 3+/r) n B. Furthermore let = ¢ B(v, r) n B. Since n > 2, there
isa yin V such that (2, y) eA. IfzeT, then (by Lemma 3.2) x + 2y e Y.

We define b : D™ — C by

h(z) = f(z + 2y)/g9(x + 2y).

It follows that h e A(D), that h(z) £ 0 if z e¢D, and that | A(z) | = 1 if
z2eT. Hence|h(0)| =1, thatistosay|f(z)| =|g(x)|. Thus|f|=1]g]|
on B(v, r) n B; hence f = c¢g where ¢ ¢ T which completes the proof of Theorem
1.5.

36. Let n > 2 and let veS. With regard to the proof of Theorem 1.5
Rudin (unpublished) uses the map z — = + 2y to prove that if f is an inner
function on B and if the cluster set of f at » is not all of D™, then f is constant.
In particular if f is continuous at v, then f is constant.

4, The proof of Theorem 1.7

41. IfY,Z and N aresets,if¢ : Y — Z, and if p : 2¥ — N, then we define
¢*(n) : 2° > N by

" (W(E) = p(ly 1y e¥, é(y) ¢ B}).

With regard to this definition we recall the following fact of measure theory
[Federer, p. 72].

4.2. ProrositioN. IfY and Z are compact Hausdorff spaces,if¢ : ¥ — Z
is continuous, and if u e M (Y), then ¢*(u) e M (Z). Thusif ue M(Y, C),
then ¢*(u) e M(Z, C).

4.3. With regard to Proposition 4.2 we remark that if f ¢ C(Z), then
ffd¢*(u) = ff°¢du-

The following proposition follows from Proposition 4.2.

4.4. ProrosiTiON. If Y and Z are locally compact Hausdorff spaces, if
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¢ : Y — Z is continuous, if p e M (Y), and if u(Y) < oo, then¢*(n) e M (Z).
Thus if u e M(Y, C), then ¢*(u) e M(Z, C).

45. Let (G, X, T) be a topological transformation group. (Thus by
definition @ is a locally compact Hausdorff group, X is a locally compact
Hausdorff space, T: G X X — X, ete.) It is assumed that G and X are
metric spaces whose closed balls are compact. We will denote by v a right
Haar measure on G. Thusif (s, f) e G X F.(G), then

[1) arcty = [ran.
It is assumed that v(G) = 1 if G is compact. If G is compact and
if u e M(X, C), then we define x* in M(X, C) by
p* =Ty X n).

4.6. ProposiTioNn. Let X be compact. If E C G, if F X, if E is com-
pact, and if F is open, then Nz T:(F) is open.

Proof. We have
[nun Tt(F)]' = Uuz Tt(F') = T(E X F’)
which completes the proof of Proposition 4.6.

4.7. ProrosiTioN. Let X be compact. If pe M (X), of E C X, and
if T.(E) = E for every t in G, then there isan F C X suchthat F isa Gs, E C F,
T.F) = F for every t in G, and u(E) = u(F).

Proof. If ¢ > 0, then since u is a Radon measure there is an open set @
such that E C Q and u(Q) < u(E) +e. If

Qe = nua Tt(Q)’

then B C @, u(Q.) < w(E) + ¢, Ti(Q.) = Q. for every ¢ in G, and (by
Proposition 4.6) Q: is a Gs. Thus if

F = M= Qu,
then F satisfies the conclusions of Proposition 4.7.

4.8. ProposiTioN. Let X be compact. If N e M(G, C), if M(G) = 1, if
weM(X,C),if EC X,andif T(E) = E for every t in G, then

(4.1) w(B) = T*(\ X p)(B).

Proof. By Proposition 4.7 thereis an F C X such that Fisa G5, T.(F) = F
for every t in G, u(E) = u(F), and T*(A X u)(E) = T*(\ X u)(F). If
f is the characteristic function of F, then

7= [roran,
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hence

wi) = [[ [1oman® |du= [5oTa0x0) = 70 x 0D,

hence the identity (4.1) holds.

4.9. For the purpose of the proof of Theorem 1.7 welet G = T, X = S,
and we define T' by T'(z, z) = Zz.

4.10. ProposiTioN. If (u,y) e M(8S, C) X B, then
2% §
(42) W) = [ Wy,

Proof. We have
(W) = [6 au*
(43) = [Tty x u)

= 2% 02' [ fﬁ(e"“x,y)du(x)] do.

Furthermore 8(¢ ¥z, y) = B(x, ¢”y), hence the last term of the string of
identities (4.3) is equal to the right side of (4.2) which completes the proof
of Proposition 4.10.

4.11. ProprosiTiON. If ueM(S, C) and if u* is pluriharmonic, then
(4.4) o(S)u* = u(8)e.

Proof. If y € B, then since u* is pluriharmonic the right side of the identity
(4.2) is equal to #*(0); hence (u*)* = w(S8) and hence by Proposition 2.6
and Proposition 2.12 the identity (4.4) holds.

4.12. We will now prove Theorem 1.7. By Proposition 4.8 and Proposi-
tion 4.11 we have

o(S)u(E) = o(8)u*(E) = u(8)s(E)
which completes the proof of Theorem 1.7.

5. The proof of Corollary 1.9

Let
E={z:z¢8,|f(z)]| = 1.

By Theorem 1.5 the function (Ff — &) | 8 is not identically 0. Furthermore
(F — )| 8 is analytic; hence ¢(E) = 0 [Federer, p. 240] and hence by
Theorem 1.7 u(E) = 0 which completes the proof of Corollary 1.9.
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6. The proof of Corollary 1.11
6.1. We recall the following fact of the theory of Hausdorff measures.
6.2. ProrosiTioN. Ifae(0, »),if E C 8, and if H*(E) = 0, then
H*'(U,p2E) = 0.

6.3. Corollary 1.11 follows from Theorem 1.7, Proposition 6.2, and the
fact that

H™ ' (8)o = o(S)H™ .

7. The proof of Theorem 1.13
7.1. Letm > 1. If wis the general point of W, then we let dw d% be the
2m-dimensional Lebesgue measure on W. Furthermore we let B(W) =
BnWand S(W) = SnW. Wedefined: [0, ) — (0, ) by
0(t) = o(8)/ [sowy (1 — (w, w))" dw diw.

The following proof (Proposition 7.2) is due to Rudin. It replaces an
unnecessarily complicated proof of ours.

7.2. ProposiTioN. Ifm < n — land feF (W), then
[roPds=0n —1 = m) [aom f0) (1 = 0, )" dw am.
Proof. We define F : (0, ©») — [0, ©] by
F(r) = [oon f(Px) do 2
and we define G : (0, «) — [0, =] by
G(r) = _’.wnts(o’r) fw)(® — (w, w))™™ dw dm.

By the Fubini theorem we have
(7.1) F(r) = aG(r)

where the constant a is equal to the (2n — 2m)-dimensional Lebesgue meas-
ure of B(V © W). If ge F,.(V), then

[, oo =0 [ [ otia) doa) | =t

where

b = Zndeda':/a(S),
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hence if f is continuous, then
(7.2) F(1) = [ foPda.
Likewise
G(r) = cj;r [f fw) (P — (tw, tw))"™ ola-('w)]tz"‘_]l dt
where
¢ = 2m fB o, & dB/(S(V)
and (for the purpose of this proof) = is the Radon measure on S(W) which

assigns to each open subset of S(W) its Euclidean volume; hence if f is con-
tinuous, then

(73) @) = 2(n — m) j; @)1 = @, w)"™ du do.

Proposition 7.2 follows from (7.1), (7.2), and (7.3).
73. LemMa. If (2,f) eD X F . (V), then

|2 [ fB f(ex) dz d& < fo(a:) d ds.

Proof. For the purpose of the proof of Lemma 7.3 we definet: V— V
by t(x) = zz. If 2z # 0, then

Izlznfo(zx) dx di = _/;f(t(x))ldet(tz') P de dz
= [, 1@ awas < [ fz) da a.
t(B) B
7.4. ProposiTioN. If feL'(B), then

limit A | f(zz) — f(z) | dz dZ = 0.

zeD,z»1
Proof. Let & > 0 and let g in C(B) be such that
(7.4) [15@) = o(@) | dwaz < e.

If z ¢ D, then by Lemma 7.3 and the inequality (7.4) we have

[ 15G) = @) |adz < (1217 + De + [ 1oeo) = g(2) | daaz,
hence
tim sup [ | (z0) = f(2) | du o < 2

which completes the proof of Proposition 7.4.
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7.5. ProrosimioN. Letm < n — 1, let u e M(S, C), and define

f:8S—W->C
by f(z) = w*(Px). If
(7.5) 1 (y) = w¥(Py)
for every y in B, then
(7.6) dp = (1/a(8))f do.

Furthermore if u 5= 0, then f(z) # 0 for o almost all z in S.

Proof. Let Y be a linear subspace of V of complex dimension n — 1 that
contains W and let @ be the orthogonal projection of ¥ onto ¥. We have

(7.7) PQ = P.

If y e B, then by (7.5) and (7.7), u¥(y) — w*(Py) = *(PQy) = v*(Qy).
Thus if z ¢ D and « ¢ S, then

(7.8) w¥(2zx) = u*(2Qz),
hence by Proposition 2.10,

(7.9) [16#6z) | do(a) < o(8) 1 (8).
If z € D, then by Proposition 7.2 (with W replaced by Y),
00 [ 168Geu) | dudg = [ 144(Q0) | do(a);
hence by (7.9) and the Fatou-Lebesgue lemma,
(7.10) 00) [ | w*(w) | dydg < a(S) | ] (S).
B(Y)

If e X — Y, then by (7.5) and (7.7),
(7.11) f(z) = u*(Pz) = p*(PQz) = u*(Qa);

hence by (7.9) and the Fatou-Lebesgue lemma, f If1de < o(8) |u] (S),

and thus f e L'(0).
If z ¢ D, then by (7.8), (7.11), and Proposition 7.2 (with W replaced by Y'),

[ 16¥e2) = $(@) | dotz) = 000) [ | uh(ay) — wh() | dya;
B(Y)
hence by (7.10) and Proposition 7.4 (with V replaced by Y),

(7.12) limit [ | w¥(ea) — (a) | do(z) = 0.
zeD,z—»1
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If (g,2) ¢ C(S) X D, then by Proposition 2.9,

05 [ S @) dota) = [ o) auto;

hence by (7.12) and Proposition 2.8,

g = o

and hence (7.6) holds.
If

E={z:ze8—Y,f(z) =0 and F = {y:yeB(Y),u*y) =0},
then by (7.11) and Proposition 7.2

(7.13) o(E) = 6(0) f' dydy.

If F is of positive (2n — 2)-dimensional Lebesgue measure, then (since u* is
analytic) u* = 0 on B(Y);hence by (7.5) and Proposition 2.12 4 = 0. Thus
if u # 0, then F is of zero (2n — 2)-dimensional Lebesgue measure; hence by
(7.13), o(E) = 0 which completes the proof of Proposition 7.5.

7.6. We refer to Section 4.5 for the meanings of the terms that follow.
For the purpose of the proof of Theorem 1.13 welet @ = T, X = 8, and we
define T by T(z,z) = Px + 2(I — P)zx.

7.7. PropositioN. If (p,y) e M(S,C) X B, then
2 .
14 W) = o [ Py + T - Py do.
mTJo

Proof. If (2,2) ¢T X 8, then 8(7T'(2, x), y) = B(x, Py + 2(I — P)y).
This fact and the proof of Proposition 4.10 will serve to prove Proposition 7.7.

7.8 ProposiTioN. If u e M(8, C) and u* is pluriharmonic, then
(7.15) wM*(y) = u*(Py)
for every y in B.

Proof. Since u* is pluriharmonic the right side of the identity (7.14) is
equal to the right side of (7.15) which completes the proof of Proposition 7.8.

7.9. ProposiTioN. Letm < n — 1, let e M(8, C), and define
fiS—W->C
by f(x) = w*(Px). If u¥* is pluriharmonic, then
(7.16) du* = (1/0(8))f do.
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Furthermore if u* 5 0, then f(z) # 0 for o almost all z in 8.
Proof. Proposition 7.9 follows from Proposition 7.8 and Proposition 7.5.

7.10. The first assertion of Theorem 1.13 follows from Proposition 7.9.
The second assertion of Theorem 1.13 follows from Proposition 4.8 and Prop-
osition 7.9. The third assertion of Theorem 1.13 follows from the fact that
B8 > 0.

8. The proof of Theorem 1.15

8.1. PropositioN. If peM(S, C), if u* is pluriharmonic, and if m <
n — 1, then | u| (S(W)) = 0.

Proof. If E < S(W), then ¢(E) = 0, hence by Theorem 1.13 u(E) = 0
from which fact Proposition 8.1 follows.

8.2. ProrosiTioN. If (Z,x,y) e G(B) X B X B, then
B(Z(»), Z(y)) = B(=, y)B(Z(x), Z(0)).

Proof. This follows (by direct verification) from the definition of 8 and

Proposition 2.2. If x € S, then Proposition 8.2 also follows from Proposition
24.

8.3. ProposiTiION. IfueM(S,C),if (Z,Y) eG(B) X A(B),ifZoY =
I, and if y € B, then

[(B*® o Z)Y*()*(y) = w*(Z(v)).
Proof. By Proposition 8.2,

(82 e D)Y*(W)H(y) = [ 887 0 2 dV*(n)

= [8czar*(w) = [ 6% = H(2W)).

8.4. We will now prove Theorem 1.15. If Z ¢G(B) and Y = Z™, then
by Proposition 8.3, [(8%® o Z) Y*(u)]* is pluriharmonic; hence by Proposition
8.1,

(8.1) |u| (Z(S(W))) = 0.
Furthermore if (M, x, y) e SL(2, R) X S(W*) X B(W), then
v(M,z,y) = (b/a)x + (1/a)y

a b
M= (5 d)’
thus if Z = vy, then

(8.2) Z(8(W)) = [(b/a)z + W] N 8.

where
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Theorem 1.15 follows from (8.1) and (8.2).

9. The proof of Theorem 1.17

9.1. For the purpose of the proof of Theorem 1.17 welet G = R, X = 8,
and we define T by T(t, x) = ¢ "x. We recall that the Poisson kernel of H
is the function «:R X H — (0, «) defined by

a(t,w) = Im(1/(t — w));
welet z ¢ H, and we let d\ = (1/7)ca’dy. (It is assumed that v((0, 1)) = 1.)
9.2. ProrosiTioN. If (u,y) e M(S,C) X B, then
(9.1) (T*O X () = [ wh(e"y) ano).
Proof. If (t,z) eR X S, then B(T(¢, z), y) = B(x, ¢"y). This fact and
the proof of Proposition 4.10 will serve to prove Proposition 9.2.
9.3. ProrosiTioN. If p e M (8, C) and u* is pluriharmonic, then
(9.2) (T*(N X w)*(y) = w*(ey)
for every y in B.

Proof. Since u* is pluriharmonic the right side of the identity (9.1) is equal
to the right side of (9.2) which completes the proof of Proposition 9.3.

9.4. If Z is a topological space and if f: Z — C, then we will denote by spt(f)
the support of f. We will denote by Co(Z) the class of all continuous func-
tions g: Z — C such that spt(g) is compact.

9.5. ProrositioN. Let 7 5 0, let N be the null space of =, let u e M(S, C),
and define f:8 — N — C by f(x) = p*(¢"x). If u* is pluriharmonic, then

d(T*(\ X w)) = (1/e(8))f do.
Proof. If w ¢ D, then by Proposition 9.3 and Proposition 2.10,
[ 1 wea) | do(z) < o(8) | THO X ) | (9);
hence by the Fatou-Lebesgue lemma

[111dz < a(3) | T*0 X 0) | (8)

and hence f ¢ L' (o).
If (g, w) € C(8S) X D, then by Proposition 9.3 and Proposition 2.9,

5(}5) fg(y)u’“(rve"y) do(y) = fg’“(wx) d(T*(\ X 1)) (2).
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Furthermore if g ¢ Coo(S — N), then
Jimit [ o) (@ey) do(y) = [ of do
Thus if g € Coo(S — N), then by Proposition 2.8,

[oaraxw = 2 [ 10

thus if E € 8§ — N and Z is ¢ measurable, then
* = _l.
T X )(B) = 2 fEfda.

Furthermore by Proposition 9.3, (T*(A X u))¥ is pluriharmonic, hence by
Theorem 1.15, | T*(A X u) | (N N S) = 0 which completes the proof of Prop-
osition 9.5.

9.6. The first assertion of Theorem 1.17 follows from Proposition 9.5.
The second assertion of Theorem 1.17 follows from Proposition 4.8 and Prop-
osition 9.5. The third assertion of Theorem 1.17 follows from the fact that
B> 0.

10. The proof of Corollary 1.20

10.1. LetY = Z'andlet A = (8°® o« Z)Y*(x). If y e B, then by Prop-
osition 8.3,

(10.1) M) = ' (Z(y).

We define g:8 — N — C by g(z) = \*(¢"z). Ifz ¢S — N, then
Z(x) eS — Z(8(N));

hence (fo Z)(x) = u*((Zo€")(z)). Therefore by (10.1),

(10.2) (foZ)(z) = M¥(e"2) = g(a).

Hence by Proposition 2.4,

[1716%%4s = [5e21do = [ 1] ds;
hence by Theorem 1.17, f e L'(s). )
If t ¢ R, then €Y (v) = Y(v); hence if x € B, then
B(e"z, Y(v)) = B(x, ¢ "Y(v)) = B(z, Y(v)).
Furthermore ¢”"Y(E) = Y(E); hence by Theorem 1.17

B an = = [ 8" do.

Y(®) a(S) Jrm)
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If h is the characteristic function of E, then h o Z is the characteristic function
of Y(E); hence by (10.2) and Proposition 2.4,

(10.3) 8" do = f 18" o V87O do.

Y(B)

If (x, y) e B X B, then by Proposition 8.2, 8(z, y) = 8(Y (), Y(y)) B(z,
Z(0)); hence

(104) Bv = BY(v) ° YBZ«».
Hence by (10.3),

6" do = [ 18" do.
E

Y(E)

Furthermore
870 dn = [ ho Z87V8%® 0 2 aV*(n)

Y(E)
= fhﬁ}’(‘v) ° Yﬁz«» d[[;
hence by (10.4),

BY(v) d\ = f Bv d}l.,
Y(B) E

and hence (1.1) holds.
The last assertion of Corollary 1.20 follows from the fact that 8 > 0.

10.2. Corollary 1.21 follows from Corollary 1.20 and Proposition 4.7.
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