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Suppose that A(t), 0 < < , is a strongly continuous operator-valued
function with A(0) I and IIA(t)ll < for all t. Suppose in addition that A(t)
is strongly differentiable at 0, and that the closure Xof A’(O) is the generator
of a (Co) semigroup etX. Then

(1) lim A(t/n) etx,

where the convergence is in the strong operator topology. This result, proved
in [1], includes the Trotter product formula [5] as a special case. The converse
is false in general; that is, (1) may hold without A(t) being differentiable at

0. Some explicit counter-examples were given in [2, Section 5.7]. Those
examples were set in infinite dimensional Hilbert space. It is a plausible guess
that infinite dimensions the converse is true. The proof of this conjecture is the
main result of this paper. We have also added a few more remarks on the
situation in infinite dimensions.

THEOREM. Let Vbe afinite dimensional normed space. Let A(t), 0 < < ,
be a continuous function whose values are operators on V, and suppose that
A(O) I. Assume that there is an operator X on V such that (1) holds for all

>_ O. Then the derivative A’(O) exists and equals X.

Proof. We write A(t) as ent) for some continuous operator-valued function
B(t) with B(0) 0. (Strictly speaking, A(t) need have this form only for
sufficiently small values of t, but the behavior of A(t) outside a neighborhood
of 0 is irrelevant for the theorem.) We have

(2) lim enl(t/") etX.
n-*oo

If we could "take logarithms" in (2) it would be relatively easy to conclude the
proof by showing that B’(0) X. The main difficulty is to justify this step.
We will use the following lemmas.

LEMMA 1. Let p(t), 0 < < oo, be a real-valued continuous function.
Assume the following:

(a) p(O) O.
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(b) There is a positive number T such that, given any [0, T], if n is a
sufficiently large integer then

np(t/n) I + 2zZ.

Here I is the interval [-n/4, z/4] and Z is the set of all integers as usual.
Then p(t) O(t) as --, O.

Proof. It is convenient to reformulate the lemma in terms of the function

1
o(t) p(/t).

The hypotheses say that g is continuous, g(t) 0 as , and if _> R
IT then, for all sufficiently large integers n,

ng(nt) Io + Z.

Here Io is the interval [-1/8, 1/8]. We have to prove that tg(t) is bounded as--- oO.

Consider the set Eu {x > R" ng(nx) Io + Z for all n > N}. Because g
is continuous this set is closed, and by hypothesis ff= Eu JR, c). The
Baire category theorem implies that some Euo contains a nondegenerate open
interval J (a, b), with R < a < b < R + 1.

Since g(x) --, 0 as x --, , we choose N1 > No so that [g(nx)[ <_ 1/16 for all
n >_ N,xJ.
Now for x e J and n >_ No let z,(x) be the (unique) integer closest to ng(nx).

We have [ng(nx) z,(x)l _< 1/8. Because ng(nx) is a continuous function of x,
so is z,(x). Since J is connected, z,(x) must be a constant, z..
Next fix any Xo e J. Because J is open, there is an integer N2 _> N such that

if n >_ N2 then x. (1 + 1/n)xo J. We claim that if n _> N2 then z,+ z,.
Indeed,

(n + 1)g((n + 1)Xo) (n + 1)g(nxn)
ng(nx,) + g(nx,)
(z. + ) + g(nx.).

Here [e[ <_ 1/8, while [g(nx,)[ < 1/16 since n > N. Therefore (n + 1).
g((n + 1)Xo) is within 1/8 + 1/16 3/16 of the integer z,. Since z,+a is the
integer closest to (n + 1)g((n + 1)Xo) we must have z,+ z,. In other words,
z. is a constant z for n >_ N2. Thus for all x e J and n > N2 we have

[ng(nx)- z] < 1/8.
If not, suppose that z > 0. Fix x e J and considerActually, z must be 0.

y- 2zx. Then
!

ng(ny) ---" 2nz 9(2nz" x),
2z

and the right side is within (1/2z)(1/8) 1/16z of z/2z 1/2 if n is large. On
the other hand, the left side must be within 118 of an integer when n is large.
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That is, 1/2 must be within distance (1/8 + 1/16z) of an integer, which is
absurd. We get a similar contradiction if z < 0.
Now we have established that for all x J and all n > N2, Ing(nx)[ < 1/8.

If y k. J for k > N2, write y kx, x J; then we have

ly(y)l--Ikxg(kx)l
< (R + l)Ikg(kx)l
_< (R + 1)/8

C.

That is, [Yg(Y)I < C if y e [3if=N2 k.J. But since J is a nontrivial interval, the
latter union contains all sufficiently large real numbers.

LEMMA 2. Let x be an element ofa Banach algebra with unit 1. Suppose

(a) liex- <
(b) p(x) < 1/2 (p spectral radius).

Define y e 1. Then x log (1 + y), where the logarithm is defined by the
series

log(1 + y) (-1)"-ly".
n=l

Proof. By hypothesis (a) we have Ilyll < 1, so the series for log (1 + y) is
convergent. We have

(3) log (1 + y) (- 1)"-’ (e 1)"
n=l n

--1 I-,x, n

(_1).-1
Ankxk

n=l /’/ k=n

where the Ank are certain nonnegative coefficients which do not depend on x.
It is evident a priori that the right side of (3) must reduce to x if IIxll is

sufficiently small (by the inverse function theorem applied to f(x) e
near x 0). Therefore, whenever we can interchange the order of summation
in (3), the right side must be x by virtue of identities which the A.k must satisfy.
To justify the interchange when p(x) < 1/2 we simply show that the series is

absolutely convergent; that is, we assert that

(4) y] _1 A.kllxkl < .
To prove (4) we have to estimate A.. Now by definition

A,t, ] 1
+,+...+.=u,,_>a jx jz .j,!
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and this is certainly less than Onk the number of n-tuples (Jl,Jz,...,J,) of
positive integers with Ji k. But B,k is obviously the coefficient of 2k in
the expansion of

; "(1 )-".

Thus the left side of (4) is majorized by the series

(5) _1 n.llxll.
tl k=n

Write p(x) p < 1/2. Then we have Ilxll Mp for some constant M.
Therefore (5) is majorized by the series

(6)
n k=n n

Since p < 1/2, the quantity p(l p)-1 < 1, and series (6) is convergent. This
establishes (4).

LEMMA 3. Let B(t), 0 < < , be a continuous function with values in a
Banach space. Suppose that B(O) O, and that for all >_ O, lim,_,oo nB(t/n)
tX, where X is independent of t. Then B is differentiable at O, and B’(O) X.

Proof. Let f(t)= liB(t)- tXII. Then f is continuous, f(0)= 0, and
lim,_.oo nf(t/n) 0. We must prove that limt_.o f(t)/t 0. This can be shown
by a standard Baire category argument along the lines of the proof of Lemma 1.
In greater detail, consider the function 9(t) tf(1/t). The function # is con-
tinuous, and 9(nx) 0 as n , for any fixed x > 0. We claim that 9(x) 0
as x . Given e > 0, let EN {x:9(nx) < eforalln > N}. As in the
proof ofLemma 1, some ENo contains a nondegenerate interval J. It is immediate
that 9(Y) <- e for all y in [Off= No k. J, and this set contains all sufficiently large
real numbers.

Completion oftheproofofthe theorem. Let A be the disk in the complex plane
with center at 0 and radius 1/8. There is a positive number e such that if
le 11 < e then z must be in A, modulo an integer multiple of 2zti. Let D
be the disk with center at and radius e.
Choose To > 0 small enough so that lie’x III < for 0 < < To. Since

A(t/n)" e’x, we have IlA(t/n) I11 < e for n sufficiently large, and so the
spectrum a(A(t/n)") is contained in the disk D. Now

a(A(t/n)") {e"X: 2 6 a(B(t/n))}.

Hence we conclude that, if 0 < < To and n is large,

(7) {n2:2 tr(B(t/n))} __. A + 2rtiZ.
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Write p(B(t)) p(t), the spectral radius. From (7) we have, if 0 < < To
and n is large,

(8) np(t/n)
_

I + 27rZ

where I is the interval [-1/8, 1/8]. Also, since we are dealing with finite
dimensional operators, p(B(t)) p(t) is a continuous function of (cf. [-3,
p. 213]). Therefore we may apply Lemma to deduce that p(t) O(t) as
t 0. That is, there is a constant M such that p(t) < Mt for small t. Pick

Tx _< To such that p(t) <_ Mt for 0 _< _< T and also MT < 1/2.
Then for 0 _< _< T and n 1, 2,... we have

(9) p(nB(t/n)) np(t/n) < n. M. tin <_ MTx < 1/2.
Also, when n is large we have lie"(/") -Ill IlA(t/n)"-I11 < 1. Accor-
dingly we may apply Lemma 2 with x nB(t[n) to deduce that

(10) nB(t/n) log (I + (A(t/n)"- I)).
The right side of (10) converges, as n oo, to

log (I + (e’x- I)) tX,
since we are dealing with the principal branch of the logarithm. Thus the
hypotheses of Lemma 3 are satisfied, and therefore B’(0) exists and equals X.
It is immediate from this that A’(0) exists and equals X as well.

This theorem could be expressed more abstractly in terms of curves in a Lie
group G. The product formula (1) would read A(t/n)" exp (tX) for some X
in the Lie algebra of G, and we ask when this implies that A’(0) exists and equals
X. Since any Lie group is locally topologically isomorphic to a finite dimen-
sional matrix group, the preceding theorem may be applied and we get the same
conclusion.

Finally, what about possible infinite dimensional generalizations? The
counter-examples in [-2] would seem to rule out any such possibilities when we
are dealing with the strong operator topology, but we can say something if we
insist upon norm convergence in formula (1). Accordingly, suppose that V is a
Banach space, and A(t) is a norm-continuous function from [0, o) to
B(V), the bounded operators on V. Suppose that there is an operator X B(V)
such that A(t/n)" etx in norm. Can we conclude that A’(0) (norm derivative)
exists and equals X? In the proof of the preceding theorem the finite dimen-
sionality of V was needed just once, to allow us to conclude that p(B(t)) was a
continuous function. Unfortunately, in the infinite dimensional situation the
best we can say in general is that p(B(t)) is upper semicontinuous (cf. [4, p. 282]
for an example of the failure of continuity). And it is not hard to see that
Lemma 1 fails in general for upper semicontinuous functions p. On the other
hand, there are large classes of operators on which the spectral radius is con-
tinuous relative to the operator norm topology. Thus, for example, the theorem
can certainly be extended to the case of functions A(t) whose values are normal
operators in Hilbert space.
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