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1. Introduction

Let H be a separable infinite dimensional Hilbert space, &(H) the algebra of
bounded operators on H, (H) the set of compact operators, (H)=
.(H)//(H), n: (H) (H) the quotient map. In their paper [-1-1, Brown,
Douglas, and Fillmore investigate for a compact metric space X the group
Ext (X) consisting of unitary equivalence classes of unital injective *-morphisms
"r: C(X) ..’(H). This group completely solves (in principle at least) the
lifting problem for injective unital *-morphisms z from C(X) to (H): namely,
there is a *-morphism which makes the diagram

C(X) (H)

’(H)

commutative iff the equivalence class Iv] of z in Ext (X) is 0. The lifting problem
is meaningful for any injective *-morphism from a C*-algebra, although in the
general case there is no functor around with the pleasant group properties of
Ext. In the case A is UHF, we give in this paper an essentially complete answer.
We follow throughout the terminology and conventions of Dixmier [3].

2. The semigroup E(A)

To solve the lifting problem we use a semigroup of *-morphisms from a C*-
algebra A to (H) which is a fairly straightforward generalization of the semi-
group Ext of [-1-]. We let M(A; H) be the set of injective *-morphisms
z: A (H) and /r(A; H) the set of maps "c’:A &(H) such that the
composition nz’ is an injective *-morphism. Introduce on r(A; H) the
relation of unitary equivalence modulo the compacts (i.e., z --- p iff there is a
unitary U such that Up(x)U* z(x) e .(H) for all x e A). On M(A; H) we
consider the corresponding relation (i.e., p z iff there is a unitary U (H)
such that n(U)p(x)n(U*) "c(x) for all x A.) The quotient sets/r(A; H)/
and M(A; H)/= are naturally equivalent; we denote them by E(A); denote the
class of e ]r(A; H) in E(A) (resp. the class of "c e M(A; H)) by []~ (resp.
[]). Observe E(A) is a contravariant functor in the category of C*-algebras
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and injective *-morphisms. Also, it is clear that direct summation induces a
commutative semigroup operation on E(.4) as in [1].
A few words about matrix units; first, the definition. A family {ui: 0 < < n}

of partial isometries of a C*-algebra which satisfy uuj 6kjUo is called a
system of matrix units. For example if .4 is a full algebra of matrices Mn(C),
then the matrices vs which have entries all zeroes except in the ith row and 0th
column, where a appears, form a system of matrix units which generate the
algebra. Secondly, any system {ui: < n} of matrix units in a C*-algebra A
determines a unique *-morphism z: M,(C) --* A such that z(v) us. Finally,
by Calkin’s lifting theorem [2], for any system of matrix units {ui: < n} in
a’(H) there is a system of matrix units {t: < n} in (H) such that n(t) us.
This implies any *-morphism from a finite dimensional C*-algebra to M’(H)
lifts to a *-morphism to (H). (Actually this is true for any dual C*-algebra,
though we will not need this).
We now determine E(A) for finite dimensional C*-algebras A.

PROPOSITION 1. Suppose .4 is a finite dimensional C*-alyebra and dp, k A
(H) are *-morphisms such that dp{x) b(x) :;if(H)for all x A. Then there
is a partial isometry u in (H) such that:

(a) The initial projection e of u commutes with dp(A) and thefinal projectionf
commutes with b(A).

(b) u*(x)u edp(x).
(c) u (1), (1) e, (1) -f .Y(H).
(d) e < $(1);f < $(1).

Proof One need only consider the case A is a full matrix algebra. Let
{ui: < n} be a system of matrix units which generate A. As nb(Uo) n$(Uo),
by Calkin’s lifting theorem [2-1 there is a partial isometry v with initial projection
eo < q(Uo), final projection fo < $(Uo) and so that rr(v) rb(Uo). Let

u

Now qb(u3* is a partial isometry with final projection b(Uo) and b(us) is a partial
isometry with initial projection ff(Uo). Thus b(ui)vqb(u3* is a partial isometry.
As the sum of partial isometries with orthogonal initial projections and ortho-
gonal final projections is also a partial isometry, u is a partial isometry. The
initial projection e of u satisfies

e U*U dp(ui)v*$(ui)*$(ui)vflP(ui)*
i<n

(u,)v*,(Uo)V(U,)*

Y
<n

dp(u,)eodp(u,)* <_ (u,u)= q(1).
i<n i<n
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Thus e _< b(1). A similar calculation showsf uu* <_ (1).
To prove (a) it suffices to show e commutes with C(UkU) for all k, l, and f

commutes with b(UkU) for all k, I. Now

{ (ui)eo(Ui)*} C/b(UkU) C(Uk)eOC(Uk)*C(Uk)C(Ui)*

(u)eo(Uo)(u,)*

dp(uk)eodp(u,)*

(D(uku’)(u,)eo(U,)*

p(UkU){,<,, qb(ui)eqb(ui)*}
The other statements can be proved in a similar vein and we omit the

details. []

Observe that if A is finite dimensional, then a representation z of A is determ-
ined up to unitary equivalence by giving the multiplicity m() of each a in
together with the dimension N() of the null space of . Conversely, given any
family {m}, in Z+ w {o2} and N Z+ w {o9} there is up to unitary equival-
ence a unique representation of A which we denote m, . N(0) with the
multiplicities {m,} and nullity N.

In the following, for a finite dimensional C*-algebra A, we will let d(A) be
the greatest common divisor of the integers {dim " } (where dim is the
dimension of the representation space of ).

PROPOSITION 2. Let A be a finite dimensional C*-algebra, dp, M(A)
-morphisms; a necessary and sufficient condition for dp

_
is that

Codim b(1) Codim (1) (Mod d(A))

understood as an equality if one side is infinite.

Proof Let s d(A) and r, dim for ]. To show necessity one may
assume z@, r are both unital; for otherwise both Codim b(1) and Codim (1)
are infinite and the stated congruence holds trivially. Consider first the case
when zrb zr. This implies there are e, f, u which satisfy (a) through (d) of
Proposition 1. Now by (c) e, f are of finite codimension and u is a compact
perturbation of the identity. As the index is unchanged by compact perturba-
tion, it follows that index u 0, and so codim e codimf Since b(A) com-
mutes with e, it commutes with b(1) e. Thus we have

Codim ((1) Codim e dim (b(1) e) 0 (mod s).

This last congruence holds because any nondegenerate representation of A must
be on a hilbert space whose dimension is divisible by s. Similarly,

Codim if(l) Codimf 0 (mod s)
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SO that Codim (l) Codim $(1) (mod s). In the general case, if $ there
is a unitary U e (H) such that (x) U$(x)U* 9C(H) so by the preceding
remarks

Codim $(1) Codim U$(1)U* Codim (1) (mod s).

To show sufficiency, suppose Codim (1) Codim @(1) (mod s). Then ,
are unitarily equivalent to

resp. where m,() m,(@) 09 for all . Now either N(tk) N(@) 09 or

N()- N(b)= (a- b)r

with a,, b, > 0. In the first case , ff are unitarily equivalent. In the second
case

m() N()(O) b’e

and

m()t 03 {N() + br}(0)

--- m(ff) 03 {N(ff) + ar}(0)

so that --- . []

We can now compute E(A) for any finite dimensional C*-algebra A. Given
N e Z+ w {09} define a(N)e hqr(A) as na @ N(0) where n 09 for all
a e . a induces a map a" Z+ w {to} E(A). It follows immediately that
6a is a morphism of semigroups, Z+ w {09} considered additively. Furthermore
&a is surjective. By Proposition 2 we have that 6a(m)= 6A(n) iff rn n
(mod d(A)). Thus"

PROPOSITION 3. IfA is finite dimensional, then

:(A) - Z/d()z

where m acts as a zero in the semigroup.

3. Application to the U HF case

A C*-algebra A with unit is uniformly hyperfinite (UHF) iff there is an in-
creasing sequence {A,} of full matrix subalgebras containing the unit of A and
such that A ( A,)-. These algebras have been studied in detail and
classified by Glimm [4]; it is easy to show they are all simple.
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Now suppose {A.} is a directed sequence of sub-C*-algebras of A such that
A 10. A. Denoting the inclusions A. A/ by k/ 1, we have a projective
sequence of semigroups {E(A.), E(k.)}; denoting the inclusions A. A by h,
we have also the morphisms of semigroups E(h): E(A) E(A.) which induce
the morphisms E lim E(h.): E(A) lim E(A).

PROPOSITION 4. The morphism E is surjective.

Proof Let lim EA Then {[n]}n>O where b. M(A.) and

ck.+a An =-- .. This means there is a unitary Un (H) such that if x

(v.).+ ,(x)(v*.) .(x).

Now let t.+ e M(A.+ 1) be given by

O.+ ,(x) (Uo)(u,). (u.).+ ,(x)(u*.) (u").

Clearly if.+1 b.+l. Furthermore .+l A. ft.. Thus there is a unique
injective *-morphism M(A) such that IA. .; thus E(h.)[]
and E[] .

In the case the algebras An are full matrix algebras and the inclusions h,, are
unital we can use the available information to give necessary and sufficient
conditions for a unital map b M(A) to lift to a *-morphism q3: A (H).
Observe first that the morphisms di,,: Z/ w {o} E(A) define a morphism of
semigroups 6: Z/ w {09} lim E(Ai). If e M(A) is unital and has a lifting
to a *-morphism q" A ’(H), then letting n Codim q3(l) e Z+ w {09}
gives

di,(n) [b A,] E(h,)[b]
so 6(n) E[b].

In order to prove a converse, we state two lemmas:

LEMMA 1. Let B be a full matrix algebra, tl a *-morphism B (H). Iff’
is a projection in (H) offinite codimension, then there is a projection offinite
codimension f < f’ which reduces q(B).

Proof. Standard.

LEMMA 2. Suppose B, 1, 2 are full matrix algebras and k is a unital
*-morphism B B2, (viewed as an inclusion). If tl M (B2) is a unital *-morph-
ism and t B (H) is a *-morphism which l(fts tl B and

[r/] 6 (Codim r/,(l))

then there is a *-morphism r/2: B2 (H) which extends" ill and which lifts q.

Proof. Let be a *-morphism B2 - (H) which lifts q. By Proposition 1,
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there is a partial isometry u’ with initial projection e’ and final projectionf’ such
that:

(a) e’ reduces r/l(B1), f’ reduces $(B1).
(b) u’*O(x)u’ e’qi(x) for x e B.
(C) U’ r/l(1), t/,(1) e’, 0(1) -f’ e 3C(H).
(d) e’ _< r/,(1),f’ _< 0(1).

Now asf’ _< 0(1) is of finite codimension by Lemma there is an f < f’ of
finite codimension which reduces 0(B). Let e u’*Jh’ and u fu’. Clearly
uu* f, u*u e, and (a)-(d) are still valid if we replace u, f, e for u’, f’, e’.
Now if rank Bi r(i), then:

(A) Codim 0(1) Codim q(1) (mod r(2)).
(B) Codim e Codim 0(1) (mod r(2)).

(A) follows from Proposition 2 and

5(Codim 0(1)) [0] [q] 5,,(Codim t/i(1)).

To show (B) observe u*Ou is a *-morphism B (H) which lifts t/. Thus by
Proposition 2, (b) and (d),

Codim e Codim et/(1) Codim u*0(1)u -= Codim 0(1) (mod r(2)).

Combining (A) and (B)
dim (t/(1) e) Codim e Codim t/(1) Codim e Codim 0(1) 0

(mod r (2)).

Now by (a), x r/(x){q(1) e} is a *-morphism B N(H); as r(2) divides
dim (t/(1) e) there is a *-morphism p: B (H) such that

p(x) q(x){t/l(1 e} for x e B.
Now we can define

(x) p(x) + u*O(x)u.

t/2 is a *-morphism as p(1), u*0(1)u e are orthogonal projections. Also, if
xB1,

r/z(x) ql(x){q(1) e} + eq(x) qt(x).

Clearly zrtz r/. This proves the lemma.

PROPOSITION 5. Suppose the C*-algebras A are full matrix algebras, the
inclusions h are unital, and dp e M(A) is unital. Then

iff there is an n e Z+ such that 6(n) E[b].
Proof In one direction it has already been proved. In the converse direction

one has to show given b with the stated conditions there is a sequence 43, of
*-morphisms A (H) such that:

(1) 43, lifts ckIA,.
(2) Jb,+ A,-
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Assume qS,..., #3u are *-morphisms such that (1) holds for < N, (2) holds for
i < N and in addition Codim (1) n for _< N. Now

[ .] E(hl, 1)[] (AN+,(n) (AN+, (Codim (1)).
By Lemma 2 therefore, n can be extended to a *-morphism (N+I" 4n+1
&(H) which is a lifting for tk An/ 1. []

If d(A3 r then it is possible to explicitly describe the map 61Z+; first
there is a canonical imbedding

G lim Z/r lim E(Ai)

and it is easy to see 6(Z/) G. Secondly, the group lim Z/r is well known to

be

where
H {Zp, np" P e Z a prime}

/z/(pm)Z,.m
I,Z, (the ring of p-adic integers)

fro < to

and n Sup {n: p" divides r for some integer i).
The map 6 Z+: Z+ G is the obvious one. From Propositions 4 and 5 it

follows in particular there are plenty of unital *-morphisms from a UHF
algebra into the Calkin algebra zC(H) which admit no lifting.
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