OBSTRUCTIONS TO LIFTING *-MORPHISMS INTO THE CALKIN ALGEBRA

BY
F. Javier Thayer

1. Introduction

Let H be a separable infinite dimensional Hilbert space, $\mathscr{B}(H)$ the algebra of bounded operators on $H, \mathscr{K}(H)$ the set of compact operators, $\mathscr{A}(H)=$ $\mathscr{B}(H) / \mathscr{K}(H), \pi: \mathscr{B}(H) \rightarrow \mathscr{A}(H)$ the quotient map. In their paper [1], Brown, Douglas, and Fillmore investigate for a compact metric space X the group Ext (X) consisting of unitary equivalence classes of unital injective *-morphisms $\tau: C(X) \rightarrow \mathscr{A}(H)$. This group completely solves (in principle at least) the lifting problem for injective unital ${ }^{*}$-morphisms τ from $C(X)$ to $\mathscr{A}(H)$: namely, there is a *-morphism $\tilde{\tau}$ which makes the diagram

commutative iff the equivalence class [τ] of τ in Ext (X) is 0 . The lifting problem is meaningful for any injective *-morphism from a C^{*}-algebra, although in the general case there is no functor around with the pleasant group properties of Ext. In the case A is UHF, we give in this paper an essentially complete answer. We follow throughout the terminology and conventions of Dixmier [3].

2. The semigroup $E(A)$

To solve the lifting problem we use a semigroup of *-morphisms from a C^{*} algebra A to $\mathscr{A}(H)$ which is a fairly straightforward generalization of the semigroup Ext of [1]. We let $M(A ; H)$ be the set of injective *-morphisms $\tau: A \rightarrow \mathscr{A}(H)$ and $\tilde{M}(A ; H)$ the set of maps $\tau^{\prime}: A \rightarrow \mathscr{B}(H)$ such that the composition $\pi \tau^{\prime}$ is an injective ${ }^{*}$-morphism. Introduce on $\tilde{M}(A ; H)$ the relation \equiv of unitary equivalence modulo the compacts (i.e., $\tau \cong \rho$ iff there is a unitary U such that $U \rho(x) U^{*}-\tau(x) \in \mathscr{K}(H)$ for all $\left.x \in A\right)$. On $M(A ; H)$ we consider the corresponding relation \equiv; (i.e., $\rho \equiv \tau$ iff there is a unitary $U \in \mathscr{B}(H)$ such that $\pi(U) \rho(x) \pi\left(U^{*}\right)=\tau(x)$ for all $x \varepsilon A$.) The quotient sets $\tilde{M}(A ; H) / \cong$ and $M(A ; H) / \equiv$ are naturally equivalent; we denote them by $E(A)$; denote the class of $\tilde{\tau} \in \tilde{M}(A ; H)$ in $E(A)$ (resp. the class of $\tau \in M(A ; H)$) by [$\tilde{\tau}]^{\sim}$ (resp. $[\tau]$). Observe $E(A)$ is a contravariant functor in the category of C^{*}-algebras

[^0]and injective *-morphisms. Also, it is clear that direct summation induces a commutative semigroup operation on $E(A)$ as in [1].

A few words about matrix units; first, the definition. A family $\left\{u_{i}: 0 \leq i<n\right\}$ of partial isometries of a C^{*}-algebra which satisfy $u_{k}^{*} u_{j}=\delta_{k j} u_{0}$ is called a system of matrix units. For example if A is a full algebra of matrices $M_{n}(\mathbf{C})$, then the matrices v_{i} which have entries all zeroes except in the i th row and 0th column, where a 1 appears, form a system of matrix units which generate the algebra. Secondly, any system $\left\{u_{i}: i<n\right\}$ of matrix units in a C^{*}-algebra A determines a unique ${ }^{*}$-morphism $\tau: M_{n}(\mathbf{C}) \rightarrow A$ such that $\tau\left(v_{i}\right)=u_{i}$. Finally, by Calkin's lifting theorem [2], for any system of matrix units $\left\{u_{i}: i<n\right\}$ in $\mathscr{A}(H)$ there is a system of matrix units $\left\{\tilde{u}_{i}: i<n\right\}$ in $\mathscr{B}(H)$ such that $\pi\left(\tilde{u}_{i}\right)=u_{i}$. This implies any ${ }^{*}$-morphism from a finite dimensional C^{*}-algebra to $\mathscr{A}(H)$ lifts to a *-morphism to $\mathscr{B}(H)$. (Actually this is true for any dual C^{*}-algebra, though we will not need this).

We now determine $E(A)$ for finite dimensional C^{*}-algebras A.
Proposition 1. Suppose A is a finite dimensional C^{*}-algebra and $\phi, \psi: A \rightarrow$ $\mathscr{B}(H)$ are ${ }^{*}$-morphisms such that $\phi(x)-\psi(x) \in \mathscr{K}(H)$ for all $x \in A$. Then there is a partial isometry u in $\mathscr{B}(H)$ such that:
(a) The initial projection e of u commutes with $\phi(A)$ and the final projection f commutes with $\psi(A)$.
(b) $u^{*} \psi(x) u=e \phi(x)$.
(c) $u-\phi(1), \phi(1)-e, \psi(1)-f \in \mathscr{K}(H)$.
(d) $e \leq \phi(1) ; f \leq \psi(1)$.

Proof. One need only consider the case A is a full matrix algebra. Let $\left\{u_{i}: i<n\right\}$ be a system of matrix units which generate A. As $\pi \phi\left(u_{0}\right)=\pi \psi\left(u_{0}\right)$, by Calkin's lifting theorem [2] there is a partial isometry v with initial projection $e_{0} \leq \phi\left(u_{0}\right)$, final projection $f_{0} \leq \psi\left(u_{0}\right)$ and so that $\pi(v)=\pi \phi\left(u_{0}\right)$. Let

$$
u=\sum_{i \in n} \psi\left(u_{i}\right) v \phi\left(u_{i}\right)^{*}
$$

Now $\phi\left(u_{i}\right)^{*}$ is a partial isometry with final projection $\phi\left(u_{0}\right)$ and $\psi\left(u_{i}\right)$ is a partial isometry with initial projection $\psi\left(u_{0}\right)$. Thus $\psi\left(u_{i}\right) v \phi\left(u_{i}\right)^{*}$ is a partial isometry. As the sum of partial isometries with orthogonal initial projections and orthogonal final projections is also a partial isometry, u is a partial isometry. The initial projection e of u satisfies

$$
\begin{aligned}
e=u^{*} u & =\sum_{i<n} \phi\left(u_{i}\right) v^{*} \psi\left(u_{i}\right)^{*} \psi\left(u_{i}\right) v \phi\left(u_{i}\right)^{*} \\
& =\sum_{i<n} \phi\left(u_{i}\right) v^{*} \psi\left(u_{0}\right) v \phi\left(u_{i}\right)^{*} \\
& =\sum_{i<n} \phi\left(u_{i}\right) v^{*} v \phi\left(u_{i}\right) \\
& =\sum_{i<n} \phi\left(u_{i}\right) e_{0} \phi\left(u_{i}\right)^{*} \leq \sum_{i<n} \phi\left(u_{i} u_{i}^{*}\right)=\phi(1) .
\end{aligned}
$$

Thus $e \leq \phi(1)$. A similar calculation shows $f=u u^{*} \leq \psi(1)$.
To prove (a) it suffices to show e commutes with $\phi\left(u_{k} u_{l}^{*}\right)$ for all k, l, and f commutes with $\psi\left(u_{k} u_{l}^{*}\right)$ for all k, l. Now

$$
\begin{aligned}
\left\{\sum_{i<n} \phi\left(u_{i}\right) e_{0} \phi\left(u_{i}\right)^{*}\right\} \phi\left(u_{k} u_{l}^{*}\right) & =\phi\left(u_{k}\right) e_{0} \phi\left(u_{k}\right)^{*} \phi\left(u_{k}\right) \phi\left(u_{l}\right)^{*} \\
& =\phi\left(u_{k}\right) e_{0} \phi\left(u_{0}\right) \phi\left(u_{l}\right)^{*} \\
& =\phi\left(u_{k}\right) e_{0} \phi\left(u_{l}\right)^{*} \\
& =\phi\left(u_{k} u_{l}^{*}\right) \phi\left(u_{l}\right) e_{0} \phi\left(u_{l}\right)^{*} \\
& =\phi\left(u_{k} u_{l}^{*}\right)\left\{\sum_{i<n} \phi\left(u_{i}\right) e_{0} \phi\left(u_{i}\right)^{*}\right\} .
\end{aligned}
$$

The other statements can be proved in a similar vein and we omit the details.

Observe that if A is finite dimensional, then a representation τ of A is determined up to unitary equivalence by giving the multiplicity $m_{\alpha}(\tau)$ of each $\alpha \in \hat{A}$ in τ together with the dimension $N(\tau)$ of the null space of τ. Conversely, given any family $\left\{m_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ in $\mathbf{Z}^{+} \cup\{\omega\}$ and $N \in \mathbf{Z}^{+} \cup\{\omega\}$ there is up to unitary equivalence a unique representation of A which we denote $\sum_{\alpha}^{\oplus} m_{\alpha} \cdot \alpha \oplus N(0)$ with the multiplicities $\left\{m_{\alpha}\right\}$ and nullity N.

In the following, for a finite dimensional C^{*}-algebra A, we will let $d(A)$ be the greatest common divisor of the integers $\{\operatorname{dim} \alpha: \alpha \in \widehat{A}\}$ (where $\operatorname{dim} \alpha$ is the dimension of the representation space of α).

Proposition 2. Let A be a finite dimensional C^{*}-algebra, $\phi, \psi \in \tilde{M}(A)$ *-morphisms; a necessary and sufficient condition for $\phi \cong \psi$ is that

$$
\operatorname{Codim} \phi(1) \equiv \operatorname{Codim} \psi(1) \quad(\operatorname{Mod} d(A))
$$

understood as an equality if one side is infinite.
Proof. Let $s=d(A)$ and $r_{\alpha}=\operatorname{dim} \alpha$ for $\alpha \in \widehat{A}$. To show necessity one may assume $\pi \phi, \pi \psi$ are both unital; for otherwise both $\operatorname{Codim} \phi(1)$ and $\operatorname{Codim} \psi(1)$ are infinite and the stated congruence holds trivially. Consider first the case when $\pi \phi=\pi \psi$. This implies there are e, f, u which satisfy (a) through (d) of Proposition 1. Now by (c) e, f are of finite codimension and u is a compact perturbation of the identity. As the index is unchanged by compact perturbation, it follows that index $u=0$, and so $\operatorname{codim} e=\operatorname{codim} f$. Since $\phi(A)$ commutes with e, it commutes with $\phi(1)-e$. Thus we have

$$
\operatorname{Codim} \phi(1)-\operatorname{Codim} e=-\operatorname{dim}(\phi(1)-e) \equiv 0 \quad(\bmod s)
$$

This last congruence holds because any nondegenerate representation of A must be on a hilbert space whose dimension is divisible by s. Similarly,

$$
\operatorname{Codim} \psi(1)-\operatorname{Codim} f \equiv 0 \quad(\bmod s)
$$

so that $\operatorname{Codim} \phi(1) \equiv \operatorname{Codim} \psi(1)(\bmod s)$. In the general case, if $\phi \cong \psi$ there is a unitary $U \in \mathscr{B}(H)$ such that $\phi(x)-U \psi(x) U^{*} \in \mathscr{K}(H)$ so by the preceding remarks

$$
\operatorname{Codim} \psi(1)=\operatorname{Codim} U \psi(1) U^{*} \equiv \operatorname{Codim} \phi(1) \quad(\bmod s)
$$

To show sufficiency, suppose $\operatorname{Codim} \phi(1) \equiv \operatorname{Codim} \psi(1)(\bmod s)$. Then ϕ, ψ are unitarily equivalent to

$$
\sum_{\alpha}^{\oplus} m_{\alpha}(\phi) \alpha \oplus N(\phi)(0) ; \quad \sum_{\alpha}^{\oplus} m_{\alpha}(\psi) \alpha \oplus N(\psi)(0)
$$

resp. where $m_{\alpha}(\phi)=m_{\alpha}(\psi)=\omega$ for all α. Now either $N(\phi)=N(\psi)=\omega$ or

$$
N(\phi)-N(\psi)=\sum_{\alpha \in \hat{A}}\left(a_{\alpha}-b_{\alpha}\right) r_{\alpha}
$$

with $a_{\alpha}, b_{\alpha} \geq 0$. In the first case ϕ, ψ are unitarily equivalent. In the second case

$$
\begin{aligned}
\phi & \cong \sum_{\alpha}^{\oplus} m_{\alpha}(\phi) \alpha \oplus N(\phi)(0) \oplus \sum_{\alpha}^{\oplus} b_{\alpha} \cdot \alpha \\
& \cong \sum_{\alpha}^{\oplus} m_{\alpha}(\phi) \alpha \oplus\left\{N(\phi)+\sum b_{\alpha} r_{\alpha}\right\}(0)
\end{aligned}
$$

and

$$
\begin{aligned}
\psi & \cong \sum_{\alpha}^{\oplus} m_{\alpha}(\psi) \alpha \oplus N(\psi)(0) \oplus \sum_{\alpha}^{\oplus} a_{\alpha} \alpha \\
& \cong \sum_{\alpha}^{\oplus} m_{\alpha}(\psi) \alpha \oplus\left\{N(\psi)+\sum a_{\alpha} r_{\alpha}\right\}(0)
\end{aligned}
$$

so that $\phi \cong \psi$.
We can now compute $E(A)$ for any finite dimensional C^{*}-algebra A. Given $N \in \mathbf{Z}^{+} \cup\{\omega\}$ define $\tilde{\delta}_{A}(N) \in \tilde{M}(A)$ as $\sum_{\alpha}^{\oplus} n_{\alpha} \alpha \oplus N(0)$ where $n_{\alpha}=\omega$ for all $\alpha \in \widehat{A} . \tilde{\delta}_{A}$ induces a map $\delta_{A}: \mathbf{Z}^{+} \cup\{\omega\} \rightarrow E(A)$. It follows immediately that δ_{A} is a morphism of semigroups, $\mathbf{Z}^{+} \cup\{\omega\}$ considered additively. Furthermore δ_{A} is surjective. By Proposition 2 we have that $\delta_{A}(m)=\delta_{A}(n)$ iff $m \equiv n$ $(\bmod d(A))$. Thus:

Proposition 3. If A is finite dimensional, then

$$
E(A) \cong \mathbf{Z} / d(A) \mathbf{Z} \cup\{\omega\}
$$

where ω acts as a zero in the semigroup.

3. Application to the UHF case

A C^{*}-algebra A with unit is uniformly hyperfinite (UHF) iff there is an increasing sequence $\left\{A_{n}\right\}$ of full matrix subalgebras containing the unit of A and such that $A=\left(\bigcup_{n} A_{n}\right)^{-}$. These algebras have been studied in detail and classified by Glimm [4]; it is easy to show they are all simple.

Now suppose $\left\{A_{n}\right\}$ is a directed sequence of sub- C^{*}-algebras of A such that $A=\overline{\bigcup_{n} A_{n}}$. Denoting the inclusions $A_{n} \rightarrow A_{n+1}$ by k_{n+1}, we have a projective sequence of semigroups $\left\{E\left(A_{n}\right), E\left(k_{n}\right)\right\}$; denoting the inclusions $A_{n} \rightarrow A$ by h_{n}, we have also the morphisms of semigroups $E\left(h_{n}\right): E(A) \rightarrow E\left(A_{n}\right)$ which induce the morphisms $\underset{\leftarrow}{E}=\lim _{\leftarrow} E\left(h_{n}\right): E(A) \rightarrow \lim _{\leftarrow} E\left(A_{n}\right)$.

Proposition 4. The morphism $\underset{\leftarrow}{E}$ is surjective.
Proof. Let $\alpha \in \lim _{\leftarrow} E A_{n}$. Then $\alpha=\left\{\left[\phi_{n}\right]\right\}_{n \geq 0}$ where $\phi_{n} \in M\left(A_{n}\right)$ and $\phi_{n+1} \mid A_{n} \equiv \phi_{n}$. This means there is a unitary $U_{n} \in \mathscr{B}(H)$ such that if $x \in A_{n}$

$$
\pi\left(U_{n}\right) \phi_{n+1}(x) \pi\left(U_{n}^{*}\right)=\phi_{n}(x)
$$

Now let $\psi_{n+1} \in M\left(A_{n+1}\right)$ be given by

$$
\psi_{n+1}(x)=\pi\left(U_{0}\right) \pi\left(U_{1}\right) \cdots \pi\left(U_{n}\right) \phi_{n+1}(x) \pi\left(U_{n}^{*}\right) \cdots \pi\left(U_{0}^{*}\right) .
$$

Clearly $\psi_{n+1} \equiv \phi_{n+1}$. Furthermore $\psi_{n+1} \mid A_{n}=\psi_{n}$. Thus there is a unique injective *-morphism $\psi \in M(A)$ such that $\psi \mid A_{n}=\psi_{n}$; thus $E\left(h_{n}\right)[\psi]=\left[\phi_{n}\right]$ and $\underset{\leftarrow}{E}[\psi]=\alpha$.

In the case the algebras A_{n} are full matrix algebras and the inclusions h_{n} are unital we can use the available information to give necessary and sufficient conditions for a unital map $\phi \in M(A)$ to lift to a *-morphism $\tilde{\phi}: A \rightarrow \mathscr{B}(H)$. Observe first that the morphisms $\delta_{A_{i}}: \mathbf{Z}^{+} \cup\{\omega\} \rightarrow E\left(A_{i}\right)$ define a morphism of semigroups $\delta: \mathbf{Z}^{+} \cup\{\omega\} \rightarrow \lim E\left(A_{i}\right)$. If $\phi \in M(A)$ is unital and has a lifting to a ${ }^{*}$-morphism $\left.\tilde{\phi}: A \rightarrow \underset{\mathscr{B}}{(} H\right)$, then letting $n=\operatorname{Codim} \tilde{\phi}(1) \in \mathbf{Z}^{+} \cup\{\omega\}$ gives

$$
\delta_{A_{i}}(n)=\left[\phi \mid A_{i}\right]=E\left(h_{i}\right)[\phi]
$$

so $\delta(n)=\underset{\sim}{E}[\phi]$.
In order to prove a converse, we state two lemmas:
Lemma 1. Let B be a full matrix algebra, η a ${ }^{*}$-morphism $B \rightarrow \mathscr{B}(H)$. If f^{\prime} is a projection in $\mathscr{B}(H)$ of finite codimension, then there is a projection of finite codimension $f \leq f^{\prime}$ which reduces $\eta(B)$.

Proof. Standard.
Lemma 2. Suppose $B_{i}, i=1,2$ are full matrix algebras and k is a unital ${ }^{*}$-morphism $B_{1} \hookrightarrow B_{2}$, (viewed as an inclusion). If $\eta \in M\left(B_{2}\right)$ is a unital *-morphism and $\eta_{1}: B_{1} \rightarrow \mathscr{B}(H)$ is a ${ }^{*}$-morphism which lifts $\eta \mid B_{1}$ and

$$
[\eta]=\delta_{B_{2}} \quad\left(\operatorname{Codim} \eta_{1}(1)\right)
$$

then there is a^{*}-morphism $\eta_{2}: B_{2} \rightarrow \mathscr{B}(H)$ which extends η_{1} and which lifts η.
Proof. Let ψ be a *-morphism $B_{2} \rightarrow \mathscr{B}(H)$ which lifts η. By Proposition 1,
there is a partial isometry u^{\prime} with initial projection e^{\prime} and final projection f^{\prime} such that:
(a) e^{\prime} reduces $\eta_{1}\left(B_{1}\right), f^{\prime}$ reduces $\psi\left(B_{1}\right)$.
(b) $u^{\prime *} \psi(x) u^{\prime}=e^{\prime} \eta_{1}(x)$ for $x \in B_{1}$.
(c) $u^{\prime}-\eta_{1}(1), \eta_{1}(1)-e^{\prime}, \psi(1)-f^{\prime} \in \mathscr{K}(H)$.
(d) $e^{\prime} \leq \eta_{1}(1), f^{\prime} \leq \psi(1)$.

Now as $f^{\prime} \leq \psi(1)$ is of finite codimension by Lemma 1 there is an $f \leq f^{\prime}$ of finite codimension which reduces $\psi\left(B_{2}\right)$. Let $e=u^{\prime} * f u^{\prime}$ and $u=f u^{\prime}$. Clearly $u u^{*}=f, u^{*} u=e$, and (a)-(d) are still valid if we replace u, f, e for $u^{\prime}, f^{\prime}, e^{\prime}$. Now if rank $B_{i}=r(i)$, then:
(A) $\operatorname{Codim} \psi(1) \equiv \operatorname{Codim} \eta_{1}(1)(\bmod r(2))$.
(B) $\operatorname{Codim} e \equiv \operatorname{Codim} \psi(1)(\bmod r(2))$.
(A) follows from Proposition 2 and

$$
\delta_{B_{2}}(\operatorname{Codim} \psi(1))=[\psi]^{\sim}=[\eta]=\delta_{B_{2}}\left(\operatorname{Codim} \eta_{1}(1)\right)
$$

To show (B) observe $u^{*} \psi u$ is a *-morphism $B_{2} \rightarrow \mathscr{B}(H)$ which lifts η. Thus by Proposition 2, (b) and (d),

$$
\operatorname{Codim} e=\operatorname{Codim} e \eta_{1}(1)=\operatorname{Codim} u^{*} \psi(1) u \equiv \operatorname{Codim} \psi(1) \quad(\bmod r(2))
$$

Combining (A) and (B)
$\operatorname{dim}\left(\eta_{1}(1)-e\right)=\operatorname{Codim} e-\operatorname{Codim} \eta_{1}(1) \equiv \operatorname{Codim} e-\operatorname{Codim} \psi(1) \equiv 0$ $(\bmod r(2))$.
Now by (a), $x \rightarrow \eta_{1}(x)\left\{\eta_{1}(1)-e\right\}$ is a *-morphism $B_{1} \rightarrow \mathscr{B}(H)$; as $r(2)$ divides $\operatorname{dim}\left(\eta_{1}(1)-e\right)$ there is a ${ }^{*}$-morphism $\rho: B_{2} \rightarrow \mathscr{B}(H)$ such that

$$
\rho(x)=\eta_{1}(x)\left\{\eta_{1}(1)-e\right\} \quad \text { for } x \in B_{1} .
$$

Now we can define

$$
\eta_{2}(x)=\rho(x)+u^{*} \psi(x) u
$$

η_{2} is a ${ }^{*}$-morphism as $\rho(1), u^{*} \psi(1) u=e$ are orthogonal projections. Also, if $x \in B_{1}$,

$$
\eta_{2}(x)=\eta_{1}(x)\left\{\eta_{1}(1)-e\right\}+e \eta_{1}(x)=\eta_{1}(x)
$$

Clearly $\pi \eta_{2}=\eta$. This proves the lemma.
Proposition 5. Suppose the C^{*}-algebras A_{i} are full matrix algebras, the inclusions h_{i} are unital, and $\phi \in M(A)$ is unital. Then ϕ lifts to $a{ }^{*}$-morphism $\tilde{\phi}$ iff there is an $n \in \mathbf{Z}^{+}$such that $\delta(n)=\underset{\leftarrow}{E}[\phi]$.

Proof. In one direction it has already been proved. In the converse direction one has to show given ϕ with the stated conditions there is a sequence $\tilde{\phi}_{i}$ of *-morphisms $A_{i} \rightarrow \mathscr{B}(H)$ such that:
(1) $\tilde{\phi}_{i}$ lifts $\phi \mid A_{i}$.
(2) $\tilde{\phi}_{i+1} \mid A_{i}=\tilde{\phi}_{i}$.

Assume $\tilde{\phi}_{1}, \ldots, \tilde{\phi}_{N}$ are *-morphisms such that (1) holds for $i \leq N$, (2) holds for $i<N$ and in addition $\operatorname{Codim} \tilde{\phi}_{i}(1)=n$ for $i \leq N$. Now

$$
\left[\phi \mid A_{N+1}\right]=E\left(h_{N+1}\right)[\phi]=\delta_{A_{N+1}}(n)=\delta_{A_{N+1}}\left(\operatorname{Codim} \tilde{\phi}_{N}(1)\right)
$$

By Lemma 2 therefore, $\tilde{\phi}_{N}$ can be extended to a ${ }^{*}$-morphism $\tilde{\phi}_{N+1}: A_{N+1} \rightarrow$ $\mathscr{B}(H)$ which is a lifting for $\phi \mid A_{N+1}$.

If $d\left(A_{i}\right)=r_{i}$ then it is possible to explicitly describe the map $\delta \mid \mathbf{Z}^{+}$; first there is a canonical imbedding

$$
G=\lim _{\leftarrow} \mathbf{Z} / r_{i} \rightarrow \lim _{\leftarrow} E\left(A_{i}\right)
$$

and it is easy to see $\delta\left(\mathbf{Z}^{+}\right) \subseteq G$. Secondly, the group $\lim \mathbf{Z} / r_{i}$ is well known to be

$$
\prod\left\{\mathbf{Z}_{p, n_{p}}: p \in \mathbf{Z} \text { a prime }\right\}
$$

where

$$
\mathbf{Z}_{p, m}= \begin{cases}\mathbf{Z} /\left(p^{m}\right) & \text { if } m<\omega \\ \mathbf{Z}_{p} \text { (the ring of } p \text {-adic integers) } & \text { if } m=\omega\end{cases}
$$

and $n_{p}=\operatorname{Sup}\left\{n: p^{n}\right.$ divides r_{i} for some integer $\left.i\right\}$.
The map $\delta \mid \mathbf{Z}^{+}: \mathbf{Z}^{+} \rightarrow G$ is the obvious one. From Propositions 4 and 5 it follows in particular there are plenty of unital *-morphisms from a UHF algebra into the Calkin algebra $\mathscr{A}(H)$ which admit no lifting.

References

1. L. Brown, R. Douglas, and P. Fillmore, Unitary equivalence modulo the compact operators and extensions of C^{*}-algebras, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, New York, 1973.
2. J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math., vol. 42 (1941), pp. 839-872.
3. J. Dixmier, Les C^{*}-Algebres et Leurs Representations, Gauthier Villars, Paris, 1969.
4. J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc., vol. 5 (1960), pp. 318-340.

Tulane University
New Orleans, Louisiana

[^0]: Received April 14, 1975.

