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Abstract

A set of configurations is unavoidable if every planar map contains at least
one element of the set. A configuration r is called geographically good if
whenever a member country M of c has any three neighbors N1, N2, N3 which
are not members of cg then N1, N2, N3 are consecutive (in some order) about M.
The main result is a constructive proof that there exist finite unavoidable sets

of geographically good configurations. This result is the first step in an investi-
gation of an approach towards the Four Color Conjecture.

1. Introduction

This work has been inspired by the work of Heesch [9], [10] on the Four
Color Problem, especially by his conjecture [-9, p. 11, paragraph 1, and p. 216]
that there exists a finite set 5 of four-color reducible configurations such that
every planar map contains at least one element of 5. (This conjecture implies
the Four Color Conjecture but is not implied by it.) Furthermore, in 1970
Heesch communicated an unpublished result (described later in this section and
as 55 in Table 1) which he calls a finitization of the Four Color Problem. Our
main objective is to develop a tool which we hope may eventually be used to
attack the Four Color Conjecture via the Heesch Conjecture. We do not claim,
however, that our work should be regarded as a finitization.
We call a set 5 of configurations unavoidable if every planar map contains

at least one element of 5. We are interested in developing a theory of un-
avoidable sets independent of reduction theory and the coloration concept. We
shall be specially interested in unavoidable sets of such configurations that have
certain properties which appear to be necessary conditions for four color
reducibility. At a later stage we plan to consider unavoidable sets of con-
figurations with properties which seem to make them likely candidates for four
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color reducibility. Our objectives will be explained in more detail in Sections
2-7.

2. Discussion of previous results

We will phrase the results in the dual terminology of planar triangulations
and vertex colorations (see Ore [,15, Chapter 12]).
Both the theory of unavoidable sets and the theory of four color reducibility

were initiated in 1879 by Kempe in his attempted proof of the Four Color
Conjecture I11-]. The unavoidable set ff’o exhibited by Kempe consists of four
elements, the single vertices of degrees 2, 3, 4, and 5, (V2, V3, V4, Vs}. Kempe
proved four color reducibility for V2, V3, and V, but failed in the case of Vs.
That o is unavoidable is implied by the fact that the Euler Characteristic of
any planar triangulation is positive. The four color reducibility of V, requires
the Jordan Curve Theorem. Thus the unavoidability of o also holds in
triangulations of the projective plane p2 while the four color reducibility of V,
does not.
One may regard the Heesch Conjecture as a straightforward attempt to repair

Kempe’s argument (with the required unavoidable set larger than o).
The reduction theory for configurations larger than single vertices has been

developed by many investigators to a high degree of perfection. (See Heesch
[9], Tutte and Whitney [19], Ore [15], F. aernhart [5], Allaire and Swart [1]
and the literature quoted therein.) On the other hand we found only a few
published results on finite unavoidable sets which hold for all planar triangula-
tions (without further restrictions as to the total number of vertices or the
degrees of vertices occurring in the triangulations). We list those of principal
interest to us in Table 1.

In 1904, Wernicke [20] found that V5 in Kempe’s ff’o can be replaced by two
configurations; a pair of adjacent Vs’s and an adjacent Vs-V6 pair (ff’l in Table
1). In 1922, Franklin [-7] showed that every triangulation without vertices of
degree less than five contains some V5 adjacent to two vertices of degree at most
six. This may be formulated as a replacement of the Vs-V6 pair in Wernicke’s

91 by a Vs-V6-V6 triangle and a V6-Vs- V6 path (ff’2 in Table 1). Franklin
remarks that the reducibility of these configurations would imply the Four
Color Theorem but that it "appears to be not possible" to prove the reducibility.
One way to explain the difficulty is this. The single V5 could not be proved

reducible because the five neighbors of the V5 exterior to the configuration
seemed (in some sense) too many to handle simultaneously. But the V6-Vs-V6
path of Q2 has two such "five-legger" vertices, i.e., the V6 vertices each have five
external neighbors.

If one takes this point of view one might seek an unavoidable set of con-
figurations each vertex of which has at most four outside legs. However, H.
Heesch has pointed out to us that with the exception of the solitary V4 no known
method of proving reducibility has ever succeeded in the presence of a four-
legger vertex, nor in the presence of a three-legger articulation vertex (i.e., a
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TABLE 1. Some finite, unavoidable sets of configurations

vertex the removal of which disconnects the configuration), nor in the presence
of a hanging Vs-V5 pair (i.e., a pair of adjacent 5-vertices V and Vs2 which are
adjacent to some vertex V but such that neither V nor V52 is adjacent to any
vertex but the other of the pair and the vertex V. For examples see Figure a;
of course in all cases except the 5-5-5 triangle, the vertex V is an articulation
vertex.)

Recently, Stromquist [18] has used the methods of Tutte and Whitney
to prove the irreducibility (in a somewhat restricted sense) of configurations
which contain certain "reduction obstacles." In Stromquist’s work, the ob-
stacles of greatest practical importance are precisely those mentioned above.

In 1940, Lebesgue [12] in generalizing the work of Wernicke and Franklin
exhibited several unavoidable sets of configurations. From his table on p. 36
one can derive the corollary that in Franklin’s ,92 the V6-Vs-V6 path may be
replaced by a Vs-V6-V7-V6 configuration as in if’3 of Table 1. a considerably
improves a2 by avoiding all five-legger vertices.
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TABLE 2

Heesch, to demonstrate the plausibility of his conjecture, exhibits in [-9] and
[10] several sets of reducible configurations which are unavoidable in those
planar triangulations which satisfy certain restrictive conditions. We call
Heesch’s approach the principle of discharging (see [8]). One of Heesch’s sets
[9, Kapitel II] consists of V2, V3, V4, and twenty reducible configurations and
is unavoidable in triangulations containing no V6 or VT.2 Reformulated for
general planar triangulations this gives set if’4 in Table 1. Later Heesch applied
the same methods which he used for deriving 4 to the general case; this led
to an unavoidable set (5 in Table 1) which consists of reducible configurations
and about 8,000 z-positive configurations which are analogous to the 16
z-positive configurations in [9, p. 99]. A further discussion of the z-positive
configurations is hoped to lead to an unavoidable set which consists entirely of
reducible configurations and thus proves the Heesch Conjecture. The com-
munication of this result stimulated Haken to ask the question whether the
required discussion could be simplified by technical improvements to the dis-
charging procedure. Haken [8] improved S, to include five instead of twenty
reducible configurations (see Se, in Table 1). The approach he used was a mod-
ification of Heesch’s method. The improvement due to this reexamination by a

2 Added in proof. It was brought to our attention by J. Mayer that 4 and ff, were pre-
ceded by the result of Chojnacki that {V2, Va, V4, V6, V7 plus a small set of reducible con-
figurations} is unavoidable (see H. Chojnacki, A contribution to the four color problem, Amer.
J. Math., vol. 64 (1942), pp. 36-54).
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FIGURE la

FIGURE b

slightly different approach raised the question whether similar reexamination
could simplify the entire Heesch program. We conjecture that it can but never-
theless expect the unavoidable set of reducible configurations (if it exists) to
include between one thousand and ten thousand configurations after all possible
simplifications.

Further investigations with these methods have been conducted by R. Stanik
[17] who applied Heesch’s method to triangulations not containing any V6 and
by T. Osgood [14] who applied his own version of Haken’s method to tri-
angulations containing only Vs, V6, and Vs.
The Heesch program consists of two parts: finding unavoidable sets and test-

ing their members for reducibility. Heesch emphasizes finding reducible con-
figurations and building unavoidable sets from them. Since checking reducibility
for a configuration can be extremely time consuming, we feel that it would be
more economical to investigate unavoidable sets in the Kempe-Wernicke-
Franklin-Lebesgue line using our modifications of Heesch’s method.
The Heesch program should also be compared with the work of Franklin [7-1,

Winn [21-1, Ore and Stemple [16-1, and Mayer [13] (where sets of four color
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reducible configurations are exhibited which are unavoidable in planar tri-
angulations with a restricted number of vertices.)
Our first major goal is to find unavoidable sets of configurations which are

geographically good in the sense that no vertex of such a configuration has three
or more nonconsecutive neighbors outside the configuration. Note that 1/4 is
the only geographically good configuration which contains a four-legger vertex;
moreover, a geographically good articulation vertex must be a two-legger. Thus
two of the three major reduction obstacles (mentioned above) are not present.
(It is possible to loo1 upon this concept as geopolitical rather than color the-
oretic. Nations might strive to form alliances which are geographically good
for the sake of providing defensible frontiers.)
Although the 5-5-5 triangle is not reducible [3], [9, the next three geo-

graphically good configurations, those containing four vertices (see Figure b)
were proved reducible by Birkhoff [63, Franklin [7-], and Arthur Bernhart [33.
Two numbers of significance are m, the number of members (vertices) of the

configuration, and n, the number of neighbors (which form an n-circuit about
the configuration). The quotient m/n may serve as an estimator of the likelihood
of reducibility. The ratio takes on its smallest value when every vertex is a
three-legger boundary vertex and this value is 1/2. Of all the geographically good
configurations with rain 1/2 only that of A. Bernhart (Figure 1) is known to
be reducible. On the other hand one may expect that almost every geographic-
ally good configuration with m/n 0.8 is reducible (provided that it does not
contain a hanging pair). This expectation is supported by the recent work of
F. Bernhart [5 and Allaire and Swart [1 ] and is based on the following reason-
ing. As m increases so does the number of possible (vertex) colorations of the
configuration. As this number increases so does the number of those four-
colorations of the surrounding n-circuit which can be extended over the con-
figuration. Thus, for any fixed n, the larger m is the more likely it is that the
iterated Kempe-chain argument used in C- and D-reductions (see [93 and [93)
will succeed. Furthermore, if we associate a third number n m 3
with a configuration, and if the number associated with an arbitrary configura-
tion is not positive then that configuration contains a geographically good sub-
configuration, again with nonpositive. (This can easily be proved by induc-
tion on m; see Lemma in Section 8.) This implies that every configuration for
which the ratio m/n of "area" to "circumference" (both measured in numbers
of vertices) is at least contains a geographically good subconfiguration. Now,
it is plausible to expect tlat every planar triangulation will contain many rel-
atively small configurations with m/n >_ since "the area grows faster than the
circumference.’’3 But Figure a indicates how one can construct a configuration

This consideration has been made precise in the recent work of Stromquist. [18, Chapter 3].
There he proves the existence of unavoidable sets of geographically good configurations by
showing that every planar triangulation contains configurations of bounded size with ff < 0.
Stromquist’s proof is much shorter than ours but does not yield a practicable procedure for
explicitly constructing such a set.
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with m/n > r for each number r < 1.5 so that every geographically good sub-
configuration contains a hanging pair. One could still speculate that every
configuration with m/n > 1.5 contains a reducible subconfiguration. We do
not believe that known techniques would yield proofs of such conjectures.
Hence we prefer to look for unavoidable sets of geographically good configura-
tions which are so small that it is practicable to check all members for reduc-
ibility individually.
Our second major goal will be to find unavoidable sets of geographically good

configurations without hanging pairs. When we have displayed such unavoid-
able sets we shall be able to judge whether an attack on the Four Color Conjec-
ture is practically possible with these tools. Our reasoning will be based on the
number of configurations and their rn and n numbers (in the best such set we
can find).
Of course it will be of vital importance that we not only find one unavoidable

set 5a of configurations likely to be reducible but that we develop an algorithm
which allows us to find many such sets. When certain configurations in 6e turn
out to be C-irreducible (or despite great effort cannot be proved reducible) then
we shall want to find a set 6e’ which contains none of these configurations but
otherwise is similar to 6. This procedure must be iterated producing sets
5e",... until hopefully an unavoidable set of reducible configurations can be
exhibited. These goals make it necessary to develop as broad a theory of
unavoidable sets as possible.

3. Some preliminary new results

Application of Heesch’s method [9, Kap. II] to the problem of finding an
unavoidable set of configurations containing no vertex with more than four legs
yields a stronger result than previously known (Se of Table as compared with
6e3). The Vs-V6-V7-V6 in Lebesgue’s ,.’a 3 may be omitted. The proof is very
simple" Let T be a planar triangulation containing no members of 6e. Assign
to each vertex Vi of degree in T a "charge" qo(Vi) 6 i. By Euler’s formula

qo(V) 6z(T) 12 > 0
VeT

where z(T) is the Euler characteristic. Now we discharge all Vs’s in T, i.e., we
obtain a new charge distribution q which assigns every vertex V of T a charge
q(V) such that vT q(V) vT qo(V), as follows. The positive charge
(+ 1) of each V5 is distributed in equal portions to its negative neighbors (of
degree at least seven). By hypothesis, each V5 has at least three negative neigh-
bors. Thus a Vk T (k > 7) receives contribution at most 1/2 from any one of
its Vs-neighbors. Again by hypothesis, a vertex V7 T has at most three Vs-
neighbors (for otherwise a consecutive 5-5 pair would occur) and a V8 has at
most four Vs-neighbors. Trivially, a Vj with j > 9 cannot have more than
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3(j 6) neighbors. Thus ql(Vs) 0 for all V5 T, ql(V6) 0 for all V6 T,
and

qx(Vk) < qo(Vk) + 3(k- 6)(1/2) < 0 for allV,T,k_> 7,

contradicting Euler’s formula. Thus T does not exist.
The two configurations in 6e which are not geographically good each

contain two four-legger vertices whereas the Vs-V6-V7-V6 in ,.903 contains three
four-leggers. This suggested a further preliminary study--to find an unavoid-
able set of configurations which fail the criterion for geographical goodness at
no more than one vertex each. Haken found an unavoidable set (unpublished)
of 68 configurations (besides V2, V3, V4) with this property. This result required
a considerable refinement of Heesch’s method and indicated that still further
refinements would be required to find an unavoidable set of geographically good
configurations. The magnitude of the task indicated the usefulness of a com-
puter for the excessively large number of combinatorial case distinctions. This
led to the joint work of the two authors in which Appel wrote a series of rather
complicated computer programs. During the first period of the work, using
results supplied by initial runs of the basic program, we developed an improved
discharging procedure which now allows us to prove the existence of unavoid-
able sets of geographically good configurations. The proof actually exhibits an
algorithm, or rather a family of algorithms, for constructing such sets.
Although the results in this paper indicate bounds on the size and number of

the configurations in the set, the actual construction of a reasonably small such
set will require some additional work. We hope to achieve this in the near
future.

In what follows we describe the discharging procedure and the corresponding
algorithm for constructing unavoidable sets of geographically good configura-
tions and prove the existence theorem for such sets.

4. The theory of short-range discharging

Since the principle of discharging seems to yield the most fruitful procedures
known for finding unavoidable sets we consider it appropriate to develop a
particular theory of these methods, emphasizing possible applications to the
Four Color Problem. The discharging arguments which have been applied are
essentially local arguments based on the hypothesis that the given triangulation
T does not contain certain relatively small configurations. Although in principle
charges could be shifted from any vertex of T to any other one the discharging
procedures which have been applied thus far all involve moving charges from a
vertex to another vertex quite close by. These "short range" discharging argu-
ments are entirely independent of the global Euler characteristic ((T). In fact,
knowledge of ;t(T) seems to be of no use in determining a discharging procedure,
although the finiteness of T occasionally yields advantages. For this reason,
henceforth we shah consider triangulations T of arbitrary closed 2-manifolds M2.
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The Euler characteristic is considered for just two purposes in the entire
approach. First, it motivates the original charge distribution

q0(V) 60(6 deg (V))

where deg (V) means the degree of V in T and the factor 60 is introduced
(following Heesch) for convenience. Second, it permits us to conclude, after
discharging has been completed, that )(T) _< 0 and hence that the set 5e of
configurations which has been excluded by hypothesis is unavoidable in all
triangulations of S2 and p2.
For further convenience we observe the following convention.

Convention. By a triangulation T we mean a triangulation of a closed 2-
manifold M2 with the following properties.

(a) T contains no vertices of degree less than five.
(b) T contains no 5-5-5-5 diamonds (the reducible configuration of Birkhoff

displayed in Figure 1).
(c) T contains no circuit of length two.
(d) T contains no circuit of length three other than the boundary of a

triangle.
(e) T contains no circuit of length four other than the boundary of the union

of two triangles with a common edge.
(f) If C is a circuit of length five in T then C bounds a disk in M2 which

contains at most one vertex of T in its interior.
(g) If C is a circuit of length six in T such that C contains a vertex of degree

five then C bounds a disk in M2 which contains at most three vertices of T in
its interior.

The excluded circuits are known to be four-color reducible in planar maps
(for (c), (d), (e), (f) see [_6] and for (g) see [3]) so we consider them to be geo-
graphically good and include them, together with the 5-5-5-5 diamond and V2,
V3, and V4 in each unavoidable set we describe (without special mention).

DEFINITION A. By a charged triangulation (T, q) we mean a triangulation T
together with a function q which assigns to each vertex V of T a rational
number q(V) so that

q(V)= qo(V)= 3602g(T).
VT VeT

(T, q) is completely discharged if q(V)
_

0 for every V in T.

By a "discharging" we mean the replacement of a charge function q by
another charge function q". The theory of unavoidable sets lends itself rather
naturally to "short-range" dischargings. The main question of the theory will
be which dischargings lead to the best results.

In [9, Kapitcl III and IV], Heesch described a very interesting example of a
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discharging procedure. For each vertex V of a triangulation T and each non-
negative integer n, he defines a curvature of order n at V, k,(V). Here ko is
(except for a multiplicative factor 60) our initial charge function q0. The func-
tion k, is a charge function such that for any vertex V of T, k,(V) is obtained
by a certain averaging procedure from the ko charges (and thus from the
degrees) of all vertices in the nth neighborhood of V in T. Heesch conjectures
!-9, p. 216] that whenever ks(V) is positive then the fifth neighborhood of V
contains some (four-color-) reducible configuration belonging to a finite set
(In our terminology this means that the discharging procedure which replaces
ko by k5 yields a finite unavoidable set of reducible configurations.)
Heesch proves a stronger conjecture (with k4 replacing ks) for a special case

in which every vertex has degree five or seven !-9, IV.2-]. The only obstacle to
proving the conjecture in general seems to be the combinatorial complexity of
the task. It would be necessary to treat all possible fifth neighborhoods of a
vertex V such that ks(V) is positive. We believe this would require a number of
case distinctions which appears too large to be practicable. The discharging
procedure ko k5 appears particularly theoretically simple and elegant
(probably best possible in these respects), but from a practical point of view
seems far from optimal. We believe that more sophisticated procedures can
be presented which are much more practical.

5. The family of discharging procedures treated in this paper

The remainder of this paper deals with a special family of discharging pro-
cedures which depend on several parameters and which we believe to be relatively
close to the practical optimum. These discharging procedures are based on the
following reasoning. In order to minimize combinatorial complexity we try to
avoid exhaustive consideration of large neighborhoods. (We regard the third
neighborhood of a vertex as a practical limit.) We are willing to sacrifice some
theoretical simplicity for practicality. One essential step in our discharging
procedure is to move the positive charges of the 5-vertices in fractions to their
major (i.e., degree at least seven) neighbors. We call this step fractional dis-
chargin9. The simplest possible fractional discharging has been used by Heesch
in [9, Kapitel II] (and also in his unpublished work which led to the set 6e5),
where the positive charges are moved in equal fractions to the negative neigh-
bors. However there are many situations (16 in [9] and about 8,000 in the
general case) in which this simple fractional discharging makes formerly nega-
tive vertices positive (we call this phenomenon overcharging) but no reducible
configuration is present. Heesch treats these newly positive ("overcharged" or
"z-positive") vertices by a second discharging step. It turns out that the number
of overcharging situations can be greatly decreased by use of a more sophisti-
cated fractional discharging in which the distribution of the positive charge is
done according to suitably chosen weight factors. In order to determine what
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part of the positive charge of a 5-vertex V5 is to be moved to some particular
negative neighbor V of Vs we take into account the amount of negative charge
of V, the number of positive 5-neighbors of V and, of course, the corresponding
data for all other negative neighbors of Vs. This means that we determine the
fractional discharging of Vs by considering its first neighborhood and the
5-vertices in its second neighborhood. We call a configuration consisting of
these vertices a plugged Vs-neighborhood.

In Section 19 we shall describe afractional discharging algorithm which yields
the fraction of charge going from Vs to V as a function of the above data.
There is some freedom in the choice of such an algorithm and we think that our
algorithm is close to optimal.
A crucial task is to examine those cases in which the fractional discharging

algorithm overcharges a major vertex but no geographically good configuration
is present. For this purpose we must exhaustively examine all configurations
which consist of a negatively charged major vertex V, all 5-neighbors V of V,
and plugged neighborhoods of the V. We call these configurations plugged
clusters of Vs-neighborhoods. They contain a large part (in many cases all) of
the second neighborhood of V and additional "plug Vs" vertices at distance
three from V. Thus they are, roughly speaking, larger than second neighbor-
hoods but smaller than third neighborhoods of V. This exhaustive examination
can be done with acceptable effort by using a rather sophisticated computer
program which directs the computer to print all relevant cases and their dis-
cussion (details may be found in Section 27).

It is rather obvious, unfortunately, that there exist some plugged clusters
which overcharge but contain no geographically good subconfigurations. Thus
our fractional discharging algorithm alone does not constitute a satisfactory
discharging procedure. A more sophisticated fractional discharging procedure
would require the examination of more and larger configurations and we think
this inadvisable. Therefore we prefer to treat individually those cases in which
the fractional discharging procedure is unsatisfactory. Using the coaventions
listed in Table 2, in Tables 3 and 4 we display 46 particular configurations. We
prove (by exhaustive examination, see details in Sections 25-27) that every over-
charging plugged cluster which does not contain a geographically good sub-
configuration contains at least one of these 46 configurations. For these con-
figurations we define particular dischargings which are carried out before the
general fractional discharging is applied. Our strategy is thus to "improve" the
original charge function q0 by preliminary dischargings so that the fractional
discharging can be applied without the occurrence of unsatisfactory cases. Thus
we call the 46 configurations mentioned the primary preliminary discharging
situations. There is considerable freedom in the choice of primary preliminary
discharging situations and of the dischargings defined on them. We have tried
many different choices and the list presented in this paper is the best we have
found so far.
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6. Problems which must be handled

At this point it should be obvious that a great deal of machinery must be
developed in order to handle tlle theoretical and practical complexity of the
project described above. This helps explain the length of the paper and the
complexity of some of the definitions.
To briefly describe some problems which arise we consider the example of

three primary preliminary discharging situations, A1, B1, and C1 (see Figure 2).
In these situations, the central V5 has only one negative neighbor which we call
the pivot of the configuration. We choose to move the entire positive charge
of 60 from the central V5 to the pivot as indicated by the arrow. We must
immediately ask the Overcharging Question: If these dischargings were carried
out simultaneously whenever an image of A1, B1, or C1 is contained in T, can
overcharging result without T containing a geographically good subconfigura-
tion (out of a fixed finite set)? In our example it is not difficult to check that the
answer is "no." We must examine all cases in wllich k 5 such dischargings
go from central V5’s to a (pivot) vertex Vk, of degree k > 7. No such cases exist
if k > 16 since there is not enough room for k 5 copies of A1, B1, or C1
(with pairwise distinct central Vs’s) around the Vk. If 12 < k < 15 then each
case involves at least one of the two geographically good configurations of
Figure 3. If k is 10 or 11 then each case involves either one of the configurations
of Figure 3 or a Vlo or V1 which is entirely surrounded by minor vertices, at
least five of which are of degree five. The cases k 7, 8, and 9 can be easily
enumerated and examined individually. (It seems to be a general rule in this
work that the higher the degree of the major vertices the easier the analysis.)
Now we must ask whether the discharging which acted acceptably on the

central Vs’s in situations A1, B1, and C1 may have created new situations in
which a positive V5 has only one negative neighbor without a geographically
good configuration being involved. One may check that there are precisely
eight such "secondary situations." It appears best to carry out dischargings
(as indicated by the arrows in Figure 2) in these secondary situations also. This
leads us to again ask the overcharging question and determine all possible
"tertiary situations." There are only four tertiary situations (see Figure 2); we
carry out dischargings in these situations also. Fortunately, no "quaternary
situations" are created and hence the three primary situations lead to a collection
of fifteen discharging situations.

In order to handle the question of secondary, tertiary, etc., situations properly,
we shall define the concept of a modification (details in Section 10). The essential
idea is this" if C’ is a configuration then we obtain a modification, say C, of C’
by (i) raising the degrees of some non-5-vertices of C’, (ii) lowering the degrees
of some 6-vertices of C’ to five, and (iii) attaching discharging situations (by
"merging") in such a way that (after the discharging) every vertex of C’ has the
same charge as it originally had in C’. For example, all of the secondary situa-
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FIGURE 2

FIGURE 3

tions in Figure 2 are modifications of primary situation C1. (Ca)l and (Ca)2
are obtained from C1 by raising a V6 to a 1,’7, lowering another V6 to a V5 and
attaching a copy of A1 so that the discharging in A1 produces charges of zero
at both the V7 and the 1/5. Caa is obtained by raising a 1/6 to a 1/8 and attaching
two copies of A so as to produce charge zero at the 1/8- It is essential to define
the modification procedure in such a way that if C’ contains a geographically
good configuration, say Cd, then every modification C of C’ contains a geo-
graphically good subconfiguration (which is essentially a modification of C).
On the other hand, in many cases a configuration (such as A or B1) which does
not contain any geographically good configuration will have geographically
good subconfiguration in all of its (nontrivial) modifications.
We must not only define the modification procedure precisely but we must

also develop a practical method of exhaustively examining all possible modifica-
tions of a given set of configurations (such as, for instance, the 46 primary
preliminary discharging situations in Tables 3 and 4). This leads to the some-
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what more complicated concepts of premodification and extension of a pre-
modification which shall allow us to build up modifications conveniently, one
step at a time. Using the modification concept recursively, we define the general
(primary, secondary, etc.) preliminary discharging situations to be modifications
of primary situations which do not contain geographically good subconfigura-
tions. The first application of the machinery for exhaustively examining all
modifications will be the proof that our 46 primary discharging situations lead
to precisely 253 preliminary discharging situations (as indicated in Tables 5 and
6).
For formal reasons we distinguish two sorts of preliminary discharging

situations, namely (see Tables 3 and 4) integral discharging situations in which a
central V5 is completely discharged to a major vertex, the degree of which has no
upper bound, and partial discharging situations in which several Vs’s are partially
discharged to V7’s or V8’s so that these receiving vertices are completely dis-
charged. We carry out all integral dischargings simultaneously, which yields a
new charge function ql. Next we carry out all the partial dischargings simul-
taneously and obtain a charge function q2- Then, we treat the overcharging
question for q2 (Section 18).

After these preliminary improvements of the charge function we carry out
the fractional discharging as described before based on the q2 (rather than the
qo) charges of the vertices. In particular, a V7 or V8 with q2-value of zero will
be treated as if it were a V6 and will not receive any charge. Finally, we must
ask whether it is possible that qa(V) (the charge at V after the fractional dis-
charging) is positive for any vertex V of T without the occurrence of a geo-
graphically good subconfiguration in T. The essential part of this question will
be the overcharging question for q3.

Our definition of the fractional discharging (Section 19) immediately implies
that overcharging can occur only at vertices of degree seven or eight and it is
feasible to exhaustively examine all plugged clusters P of Vs-neighborhoods
which have the following property" Suppose that each preliminary discharging
situation entirely contained in P is discharged but no discharging of situations
partially inside and partially outside of P is considered. This gives each vertex
V of P a charge which is either qo(V) or the result of these "interior" dis-
chargings applied to qo(V). Under this charge function, P overcharges (i.e.,
the qa-value of the "pivot" V7 or V8 of P is positive).
We shall prove that allpossible overcharging cases can be derived by modifica-

tions from the special cases just mentioned. Thus it appears that the modifica-
tion machinery is not only the theoretically most complicated but also the
practically most important part of this paper.
We shall prove several theorems and lemmas. Each lemma states that under

certain hypotheses a triangulation or configuration contains a geographically
good configuration in a certain "size class" (where a size class (p, q is defined
by the maximal diameter p of its members and the maximal degree q of the
vertices of its members). The final lemma will be the Discharging Lemma which
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states that if a triangulation T contains a vertex V with q3(V) > 0 then T
contains a geographically good configuration in size class (14, 23). Some
lemmas will be proved by exhaustive examination of all cases, others will be
proved by more general considerations.

7. Future applications

In order to obtain unavoidable sets of geographically good configurations
which are not only finite but also reasonably small we shall have to reformulate
the lemmas to explicitly list all relevant geographically good configurations
instead of only stating the size class of the set. Correspondingly all proofs
must be given by explicit enumeration of all cases. The machinery developed
in this paper will enable us to handle this problem and we hope to finish this
task in the near future.
Next we must replace the concept "geographically good" by "permissible"

in all definitions, lemmas, and proofs. At this stage "permissible" will mean
"geographically good and not containing a hanging pair." Then we shall need
more preliminary discharging situations, longer case enumerations, and larger
sets of configurations. It appears to us, however, that nothing need be changed
in principle.4

If the unavoidable sets required at this stage encourage us to continue, we
will have to make the concept of "permissible" somewhat stronger by forbidding
certain individually listed (irreducible) configurations.

In order to illustrate our methods we have treated, in a subsequent paper [2],
the case of isolated Vs’s, i.e., triangulations which do not contain any pair of
adjacent 5-vertices, where we regard as permissible all geographically good
configurations without hanging pairs and with b- n- m- 3 _< 1. The
unavoidable set so obtained contains 47 members.

Remark. It is important to note that if we say that a triangulation T contains
a configuration G then we mean that in T there is an image of G under some
immersion. That means, if the diameter of G is greater than two, it may be that
the first neighborhood N of G is not "properly embedded" in T (as is usually
assumed in reduction theory, see [9, p. 31], but for instance, N may "overlap
itself" in T. If N is four color reducible under the hypothesis of proper embed-
ding it remains to check whether it also allows a reduction in the case of immer-
sion. We do not expect any difficulties if N is D-reducible [9], [19] but some
additional work may be required if N is C-reducible but D-irreducible.

’ In more recent work we have found it possible to replace "permissible" by "likely to be
reducible" which means satisfying the conditions required in [2]. Moreover it appears possible
to add the condition n <_ 17, making it possible to check the reducibility of all required
configurations with available computational techniques.
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8. Configurations with specified degrees and charges

When considering configurations we find it convenient, following Heesch, to
think of some vertex degrees as precisely specified and others as specified within
certain limits. Thus, we effectively discuss classes of configurations whose
members all satisfy certain desired conditions without necessarily enumerating
all of their members. Those vertices with specified degrees may be assigned
"charges," given as rational numbers. We define a configuration to be a con-
nected and simply connected planar complex along with functions which specify
degrees and charges. (In practice, intuition is usually safe as the formal defini-
tions correspond to the intuitive notions of the properties involved.)

DEFINITION B. Let K be afinite simplicial complex in the plane E2 (see Figure
4) such that the edges of K are straight, or at least piecewise straight, and such
that K is connected and simply connected. An edge ofK is called a boundary edge
of K if it is incident to at most one triangle of K, otherwise it is called an interior
edge of K. A vertex V of K is called a boundary vertex of K if it is incident to a
boundary edge of K or if V K; otherwise V is called an interior vertex. A
boundary vertex is called an articulation vertex of K (see A, B in Figure 4) if its
removal disconnects K. A boundary vertex which is incident to precisely one
edge is called a hangin9 vertex (see H in Figure 4). We denote by deg (V[ K)
the degree ofvertex VofK in K (i.e., the number of edges ofK which are incident
to V).
Wc rcstrict our attention to complcxcs for which dcg (V K) >_ 5 for cvcry

interior vertex of K. The (absolute) cyclic order in which those edges, say
E, Eo of K incidcnt upon a vertex V of K lic about V in E2 means the set
of 2v ordcrings of E,..., Eo onc can obtain by starting at any E and reading
clockwise or counter-clockwise. If K is not a singlc vertex then by an outer
sector ofK wc mean (scc Figure 4) a scctor S in E2 of angle greater than 0 (but
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possibly 360), consisting of a vertex V of K, two rays R’ and R" originating
from V (if the angle is 360 then R’ R") together with the interior of S such
that the following conditions are satisfied.

(i) V is a boundary vertex of K.
(ii) Some initial segments of R’ and R" are identical with initial segments of

boundary edges, say E’, E" of K.
(iii) Some initial part of S (i.e., some small neighborhood of V in S) has its

interior disjoint from K.

We say then that S is an outer sector of K at V between E’ and E". If K is a
single vertex V then the outer sector at V consists of V and E2 V.

DEFINITION C. By a configuration C (K, /rain, /max) we mean a simplicial
complex K as in Definition B together with functions /mi. and /max called leg
specifications. The leg specifications associate with each outer sector S of K a
positive integer/mi.(S) and a value/max(S) which is either a positive integer or .
These values are called the specified minimal or maximal number of legs (of V)
lying in sector S. If/mi.(S) /max(S) we call the common value l(S). A vertex
V is called a fully specified vertex if it is either interior or satisfies /mi.(S)
/max(S) for each outer sector S at V. The configuration C is called fully specified
if each of its vertices is fully specified. A fully specified vertex V of K is called
an l-legger vertex ofC if is the sum of l(S) over all outer sectors at V. (For an
interior vertex 0, for an articulation vertex > 2.)
From/mi and/max we derive functions degmi, and degmax called degree spec-

ification which associate with each vertex of K a value (a positive integer or ).

degmi. (V) deg (VIK) + lmi.(S),

degmax (V) deg (V K) + /max(S)
where the sums are taken over all outer sectors S of K at V.

If degmax (V) degm, (V) then the common value is denoted by deg (V).
We restrict our attention to configurations C which fulfill Conditions (a)-(g)

as stated in the convention on triangulations; in particular degmi (V) >_ 5 for
every vertex V of C. By a major vertex of C we mean a vertex V of C with
degmi (V) _> 7. If a vertex V belongs to several configurations, say C’, C",
simultaneously we write degCm’i. (V), degCm’in (V), etc., to denote the degree
specifications for V in C’ and C".
As a superficial measure for the size of a configuration we may consider its

diameter D and the highest degree, degc (V) which occurs at any (fully specified)
vertex V of C. By (D, d) we denote the (finite) set of all fully specified con-
figurations of diameter not greater than D and highest degree not greater than d.
For a fully specified configuration C we define m(C) to be the number of vertices
of C; n(C) ,s [-/(S) 1], where the sum is taken over all outer sectors S
of C; and b(C) n(C) m(C) 3.



UNAVOIDABLE SETS 235

FIGURE 5

A configuration C’ (K, /ain, lax) is called a specialization of a configura-
tion C (K, lmin, /max) if it is obtained from C by narrowing the leg specifica-
tions, i.e., if/,in(S) > /min(S) and/Lax(S) < /max(S) for each outer sector S of
K. The complex K is called the carrier of C and is written K CI.

Usually we define configurations by drawings, using the conventions of
Heesch [9] for indicating the degree specifications, see Table 2. In most cases
this will make the leg specifications clear; but occasionally we may indicate legs
by outgoing dashed lines.

DEFINITION D. By a charged configuration cg (C, q) we mean a configura-
tion along with a function q which assigns to every fully specified vertex V a
number q(V) called the charge ofF. As we did for triangulations we define the
original chargefunction on a configuration C by

qg(V) 60[6 degc (V)]

for all fully specified vertices V of C.

DEFINITION E. Let C (g, /min, /max) be a configuration. Let D be either a
configuration, say (K*, lm*in, lm*ax), or a triangulation of a 2-manifold ME. By
a (combinatorial) immersion of ICI into IDI we mean a simplicial mapf: K K*
(or f: K ME) with the following properties.

(i) fis locally 1-1 to the extent that it maps each triangle (each edge) of ICI
in a 1-1 fashion onto a triangle (an edge) of IDI and thatf(V’) - f(V") for any
two different vertices V’, V" of CI if the distance between V’ and V" in CI (the
number of edges in the shortest edge path joining V’ and V" in ICI) is smaller
than six.

(ii) f can be extended to a simplicial map f~: K -* K~* (or f~: K
M2) where K- and K~* are small neighborhoods of K and K* respectively in
E2 in such a way that f~ is still locally 1-1. (This implies that f preserves the
cyclic order of edges about vertices.) The immersion f is called an embedding
if it is 1-1;f is called an isomorphism if it is 1-1 and onto. We say that an
immersionf respects the leg specifications of C and D if the specifications for D
are equivalent to the specifications for C as carried over byf By this we mean
that for every outer sector S of C the following holds (see Figure 5).

(iii) Let V be the vertex of S and let S be some initial part of S in K~. Let
S*1), S*v) be those outer sectors of D at f(V) which have initial parts in
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f(S~) (p may be zero). Let e* be the number of edges of D which have initial
segments in the interior off(S~). Then

p

e*+ */man (S*(i)) /man(S),
i=l

p

e*+ */max (S*(i)) /max(S)
i=l

We say that D contains (an image of) C if there is an immersionf: ICI -* IDI
which respects the leg specifications of C and D.

DEFINitION F. Let C (K [min, [max), C* (K*, ]m*in, /m*ax) be two on-
figurations. An isomorphism f: [C[ [C*[ is called a full equivalence between
C and C* if for each outer sector S of C, lmi(S) lm*i(S*) and lmx(S)
lm*a(S*), where S* means the outer sector of D which contains the f~-image of
an initial part of S in K. f is called a degree equivalence between C* and C if

C* C*degmi (f(V)) degCmin (V) and degma (f(V)) degCmax (V)

for every vertex V of C. For brevity we shall usually say configuration C when
we mean (deyree)-equivalence class represented by configuration C. It will be
clear from the context what is meant.
We say that C is a subconfiyuration of D (where D is a configuration or a

triangulation) if:
(a) ICl is a subcomplex of IDI;
(b) the degmi and degma functions of C and D agree on C; and
(c) the inclusion map i: CI IDI respects the leg specifications of C and D.
A subconfiguration of C is called the specifiedpart ofC if it contains precisely

those vertices of C which are fully specified. If A and B are subconfigurations
of a configuration C we use the expression A B (expression A B) for the
subconfiguration of C which contains precisely those vertices which belong to
.4 or B (to A and B), provided that such a subconfiguration exists.

Remark. Let C be a fully specified configuration, T a triangulation, and
f: ICI T an embedding which respects the leg specifications of C (and T).
Suppose that there exists a subconfiguration, say C ~, of T which contains
precisely the vertices of f(C) and those vertices of T which are adjacent to
vertices off(ICI). Then the number of boundary vertices of C is n(C). (This
follows immediately from the definitions.)

DEFINITION G. If a vertex V of a configuration C is fully specified then we
may treat the legs in each outer sector at V as additional "edges" originating
from V into S and thus assign a cyclic order to legs in those outer sectors on V
which have more than one leg. This, along with the cyclic order of edges at V
in [CI induces a complete cyclic order of edges and legs about V. With this
convention we say that a fully specified configuration C is geographically good
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if it has no vertex which lies on three (or more) legs not all consecutive (in the
cyclic order around the vertex). A vertex which is either an/-legger, l > 4, or
a 3-1egger articulation vertex cannot lie in a geographically good configuration.
We call such a vertex a bad vertex. We shall often need to know of a configura-
tion whether or not it possesses a geographically good subconfiguration.
Clearly, this can be determined by "wiping off" a bad vertex V, if one exists,
deleting all edges and triangles on V, and iterating. If this procedure stops before
all vertices of C have been wiped off then C has a geographically good sub-
configuration, namely the residue after the procedure has been carried out.
Thus we will use the term wipeout configuration for one which contains no
geographically good subconfiguration.

Tools we shall use in the proof of later lemmas include the following two
lemmas.

LEMMA 1. If C is a fully specified configuration with dp(C) < 0 then C con-
tains a geographically good subconfiguration, say Co, with d?(Co) < O.

An observation which makes Lemma more immediately applicable is the
following.

LEMMA 2. If C A B is a fully specified configuration such that A c B
is also a configuration then d?(C) + dp(A B) < dp(A) + dp(B). Thus if C is
the union of two configurations such that qb(A c B) > dp(A) + dp(B) then C has
a geographically good subconfiguration.

DEFINITION H. We say that a configuration C is obtainedfrom configurations
CI),..., C(") by merging (see Figure 6) if there are combinatorial immersions
f(’): IC(’)l ICl,... ,f(): IC()l ICI so that the following conditions hold.

(i) Every vertex of C is the image of at least one vertex of one or more of
CI), .... C

(ii) The leg specifications of C are such that

degmi (V) max {degmi (V’)) and degma (V) min {degma (V’)}

where the minimum and maximum are taken over all preimages V’ of V.
(iii) There exist specializations say C tl),..., C ") of C 1), C") so

that f) respects the leg specifications of C) and C (for all i, <_ < n).
We say that the merging identifies vertex V t) of C) and vertex V t) of Ct)
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ifft(V (i)) f()(V (j) etc. We also say that an edge F of C(0 is identified to a
leg of outer sector S of C(j if (with notation analogous to Definition E(iii)) the
interior off~((S~) contains an initial segment offi)(E).

If C is as above and if < m < n then we say that a configuration is ob-
tained from C(1), C(,,) by merging compatible with the merging ofC1,...,
C" to C if the following holds (see diagram and Figure 7).

C(1) c(m) c(m+ 1) c(n)

Denote the immersions of the merging of C(,..., C(m) to C-" by

Then C can be obtained by merging from C" and C(m+ 1),o.., c(n) by some im-
mersion f: ICI--, ICI and fem+,...,f, SO that for each i, < < n,
f(i) f f(

Later there will be several occasions at which we shall have to deal with the
case that several configurations, say C2),..., C(") are attached (by merging)
to one configuration, say C ). It will be helpful to know that we can carry out
this attaching procedure in several steps, e.g., attaching C2),..., C’) first
and C(z+ ),..., C(") thereafter. This is expressed by the following theorem
(see Figure 7).
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THEOREM 1. Assume that a configuration C is obtained by merging from con-
figurations C(1),..., C") according to immersions

f(’)" IC’)l ICI,... ,f(")" IC<")l ICI.
Further assume that there are vertices V(z),..., V (") of C(2),..., C("), respec-
tively so that f(i)(v () f()([c(l)l) for each i, 2 < < n.

Let < m < n. Then there exists a confiyuration, say C, which is obtained

from C(), C(m) by meryin9 accordin9 to immersions, say

fCl). iC<X) ICI,..., :(m). iCCm) __, ICI
so that the followin9 hold.

(i) The mergin9 is compatible with the mergin9 of C),..., C(") to C.
(ii) f(J)(Vj)) f)(lC)l)for each j, 2 < j < m.

9. Plugged configurations and primary discharging situations

DEFINITION I. A Vs-neighborhood is a fully specified configuration consisting
of a "central" V5 and its five neighbor vertices (along with the corresponding
edges and triangles). A plu99ed Vs-neighborhood is a configuration, say C,
which consists of a Vs-neighborhood, say C*, and (possibly zero) additional
5-vertices each of which is adjacent to some vertex of C* (and of the corre-
sponding edges and triangles). The Vs-neighborhood C* is called the core of C
and the additional 5-vertices are called the plug Vs’s of C.
A k-wheel is a configuration which consists of a "pivot" vertex, say Q, of

degree k > 7 and its neighbor vertices (and the corresponding edges and tri-
angles) so that for each vertex V adjacent to Q the degree specification is either
deg (V) 5 or degmi, (V) 6 and degmax (V) .
A cluster is a configuration, say C*, (see Figure 8a, 8b) which is obtained by

merging from a k-wheel, say Co, and Vs-neighborhoods C’,..., C*, (v may
be zero) so that each 5-vertex of Co is identified to the central V5 of precisely
one of C’,..., C*. The (images of the) Vs’s of Co are called the central Vs’s
of C*. A plugged cluster is a configuration, say C (see Figure 8c), which consists
of a cluster, say C*, and (possibly zero) additional 5-vertices each of which is
adjacent to some fully-specified vertex of C* (and of the corresponding edges
and triangles). The cluster C* is called the core of C; the additional 5-vertices
are called the plug-Vs’s of C; the pivot of Co is called the pivot of C and of C*;
and the central V’s of C* are called central Vs’s of C.

Note. If a plugged Vs-neighborhood, say C, is a subconfiguration of a
plugged cluster, say C, then each plug-V5 of C which belongs to C1 is also a
plug-V5 of C; but some plug-V5 of C1 may belong to the core of C and thus
not be a plug-V5 of C.
We shall need the complicated but important concept of modification for

plugged clusters and for certain configurations (specializations of) which can
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be embedded into plugged clusters. We restrict the class of configurations for
which we shall define modifications as follows"

DEFINITION J. Let C be a configuration. By a plug-specification on C we
mean a two-valued function p (with domain the 5-vertices of C) which specifies
each V5 of C to be plug or nonplug. A configuration C together with a plug
specification p on C is called a plugged configuration if the following conditions
are fulfilled:

(P.1) If V is a vertex of C then either deg (V) is fully specified or
degmin (V) > 6 and degmax (V) c.

(P.2) Removing all plug-Vs’s (and the corresponding edges and triangles)
from C yields a subconfiguration, say C*, of C (which may be empty or may
consist of a single vertex). C* is called the core of (C, p) or simply the core of C.

(P.3) Every edge of C* is incident to at least one triangle of C*.
(P.4) There exists a plugged cluster P and an embedding f: [C[- [P[

which respects the leg specifications of some specialization C of C and of P
such thatfmaps the core of C into the core of P.

(P.5) If V is a plug-V5 of C then there exist P, f, and C as in condition
(P.4) such that f(V) is a plug-V5 of P. (For different plug-Vs’s of C the cor-
responding P, f, C may be different.)

(P.6) If V is a vertex of C with degmin (V) 6 and degmax (V) then
every embeddingf: [C[ --* [P[ as described in (P.3) maps V to a vertex adjacent
to the pivot of P.

If C contains a vertex, say S, such that every embedding f: ICI IP[ as
described in (P.3) maps S to the pivot ofP then S is called the special vertex of C.

THEOREM 2. If C* is a cluster with pivot Q then the followin9 hoM.
(A) If V is a vertex of C* which is differentfrom Q andfrom the central Vs’s

of C* then one of the followin9 cases applies (see Fiyure 9).
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Case 1. V has precisely three neighbors in C*; these are consecutive and the
middle one is a central Vs.

Case 2. V has precisely four neighbors in C*; these are consecutive and the
two middle ones are either (Case 2a) central Vs’s or (Case 2b) a central Vs and Q.

Case 3. V has precisely five neighbors in C*; these are consecutive and the
three middle ones are a central Vs, Q, and another central Vs in that order.

(B) Let C be a plugged cluster with core C*. Let Vs be a plug-vertex of C.
Then Vs has at most three neighbors in C* and these are consecutive around Vs.
COROLLARY. Let f: [CI [C v[ be an immersion of a configuration C into a

plugged cluster C" which respects the leg specifications of C and C ". Let Vs be
a 5-vertex of C which has three nonconsecutive non-5-neighbors in C. Then
f(Vs) is a central Vs of C Further if V is a non-5-vertex of C then f(V) is

adjacent to the pivot C or to a central Vs ofC .
DEFINITION K. The primary preliminary discharging situations of Classes

(A), (B), (C), (D), (E), (F), and (G) are the configurations drawn in Table 3
and are called primary integral discharging situations. The primary preliminary
discharging situations of Classes (H), (I), (J), (K), and (L) are the configura-
tions drawn in Table 4 and are called the primary partial discharging situations.
In these configurations we define certain pairs (Vs, V) of vertices (V a major
vertex) to be (endpoints of) discharging tracks as marked by arrows in the draw-
ings in Tables 3 and 4. The 5-vertex of the track is called the discharging vertex;
the major vertex is called the receiving vertex. In case the vertices of a track are
joined by an edge we call that edge a discharging edge. We distinguish between
integral discharging tracks, marked and partial discharging tracks. The latter
include 15-discharging tracks, marked 30-discharging tracks, marked
45-discharging tracks, marked
By a partial discharging track system for V we mean the set of those partial

discharging tracks whose receiving vertex is V together with the discharging
designations 15, 30, 45, respectively, for each member. In particular, (30, 30)-,
(30, 15, 15)-, (30, 30, 30, 30)-, (45, 45, 30)-track systems occur in Table 4.

In each of the preliminary discharging situations a vertex is distinguished to
be the pivot (the bottommost major vertex in the drawing in Tables 3 and 4) as
follows. In an integral discharging situation it is the not-fully-specified receiving
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TABLE 3. Part

TABLE 3. Part 2

vertex. In a partial discharging situation of class other than (H) or (I), the pivot
is the (unique) receiving vertex which is a bad vertex (see Definition G). In a
situation of Class (H) or (I) it is the receiving vertex which is adjacent to one
or two bad vertices. The discharging Vs’s adjacent to the pivot are called main

Vs’s and the edges from the main V’s to the pivot are called the main discharging
edges (of the situation). The essentialpart ofa discharging situation C is the sub-
configuration of C obtained by removing all hanging V’s and all those vertices
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TABLE 4. Part

TABLE 4. Part 2

except the pivot which are not fully specified. The essential part of a specializa-
tion C’ of a discharging situation C is defined to be the subconfiguration of C’
which is a specialization of the essential part of C. Plug-specifications are indi-
cated in Tables 3 and 4, by letters p written at the plug-Vs’s. Special vertices are
marked S.
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THEOREM 3. The primary preliminary discharging situations to#ether with the
plu# specifications indicated in Tables 3 and 4 are plu#ged confi#urations. Special
vertices of these plu##ed configurations are precisely those vertices marked S in
Tables 3 and 4. Moreover, the plug-specifications are maximal (i.e., any further
p-specifications wouM violate (P.5) in Definition J).

10. The modification procedure

In this section we shall define the procedurefor modifyin9 a plu#ged configura-
tion by preliminary dischargin# situations. This procedure is used for recursively
defining preliminary discharging situations in Section 11, Definition P, as
modifications of primary discharging situations (defined above) by primary
secondary, etc., situations.

DEFINITION L. Let C be a configuration which is obtained by merging from
a plugged configuration C’ with core C* and specializations of preliminary dis-
charging situations C(), C(") so that the pivots P(i) of the C(i) are identified
to vertices of C*. Then for any i, < < n, we say C(i) weakly overlaps C* if
one or two cases applies (see Figure 10).

(1) C(i) is (a specialization of) an integral discharging situation and no
integral discharging edge of C() is identified to an interior edge of C*.

(2) C( is (a specialization of) a partial discharging situation and no vertex
of the essential part of C( which is adjacent to p(o is identified to any vertex
of C*.
Otherwise C( is said to strongly overlap C*.

In order to formally define the procedure of modification we shall first intro-
duce some notation to be used in the definitions which follow. Let C’ be a
plugged configuration (see Figure l) with core C*. If C’ has a special vertex
denote this by Q. Let V(),..., V (") (a may be zero) be those fully specified
boundary vertices of C* which are not 5-vertices and are different from Q. Let
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S(1),..., S{a) be the outer sectors of C* at V (1),..., V {’} respectively, chosen
in such a manner that all plug-neighbors of V {’}, < a < a, in C’ lie at the
ends of legs in S{’). (If V {’} is an articulation point of C* and has no plug-
neighbors in C’ then either of the outer sectors at V {’) can arbitrarily be chosen
to be S{}.) If C* is not a single vertex, let E{o% E{) be boundary edges of S{}

chosen so that in the enumeration of the V {’}, E{o1), E(1), E(o2),..., E{) lie in
that cyclic order in the boundary of C* where E{) may be the same as F{o+ 1)

(upper indices modulo a).
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We denote the legs of C* in S(’) by A"), A() in the order in which they
occur between E<o") and E]). Those A") incident to plug-neighbors of V (’) in
C’ are called plug-legs; the others are called nonplug legs.

DEFINITION M. In the above notation, a configuration C is obtained from
C’ by a premodification, or simply is a premodi.fication of C’ if C can be obtained
from C’ by the three-step premodification procedure consisting of degree raising,
degree lowering from 6 to 5, and attaching preliminary discharging situations
described below. (See Figure 11 and, for more complicated examples, Figure
14 and Tables 5 and 6. For the full notation for figures past 13 one must look
past this definition.)

Step (degree raising). The degree raising is performed by insertion of
additional legs into sectors S() at vertices V (’) whose degrees we wish to raise.
Formally, into each sector St’), < < a, we insert additional legs A]’),...,
A’) (where d, may be zero) changing the number of legs in St’) from l, tod
l, + d, (and increasing the degree of V ’) by d,). C* is thus changed into a
new configuration C # with ]C # ]C*] which has larger leg numbers specified
for some of the S) (and correspondingly larger degrees for some of the V’)).
The new legs A must satisfy the following restrictions (see Figure 12).

Restriction 1. No more than three A’) lie between any A"), A) or between
Eo) and A) or between A() and E).

Restriction 2. If in the boundary of C* there are no vertices other than
1-1eggers between V (’) and V() (in the cyclic order of increasing upper indices)
then no A(’) lies between A(’) and E]) or no A() lies between Eo#) and A])

Restriction 3. If E]") Eo"+a) and if both A(,) and A(’) are plug (both
A]"+a) and A"+a) are plug) then no A’+a) lies between Eo"+) and
(no A’)lies between A and El’)).
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Step 2 (degree lowering from 6 to 5). From C # we derive a new configura-
tion C # # as follows. Suppose that for some , i, we have"

(a) A") is adjacent to E") (to E(o")) (see A2) in Figure 11);
(b) E(,) E(o+ ’) (E+ ’) E(o);
(c) V (’+’) is a V6 (V (-l) is a V6) in C "
(d) V(’+’)(V (’-’)) is not adjacent to Q (and thus, by Theorem 2, is at least

a 2-1egger of C*);
(e) A(2+ ’) A(+ ’) are (A-,’), A ’) are) nonplug-legs of C*1+1

Then we may (but need not) remove the leg A(,+’) (the leg AI,’)) so as to
change the degree specification of V (’+’) (of V (’-’)) from 6 to 5. If this opera-
tion is performed we denote the 5-vertex V (’+’) (5-vertex V (’-’)) by DI") and
the edge E") (the edge E(o")) by F").

Step 3 (attaching preliminary discharging situations). First (Step 3a below)
we attach Vs’s to C # # which are (in the obvious way) in 1-1 correspondence
with the plug-Vs’s of C’; further we attach Vs’s, denoted by D") (in addition to
those introduced in Step 2) which are eventually to be identified to main Vs’s of
integral discharging situations. Then (Step 3b) we attach the preliminary dis-
charging situations; thus "compensating" most (and if the premodification is a
modification, all) of the degree raisings.

Step 3a. We construct a configuration C" (which contains C # as a sub-
configuration) by identifying certain legs of C to edges incident to 5-vertices
outside of C as follows.

(i) If A") is a plug-leg of C* and is also a leg of C # (i.e., has not been
removed in the degree lowering) then A)") is identified to an edge incident to

aVs.
(ii) If A") lies between E(o") and A(,") or between A(’) and E]") then A") is

identified to an edge, denoted by F"), which leads to a 5-vertex, denoted by
D"), provided that F") has not been defined to be E") or E]") in Step 2. If
F") has been so defined then A") is not identified to any edge.

(iii) If A") lies between legs Ae and A(’) then A") may (but need not) bej+

identified to an edge, denoted F") leading to a 5-vertex D").
(iv) Additional edges and triangles are added where required to obtain a

configuration (without introducing new vertices). Note that by Restriction 2,
D) D if A) A).

Step 3b. We obtain C from C" and preliminary discharging situations
C() (1 < k < b < a, where {, } is a subset of {1 a}’i
d,) by merging in such a way that the following conditions are fulfilled for each
k, _< k _< b. Denote the immersion ]C)] [C[ by f() and ]C"
by f".

(0) f"llCl is the identity map on ]C I.
(’) is identified to a vertex V (’) of C".(1) The pivot of C

(2a) If C(’) is an integral discharging situation then the main discharging
edge of c(’) is identified with the edge F") of C".
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FIGURE 13a

FIGURE 13b

FIGURE 13C

(2b) If Ck) is a partial discharging situation then some interior edge of
C[k) is identified with the leg A) at C" (which, in this case, was not replaced
by an edge F) in Step 3a).

(2c) If C is one of L1, L4, (and V{) is an 8-vertex in C") then dk 2
and C and C2 are degree equivalent and are identified with one another
(see Figure 13a).

(3) C weakly overlaps C # .
(4a) If C is a partial discharging situation (e.g., L2, see Figure 13b)

which contains as a subconfiguration some specialization C of an integral
discharging situation with the same pivot, then dk 2 and there is some in-
tegral discharging situation C (j- or 2, - 1) so that f)(IC)l)
f"(IC" I).

The main reason for not allowing strong overlappings is to ensure that a modification of a
geographically good configuration contains a geographically good subconfiguration. Note
that for partial discharging situations no vertex of C which is adjacent to the pivot is identified
to any vertex of C". Here we could allow stronger overlapping but in the case of H1 and J1
this would yield many additional discharging situations.
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FIGURE 14a

FIGURE 14b

(4b) If Ck is a preliminary discharging situation (e.g., B3, see Figure 13c)
which contains a specialization C of some other preliminary discharging
situation so that f(ICl) weakly overlaps C with pivot identified to a
vertex V :/: V (k) of C then I/ V’ (for some/, < < b; : k) and

(’ (1 < j < d=,) so thatthere is some Cj

=.L (IC I).

(5) ("noncompensated degree raising" is only permitted under certain
"crowded conditions"). If - ,..., b, (1 < < a) and d > 0 then we
demand that the following conditions are satisfied.

(5.1) No fully specified vertex of any Ct is identified with V t.
(5.2) For each j 1,..., d, at least one of the following cases applies.
(i) A 5-vertex D) has been introduced in Step 2 and is identified to some

vertex of some CI) (see D5) in Figure 14b).
(ii) A") is identified to some edge of C which joins V) to some vertex of

some fk)(ICl)l); (if A.) has been identified with an edge F) in Step 2 then
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this is again (i) above; for examples of other cases see A2) in Figure 14c and
AI) in Figure 14d).

(iii) A) has been identified with an edge F) in Step 2 so that F.) is an
interior edge of C, and D.) is a 0- or 1-1egger vertex of C (see D(12) in Figure 14e).

(iv) A) is a leg of C which is (the only leg) in a 1-1egger outer sector, say
(G1, G2) of C at V () so that at least one of the edges G, G2 leads from V () to
a 1-1egger vertex of C (see A(12) in Figure 14f).

DEFINITION N. The number kb_ dk of attached discharging situations is
called the order of the premodification C. We also call C a premodification of
C’ by the C (1 < k < b, < < d). Ifb l, (i.e., if all pivots of the

Ck) are identified to the same vertex V t’) of C’) then we call C a premodifica-
tion at V t’.
A premodification C of C’ is called a modification of C’ if (in the above

notation) b a, i.e., if the degree-raisings in Step are in 1-1 correspondence
with the "compensating" attachments in Step 3. (The premodifications C of
Figures 14a,..., f are not modifications of C’).

FGURE 14C

At)

FGURE 14d

FIGURE 14e
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c" (.’ Z" t’
FIGURE 14f

FIGURE 14g

FIGURE 14h

c. C’ c
FIGURE 14i

DEFINITION O. A premodification C of C’ (see Figure 14a,..., i) is called
an extension of a premod’cation C of C’ if C can be obtained from C’ by
additional degree-raisings, degree-lowerings, and/or attachments beyond those
leading to C. We use the obvious notation b (>_ b), d (> d), C ~’’, etc., for
the description of the procedure for obtaining C from C’. We denote by C
the configuration which is obtained from C and the old CIk (k b)
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by merging compatible with the merging of C and the C"k~) (k 1,...,
b ~) to C ~. We impose the following restriction (which informally says that
no additional degree raisings are permitted under crowded conditions, i.e.,
under conditions that V ’) is overlapped by some "old" C’k) or in which
"noncompensated degree raisings" had been permissible in constructing C
according to Condition (5) in Step 3 of Definition M).

(i) No fully specified vertex of any old C"k) is identified with V ’).
(ii) If a 5-vertex D") is introduced (in Step 2 or 3a of the premodification

procedure leading to C ~) the D") is not identified with any vertex of any
"old" Ck).

(iii) C can be derived from C by a sequence of e =l(d d,)
operations as follows. Denote the sequence of configurations by Co C,...,
C C ^. Then Cs+l is derived from Cs by one of two operations.

Operation 1. AnewlegA)( (1,...,a} {x,...,b};d < r_< d)
is inserted into some outer sector of Cy at V ’). Subsequently, A") may or may
not be identified with an edge F) which leads from V’) to a new 5-vertex D").
Also, if A) is not identified with an edge and is adjacent to an edge Eo") or E])
which leads to a 6-vertex V" + t) or V’- ), not adjacent to Q and not identified
with any vertex in any old Ct’), then the degree specification of this vertex may
be lowered to 5 (by removing a leg). (In Figures 14b, 14f, and 14h, C is
derived from C by Operation alone.)

Operation 2. A boundary edge E of Cy which neither belongs to C a a nor
to the image of any C) and which lies opposite to V) ( {1,..., a}
{x,. b}) in a triangle H of Cy is removed and the triangle H is replaced
by a 1-1egger outer sector the leg of which is A") (d, < r < d), thus raising
the degree specification of V ’) by 1. Subsequently A") may or may not be
identified to an edge F"). Also, if A") is adjacent to an edge Eo) or E]") which
leads to a 6-vertex not adjacent to Q then the degree specification of this vertex
may be lowered to 5. (In Figure 14g, C is derived from C by one application
of Operation 2. In Figure 14i, C is derived from C by application of two
operations, either both Operation 2, introducing D22) first and A]2) second or
one application of Operation 2 introducing A]2) and one of Operation
introducing D22).)
Theorems 4 and 5 are important consequences of the definitions above.

THEOREM 4 (see diagram). Suppose that C is a modification of either a
plugged cluster or a plugged Vs-nei#hborhood, C’, with core C* (notation as in

Definition M). Suppose that C is a plugged configuration with core C, that
Cg’ is a specialization of Cd and that 9" ICl IC’l is a combinatorial embed-
ding which respects the leg-specifications ofC’ and C’ and which maps ICl into

Then there exist configurations C’oo, Coo, Co, C, and an immersion

#o: ICol ICI so that the following hoM:
(i) C’oo is a plugged configuration and is obtained from C by lowering the

degree-specifications "six" to "five" at boundary vertices, say V x,..., V s,



UNAVOIDABLE SETS 253

(s may be zero) of C( which are not adjacent to the special vertex of C) (by
removing one leg from each such vertex).

(ii) Coo is a modification of C’oo.
(iii) Co is obtainedfrom Coo by attaching integral discharging situations, say

C1,..., C s, so that for each r 1,..., s, the main V5 of C" with identified to
V and the pivot of C is not identified with an), fully specified vertex of Coo.

(iv) C is a specialization of Co and go respects the leg-specifications of
C and C.

(v) go ICl ICl.

o

go’ ooo" oo
C# st 2 C# # st3a

st 3b

C’ Cmodification

6 to 5
> C)0 modification C00

attach Crs

# C -----’Coo0

gO

THEOREM 6. Let C" be derived front C’ by Steps 1, 2, and 3a of the pre-
modification procedure (notation as in Definition M). Then there is a one-to-one
correspondence between the 5-vertices of C’ and those 5-vertices of C" which are
not D}’)’s so that the correspondence has thefollowing properties.

If a 5-vertex V of C" is joined by an edge E" of C" to some vertex V () of
C # # then the corresponding 5-vertex V of C’ is joined by an edge, say E’, of
C’ to the same vertex V () of C* (recall that [C*[ [C # # 1); moreover, if V

and E’ E", and if V’ does not belong to C # #belongs to C # # then V V5
then E’ and E" correspond to the same leg A).

1. The preliminary discharging

DEFINITION P. The k-ary preliminary discharging situations and the corres-
ponding discharging tracks, etc., are defined by recursion on k as follows. By a
preliminary discharging situation we shall mean a k-ary preliminary discharging
situation for any k 1, 2,....

(k 1) The primary preliminary discharging situations are defined in
Definition K (Tables 3 and 4).

(k n + 1) The (n + 1)-ary preliminary discharging situations are de-
fined to be those configurations C which have the following properties.

(i) C is a modification by primary, secondary,..., n-ary preliminary dis-
charging situations (where at least one n-ary situation is actually attached) of
some plugged primary preliminary discharging situation C’ (with plug-specifica-
tions as given in Tables 3 and 4).

(ii) C does not contain any geographically good configuration. The dis-
charging tracks, etc., in C are defined to be induced by the modification C’ C
(using the notation of Definition M) as follows.
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(iii) If (Vs, V) is an integral discharging edge (if (V V), (V V),5, 5,

u 2, 3, or 4, are the members of a partial discharging track system) in
then (f)(Vs),f}(V)) is an integral discharging edge (then (f(V), f(V)),

(f(}V;’), f}(V)) with the discharging designations of (V, V),...,
(V ;’, V) respectively, form a track system) in C. Also if (V ;, V) is an integral
discharging edge (if (V ;, V),..., (V ;", V) are the members of a track system)
in C’ then (f"(V ), f"(V)) is an integral discharging edge (then (f"(V ;),
f"(V)),... (f"(V"" f"(, V)) form a track system) in C, where V is either
identical to V (if V is not a plug vertex of C’) or corresponds to V in the
sense of Theorem 6, etc.

(iv) We designate the pivot of C to be thef"-image of the pivot of C’.
(v) C does not contain any subconfiguration which is an m-ary preliminary

discharging situation with m < n and with same discharging tracks and pivot
as defined for C in (iii) and (iv).

If C’ is an integral discharging situation (a partial discharging situation) then
C is also called an integral discharging situation (a partial dischartin# situation).
A V5 that discharges to the pivot of C is called a main V of C. The essential
part of C is defined as in Definition K.

DWVNmON Q. Let D be any triangulation or configuration. We define
integral dischar#intt edges and partial discharging track systems in D to be
induced by immersions of preliminary discharging situations" Supposef: IcI
ID[ is an immersion which respects the leg specifications of C and D, where C
is a specialization of a preliminary discharging situation. Let (Vs, V) be an
integral discharging edge (let (V, V),..., (V , V) be the members of a track
system in C). Then (f(Vs),f(V)) is an integral discharging edge ((f(V),
f(V)), (f(V),f(V)) with the discharging designations of (V V),59

(V , V), respectively forming a track system) in C.
We define the char#efunction q to be derived from q by integral dischar#in#

as follows. If (Vs, V) is an integral discharging edge in D and if the degree of V
is fully specified in D then charge 60 is transferred from V5 to V. (This is done
simultaneously for all integral discharging edges in D.)
We define the charge function q derived from q’ by partial dischargin9 as

follows. Suppose that (V , V),..., (V , V), u 2, 3, or 4 are the members of
a track system ’- in D. For each track (V V), u, we define its
(partial) dischar#in# value Pa( ViS, V) in - by the following rules.
(PDI) If u 2 and if some track in - is also an integral discharging edge

inDthenPa-(Vi V) 0forbothi= 2.5

(PD2) If(PD1) does not apply and ifeither q(V) > 0foralli u
or qt(V) < 0 for all 1,..., u, then

Pa-(V, V) 45 if (V 5, V) is a 45-discharging track in -30 if (V, V) is a 30-discharging track in

15 if (V V) is a 15-discharging track in -.
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FIGURE 15

FIGURE 16

(PD3) If (PD1) and (PD2) do not apply and if q(vi) > 0 precisely for
l,..., iv where < v _< u, then

P’(V, V) 60Iv if e {il iv} and " is a (30, 30)- or (30, 15, 15)-
system,

120/v if e {ix,..., iv} and -" is a (30, 30, 30, 30)- or
(45, 45, 30)-system,

0 ifie {i,...,

We transfer the charge P(Vi V) Maxa- {pa- (V V)} from V to V
(where the maximum is taken over all track systems - in D to which the track
(V V) belongs. P(Vi V) is called the partial dischargin9 value of (V V)
in D. This is done simultaneously for all tracks in D (for examples see Figures
15 and 16).

It should be noted that integral and partial disehargings each always increase
the charge of a major vertex by a multiple of 60 units of charge. This may be
restated as follows:

THEOREM 7. If Vk is a major vertex of a trian#ulation or confi#uration D then
q(Vk) is an inteyral multiple of 60.

DEFINITION R. Let D be any configuration or triangulation and let Vk be
any fully specified vertex with degree k >_ 6. For 0, 1, 2, we define v to
be the number of positive Vs-neighbors of Vk in (D, qO); and L v(Vk) +
(1/60)q(Vk) the load of Vk in (D, qO).
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TABLE 5

12. Finiteness and classification of the preliminary discharging situations

DEFINITION S. We distinguish the following classes of secondary and tertiary
preliminary dischargin9 situations (see Tables 5 and 6). We have:

Class (Ca) (two members up to degree equivalence), Class (FA) (two mem-
bers), Class (H c), (two members), Class (KA) (one member). These classes arise
from modification of members of Classes (C), (F), (H), (K), respectively, by A
or C so that no new neighbors of the pivot are introduced.
We have Class (CA) (four members), Class (CB) (six members), Class (Cc)

(one member), Class (CcA) (four members), Class (Caa) (one member), Class
(Cj) (twelve members), Class (CK) (five members), Class (CKA) (two members),
Class (CL) (nine members). These classes arise when C is modified by a member
of (A), (B), (C), (cA), (J), (K), (KA), (L), or by two situations A1, so that at
least one new neighbor to the pivot is introduced (44 situations in Classes
(Cx)). We have Class (Fa) (eight members), Class (FB) (twelve members),
Class (Fc) (,two members), Class (FcA) (eight members), Class (Faa) (two mem-
bers), Class (F) (twelve members), Class (F) (five members), Class (Fra) (two
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TABLE 6. The 207 secondary and tertiary preliminary discharging
situations of Classes (Xr). Part 1.

C4

members), Class (FL) (nine members). These classes arise when F1 or F2 is
modified so that at least one new neighbor to the pivot is introduced (60 situa-
tions in Classes (Fx)). We have Class (Ha) (sixteen members), Class (HB) (twelve
members), Class (Hc) (two members), Class (Hca) (eight members), Class (HAA)
(two members), Class (Hs) (twenty-four members), Class (Hr) (ten members),
Class (HrA) (four members), Class (HL) (eighteen members). These classes arise
when a member of Class (H) is modified so that after removal of not fully
specified vertices and hanging l/5’s an articulation vertex remains adjacent to
the pivot (96 situations in Classes (Hx)).
The classes defined above and in Definition K contain 128 integral discharging

situations, up to degree equivalence. For these we introduce another (coarser)
classification as follows (see Tables 3, 5, and 6). Class Ik is defined to be the
set of all those integral discharging situations which contain precisely k non-5-
neighbors of the pivot. In detail, we have the following (by inspection).

r (A) w (D) (three members).
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TABLE 6. Part 2

If we include in (E) situations E, E’, E v, and E ^,

F2 (B) w (C) w (E) w (CA) w {those 22 members of (CA), (Ca), (Cr),
(Cry), (C) in which a V5 of the modifying situation is adjacent to the pivot of
the modified situation} (32 members);

F3 (F) w (G) w (FA) w (Ca) w (Cc) w (CAA) W (CcA) W {those ten mem-
bers of (CA), (Ca), (Cr), (Cra), (CL) which are not in F2} w {24 members of
Classes (Fx), X A, B, C, CA, AA, J, K, KA, L} (57 members);

F4 {those 36 members of Classes (Fx) which are not in F3 }.

Moreover we define F2.1 and F2.2 to be the subclasses of F2 consisting of
those configurations C with tk(C) or b(C) 2, respectively. In detail we
have

F2.2 {Situations C and F}.

F2.1 F2 F2. 2.

In the following sections we shall prove that the 253 preliminary discharging
situations of Definitions K and S are all the preliminary discharging situations
which exist (by Definition P).

Remark. One may use the -values of primary discharging situations to
partially determine their behavior under modification. The situations of
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TABLE 6. Part 3
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Classes (A), (B), tD), (G), (I), (J), (K3), (L), (E v), (E ^), and (E’) have C-values
of 1. Every modification of one of these situations will be seen to have a geo-
graphically good subconfiguration. (It appears that every nontrivial modifica-
tion reduces the C-value of the configuration which is modified; but we have
not attempted to prove this.) The situations of Classes (C), (E), (F), (H),
(K1), (K2) have C-values of 2 and admit modifications without geographically
good subconfigurations.

MAIN LEMMA 1. Let C’ be a primary preliminary discharging situation with
plug-specifications as defined in Tables 3 and 4. Let C be a modification of C’.
Then either C contains a geographically good subconfiguration in Size Class
(12, 18) or C is (degree equivalent to) one of the 253 situations described above
(Definitions K and S).

COROLLARY (FINITENESS THEOREM). There are only finitely many (253)pre-
liminary discharging situations. In particular, each of these lies in one of the 44
classes (A),..., (H) and thus in Size Class (7, 9) while the maximum distance

of a vertex from the pivot is 4.

COgOLLhgX (DIhMZg TnzogzM). If C is a premodification of a plugged
configuration ofdiameter D then the diameter of C is at most D + 8.

Proof We prove Main Lemma via a sequence of lemmas and theorems
some of which will be used again elsewhere. Using the recursive definition of
preliminary discharging situations (Definition P) we proceed formally as fol-
lows. By a classified preliminary discharging situation we mean a preliminary
discharging situation which belongs to one of the classes described above. A
restricted (pre)modification is a (pre)modification in which all preliminary dis-
charging situations used are classified preliminary discharging situations. In
each of the theorems and lemmas in the following sections, the restricted version
of the theorem or lemma will be the statement with "preliminary discharging
situation" replaced by "classified preliminary discharging situation" and
"(pre)modification" replaced by "restricted (pre)modification". We shall first
prove the restricted versions of these lemmas and theorems. Finally, in Section
17, the restricted lemmas and theorems will be used to prove the restricted ver-
sion of Main Lemma 1. But this will immediately imply (by Definition P) the
unrestricted Main Lemma (which says that there are no preliminary dis-
charging situations other than the classified ones). This will immediately imply
the unrestricted lemmas and theorems. Thus, in what follows we restrict
ourselves to the consideration of classified preliminary discharging situations
without special mention.

TrtEORM 8. If C is a preliminary discharging situation not in Classes (H),
(H c), (HI), or (I), then no vertex of the essentialpart ofC except the pivot is bad.
If C is a partial discharging situation in (H) (in (H c), (HI), or (I)) then precisely
two (precisely one) vertices of the essential part of C are bad and these are 4-
leggers adjacent to the pivot.
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THEOREM 9. If C b an integral discharging situation the following conditions
are satisfied.

(i) The main V5 of C has at most one neighbor of degree five in C.
(ii) If the main V5 of C has a neighbor of degree five which is also a neighbor

of the pivot then C lies in F1.

COROLLARY (SIZE-CLASS THEOREM). Let C’ be a plugged configuration of
diameter D such that degc’ (V) is specified, L’(V) > 0 and degc’ (V) <_ k for
each vertex V of C’. IfC is a modification of C’ then C is in Size Class (D + 8,
k+ 10).

13. The extension lemma

In this section we show that the operation of extending a premodification
cannot change a nonwipeout configuration into a wipeout configuration.

LEMMA 4 (EXTENSION LEMMA). Let C be a premodification of a plugged
configuration C’. Let C be a modification of C’ which is an extension of C.
If C contains a geographically good subconfiguration so does C

COROLLARY. Let C’ be a configuration which contains a geographically good
subconfiguration. IfC is a modification of C’ then C contains a geographically
good subconfiguration.

14. The load lemma

The following lemmas deal with the case in which (specializations of) several
preliminary discharging situations discharge to the same pivot.
By detailed analysis, we may conclude that no more than two preliminary

discharging situations can discharge to a vertex Vk of positive load L0 without
forcing the existence of a geographically good configuration. If the load of Vk
is greater than one we obtain even stronger results. We express this in the
following Load Lemma.

LEMMA 8. Let Co consist of a vertex Vk of specified degree k > 7, some 5-
neighbors of Vk and the corresponding edges and triangles. Let C be obtained
from Co and 6 (possibly zero) preliminary discharging situations CI,..., Ca by
merging so that the following conditions are satisfied.

(i) The pivots of the Ci are identified with Vk, the "pivot" of C.
(ii) If Ci is an integral discharging situation then its main discharging edge is

not identified with any integral discharging edge, nor with any track of a 30-30-
track system of any other Cj.

(iii) If Ci and Cj are partial discharging situations then neither of ]Ci], [Cj[ is

identified with any subcomplex of the other.
(iv) The number of 5-neighbors Of Vk in C is at least k 5.
Then C contains a geographically good subconfiguration in Size Class (8,

k + 10) or one of the following applies (see Figure 19).
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FIGURE 19

Case (1) v k 5, i.e., L( Vk) I, and one of three subcases applies.

Subcase (1.0) 6 O.

Subcase (1.1) 6 and CI is in F1 or 1,2 with r 3, 4, or 5 neighbors to
the pivot and k >_ r + 4.

Subcase (1.2) 6 2, k > 8 and one of the.following specifications is fulfilled
(see a, b, c, in Lemma 5).
(I.2.a) CI and Cz are in F with main Vs’s adjacent in C.
(1.2.b) C1 and C2 are in F with no vertices but Vk in common in C and k > 9.
(1.2.c) One ofC, C2 belongs to F l, the other to i’2. 2 and their images in C have
precisely one vertex besides Vk in common and k > 9.

Case (2) v k 4, i.e., Lg( Vk) 2 and one of three subcases applies.

Subcase (2.0) 6 0

Subcase (2. I) 6 and one qf the./bllowing specS’cations is fulfilled.
(2.1.a) C is in Class (A).
(2. I.b) C1 is in Class D) and k > 8.

Case (3) v k 3, i.e., Lg( Vk) 3and6 O.

Case (P) C is obtained from a partial dischar,qin,q situation by attaching at
most one hanging V5 to its pivot and 6 1.
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CASE (/3)

15. Pivot to non-pivot merging

LEMMA 9. Let C be a configuration which is obtained by merging from
preliminary discharging situations C(x) and C(2) so that the pivot V (2) of C(2) is

identified to a major vertex Vk of the essential part of C() which is differentfrom
the pivot V (1) of C().

If so, either C contains a geographically good subconfiguration in Size Class
(12, 9) or one of the following cases applies (see Figure 20).

Case () A specialization of C(2) is degree-equivalent to a subconfiguration
of C() and C is degree-equivalent to C().

Case (fl) C() is E, F1, or F2, C(2) is A1 or J1, and C is E ^, G3, G4,
(F1)a, or G2, respectively.
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16. Building critical modifications in simple steps

To prove Main Lemma we must consider all possible modifications
(Definition N) of primary preliminary discharging situations. The following
observations show that the task is manageable.

(l) We may ignore cases in which a simple application of one of Lemmas 8
or 9 reveals a geographically good subconfiguration.

(2) As we shall show in this section, every "critical" modification can be
built in simple steps by premodifications, each of which extends the preceding
one.

(3) By Lemma 4, we may ignore all extensions of any premodification which
contains a geographically good subconfiguration.
To make these observations precise we employ the following definitions:

DEFINITION T. By a critical combination (of preliminary discharging sit-

uations) we mean a pivoted configuration C as described in the hypothesis of the
Load Lemma (Lemma 8) such that one of Cases (1), (2), (3), (P) of Lemma 8
applies.
A premodification C of a plugged configuration C’ is called critical if the

following hold.
(i) If C is a configuration as described in the hypothesis of Lemma 8 and

if some specialization of C is contained in C then C is a critical combination.
(ii) If C is a configuration as described in the hypothesis of Lemma 9 and

if some specialization of C is contained in C then one of Cases (), (fl) de-
scribed in Lemma 9 applies.
A premodification C of C’ is called a simple premodification of C’ (at V ())

if C (see Figure 21; notation as in Definition M) can be obtained from C" by
merging with some critical combination, say K(’), with pivot identified to V t’)

so that every 5-neighbor of V t’) in C" is identified to some 5-neighbor of the
pivot in Kt’). (Note that Kt’) may contain the image of some C) with fl - ;see Figure 21).
C is called a simple extension of a premodification C of C’ (at V ()) if C

(see Figure 22; notation as in Definition O) is an extension of C which can be
obtained from C by merging with some critical combination, say Kto), with
pivot identified to V to) so that every 5-neighbor of V () in C is identified with
some 5-neighbor of the pivot in Kto). (C may be the trivial extension which is
degree-equivalent to C).

THEOREM 10. Let C’ be a plugged configuration such that everyfully specified
major vertex of C’ has positive load LCo ". Let C be a critical modification (notation
as in Definitions M and O) of C’. Let V(o’), V .) be those boundary vertices

of C* whose degree-specifications are raised in constructing C (i.e., da,,...,
dap > 0; the fit enumerated in some arbitrary order). Then there are pre-

modifications Cto C’, Ctl], Ct,j C of C’ so thatfor each m, < rn :
p, Ctm is a simple extension of Ct, at V to,.) and C is an extension of Ct,.].
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17. The proof of Main Lemma

With the tools developed in the preceding sections, Main Lemma can be
proved with moderate effort by inspection. It is sufficient to consider all
modifications of the primary preliminary discharging situations (Tables 3 and 4)
by preliminary discharging situations of Classes (A),..., (HL) mentioned in the
statement of Main Lemma 1. We have to show that each such modification
either contains a geographically good subconfiguration or is itself in one of the
classes listed.
By Lemmas 8 and 9, we may restrict ourselves to critical modifications.

Using Theorem 10, we can construct these, step by step, by simple pre-
modifications and simple extensions. If, in this process, some step leads to a
premodification which contains a geographically good subconfiguration, then,
by Lemma 4, we need not consider any extension steps.
We consider the 46 primary situations (Tables 3 and 4) one by one, as C’

(notation as in Definition M). In most cases the first nontrivial premodification
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FIGURE 23. Part
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FIGURE 23. Part 2

already contains a geographically good subconfiguration. In order to demon-
strate how relatively easy it is to check this we will treat the case C’ B2
(Figure 23).

First we consider all simple premodifications C at V (2. Since LoC(V (2)) =2
we have LoC(V t2)) > 2. Thus if C is nontrivial (d2 : 0) we have (see Lemma 8,
Case 2) d2 and C2 in Class (A). (Since d2 implies degc (V (2) 7,
the case C2 D is excluded, and because of the 5-vertices A and B, Case P
of Lemma 8 cannot occur).



UNAVOIDABLE SETS 267

Further, the nonmain 5-neighbor of the pivot of C(12) must be identified with
A or B (since otherwise L(V 2) would be three). Thus, for the configuration
C" we have only the two possibilities (2.1) and (2.2) shown in Figure 23 with
O(12) adjacent to A or B. In Case (2.1), C" contains the geographically good
5-5-5 triangle B, D]2), P. In Case (2.2), C contains the image of C]2) with pivot
V t2) of degree 7 and the additional 5-vertex B. This is a geographically good
configuration.
Hence we may assume that the degree-specification of V t2) is not raised in

constructing C.
Next we consider all simple premodifications C at V tl). By essentially the

same argument as in the case of V 2) we conclude that the only possibilities for
C" are (1.1) and (1.2) in Figure 23 and dl with C 1) in Class (A). In Case
(1.1) the image of C) with pivot V) of degree 8, together with the two ad-
ditional Vs’s .4 and B, is geographically good. In Case (1.2) the merging of any
integral discharging situation with central 1/5 identified to D is impossible.
Now we may assume that the degree specifications of F 1) and V t2) are not

raised in C.
It remains to consider the simple premodifications C at F t3. Since LoC(l/(3)

may be as small as one, we have to consider all cases of Lemma 8. Thus d3 is
either one or two. If d3 (degc (V3) 7) then C13 is either a member of
F or of F2 with three neighbors to the pivot, or a partial discharging situation
with F-pivot. If d3 2 (degc (I/3)) 8) then C13 and C23 are either both
in F1 with adjacent main l/s’s or are both partial discharging situations or one
is a partial discharging situation and the other is in Class (.4). Thus we have the
eleven possible cases (3.1),..., (3.11) for C" shown in Figure 23.

In each case it is easily seen (using Theorem 8) that the image of Ctl3 or the
images of C3) and C(23), together with the vertices A, B, V (2) form a con-
figuration which contains a geographically good subconfiguration. This finishes
the treatment of B2.

It turns out that the most complicated case of the 46 is presented by the only
member of Class (C). This case, C’ (C), can be treated as follows (see Figure
24). One difficulty is that there are many simple premodifications of C’ in
which "noncompensated degree raising" (Definition M, Step 3b, Condition 5)
occurs and which wipe out (for examples see Figure 24b). But it is not difficult
to see that in each such premodification, say C, some 5-vertex Dt has been
introduced in one of the places K, L, M (Figure 24a) adjacent to the vertex
V ’) at which the "noncompensated degree raising" occurs (according to Case
(i) in Condition 5, Definition M). This means that if any critical modification
C extends C then C must contain a specialization of some integral dis-
charging situation C’) with main V5 at D.") and the pivot at V t’). But then,
the specialization of C"’), if d" 1, (the specializations of C"’) and C’)

ifd 2) together with the main V5 of C’ form a geographically good subcon-
figuration of C (in contradiction to our hypothesis that C was critical). Thus
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r3 c’c)
FIGURE 24a

FIGURE 24b

FIGURE 24C

we may ignore all those simple premodifications of C’ which are not also
modifications.
Next we consider all simple modifications of C’ at V2) and it is easy to see

that only one of them wipes out; this is (C)l in Table 5. Further, we have to
consider all critical modifications of C’ which are nontrivial extensions of (C)I.
But these must be simple extensions at V (x) (since V (2), V (3), and V() are
overlapped by the image of [C(2)[ in (Ca)l). But each of these contains a
geographically good subconfiguration. By symmetry, the simple modifications
at V (3) do not yield any new cases. Thus we have discussed all critical modifi-
cations of C’ in which the degrees of V (2) or V (3) are raised, and henceforth we
restrict ourselves to critical modifications in which V (2) and V (3) have degrees
six or five.
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Now we consider all simple modifications of C’ at V (1). Precisely 45 of them
(up to degree-equivalence) wipe out. These are the 44 configurations in Classes
(Cx) with X A, B, C, CA, AA, J, K, KA, and L and Configuration (Ca)2 in
Tables 6 and 5. By symmetry, the simple modifications at V (4) do not yield any
new cases. It remains to consider all critical modifications of C’ which are
simple, nontrivial extensions at V (4) of one of the 45 configurations described
above. It is not difficult to see that each of these contains some geographically
good subconfiguration.

Remark. This is one of the very few occasions where our discharging
procedure leads to rather large geographically good configurations (n > 20,
diameter > 6)which do not contain smaller geographically good subconfigura-
tions (see the example in Figure 24c). Note that each of the over-size configura-
tions has two articulation vertices.
The remaining configurations of Tables 3 and 4 are discussed similarly. The

only other cases which lead to over-size geographically good configurations are
H1, H2, and H3 (and again each of the large configurations has two articulation
vertices). This finishes the proof of Main Lemma 1.

18. The overcharging lemma for q2

Now we can prove that q2-overcharging implies the presence of geographically
good configurations.

THEOREM 11. Let D be a triangulation or configuration. Suppose that Vk is a
major vertex of D with fully specified degree k and that q(Vk) > O. Then at
least one of the following cases applies:

Case 1. D contains a specialization of a configuration C as considered in the
Load Lemma (Lemma 8) so that either (1.a) 6 > k 6 or (1.b) 6 k 6 2
and at least one of CI, C2 is a partial discharging situation.

Case 2. D contains a specialization of a configuration C (as considered in
Lemma 9) such that C() is a partial discharging situation and such that C2) is
not identified with a subconfiguration of C().

Case 3. D contains a specialization ofa configuration C such that C is obtained
from two partial discharging situations C(x) and C2) by merging in such a way
that the following conditions are satisfied.
(3.1) Some vertex V(k2) (k 7 or 8) of C(2) which is the receiving vertex of a
partial discharging track system ’-2) in C2) is identified with some vertex Vk)
of C) which is the receiving vertex of a partial discharging track system -) in
C(X).
(3.2) V(x) is differentfrom thepivot ofC(x), and g(k2) is differentfrom thepivot
of C2.
(3.3) The qCz-value of the image of V) (which is the q-value of the image of
V 2 )) is positive.
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LEMMA 11. (OVERCHARGING LEMMA FOR Q2). Let D be a triangulation or
configuration. Suppose that V is afully specified major vertex ofD andq(V) > O.
Then D contains some geographically good configuration in Size Class (10, 15).

19. The fractional discharging

DEFINITION U. Let D be a triangulation or configuration. We define the
charge function q3, which is obtained from q2 by fractional discharging, by the
followingfractional discharging algorithm. Suppose Vs is a 5-vertex of D which
fulfills the following conditions.

(FD1) Vs is an interior vertex of D and all five neighbors of Vs are fully
specified in D; moreover q(Vs) > O.

(FD2) Vs has at least one q2O-negative major neighbor in D. Moreover if
q(Vs) > 30 then Vs has at least two q-negative major neighbors in D.

(FD3) If V is a q2O-negative major neighbor of Vs in D then

if-180 < q(V) < -60 thenL(V) <_ 3,

if q(V) -240

if qa(V) -300

We define the capacity of V in D by6

then L(V) <_ 4,

then LO(V) < 5.

Cap (V)= {(V)I/v(V) if deg (V) >_ 7 and q(V) < 0

if deg (V) < 7 or q(V) > O.

Under these conditions, charge q(Vs) is transferred from Vs to its qOE-negative
neighbors in fractions by the following step-by-step procedure (see Figure 26).

Let h(Vs) be the sum of the capacities of those k neighbors of Vs which have
capacities at least 30 (k may be zero as in the case of Z1 in Figure 26). If
h(Vs) < q(Vs) (as in the cases of Z2, Z3, in Figure 26) then each such neighbor
is assigned additional charge from Vs equal to its capacity and the sequential
procedure below is applied. If h(Vs) > qO2(Vs)(as in the case of Z4 in Figure
26) then the k neighbors V of capacity greater than 30 are assigned charges
cap (V) (h(Vs) q(Vs))/k. In this case the discharging is completed at
the Vs.

If the first case above has applied let do q(Vs) h(Vs). By (FD3) the
remaining neighbors with negative charge fall into three classes. Class a
consists of vertices of capacity 15 (q2 -60, L 3); Class fl consists of
vertices of capacity 20 (q -60, L 2); Class consists of vertices of

6 We regard the integrally discharged Vgs as completely taken care of but the partially
discharged Fs are still considered critical. Thus we use vl rather than v2. Note that FD1
implies vl > 0.
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FIGURE 26

capacity 24 (q -120, L 3). Let n(c) (c , fl, 7, or w fl) denote the
number of vertices in Class c. We define the discharging step S(c, b) with initial
charge d and parameter b as follows. If n(c) 0, do nothing. Otherwise let
r min (din(c), b). Assign additional charge r to each neighbor of Class c.
Let d’ d r" n(c). If d’ 0 the procedure is completed, otherwise proceed
to the next step.
With d initially do the following steps are applied in the indicated order until

the procedure halts: S(7, 16), S( u/3, 10), S(7, 4), S( u fl, 5), S(7, 3),
s s), s 7), s(/% 10), s s).
The total charge which is transferred according to this algorithm from V5 to

a major neighbor, say V, of V5 is denoted by Fo(V, V) and called thefractional
discharging value of (V5, V) in D. (In Figure 26 the F(V5, V)-values are
indicated in the drawing.)

This discharging algorithm is applied simultaneously to all Vs’s in D which
fulfill conditions (FD1), (FD2), and (FD3). The charges of those Vs’s which
do not fulfill the conditions are not changed. We define F(Vs, V) to be zero
in these cases. The charge function on D so obtained is called q . Note that the
algorithm significantly distinguishes large capacities (> 30) from small capacities
(< 30, i.e., 15, 20, or 24) in such a way that a vertex of large capacity cannot
receive more charge than its capacity from any one of its Vs-neighbors and thus
can never be "overcharged."
Our remaining task is to exhibit, for every triangulation T, a geographically

good configuration in the neighborhood of every q-positive (non-6)-vertex in
T (so that one finite set of such configurations suffices for all triangulations T).
Trivially q (V6) 0 for each vertex of degree 6. Since we have already proved
Lemma 11, we need not consider the case of q2-positive major vertices.

20. qt neighborhoods

If V is a vertex of degree j 6 in a triangulation T and if V belongs to a
subconfiguration C of T, then it may happen that qC(V.) qr,(V) for 1,
2, or 3. But if C contains a sufficiently large neighborhood N of V in T then
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qC and qr will agree on V. and if q(V.) > 0 we shall have to exhibit a geo-
graphically good configuration in N. In the following sections this task will be
reduced, in several stages, to the consideration of smaller and more restricted
configurations than N (such as plugged clusters of V-neighborhoods).

DEFINITION V. Let T be a triangulation and let V. be a vertex of T of degree
j : 6. Let N be a configuration which is obtained by merging from a con-
figuration CO and preliminary discharging situations C1,..., Cu. Denote the
merging immersions: ICl -, INI byfk (k 1,..., u). Let f:lNI ITI be an
immersion which respects the leg-specifications of (some specialization of) N
and of T so that f maps some vertex Q of N to V.. Then the pair (N, f) is
called a qt-neighborhood of Vj in T (with pivot Q) if the following conditions are
fulfilled (according to whether 1, 2, or 3 and whether j 5 or j _> 7).

Case I. 1, j 5. Then CO is a single 5-vertex, say QO, and C1,..., C
are integral discharging situations satisfying the following conditions"
(I.i) QO and the main Vs’s of the C’s are identified with Q.
(I.ii) If E is any integral discharging edge in T which leaves Vj then E has as
preimage (underf) an integral discharging edge in N.

Case II. 1, j >_ 7. Then CO is a single j-vertex, say QO, and C1,..., C
are integral discharging situations satisfying the following conditions.
(II.i) QO and the pivots of the C’s are identified with Q.
(II.ii) If E is any integral discharging edge in T which leads to V. then E has
as a preimage an integral discharging edge in N.

Case Ill. 2,j 5. Then Co is a single 5-vertex, say QO, which is
identified to Q, and C1,..., C satisfy the following conditions.
(Ill.i) For each 1,..., u, at least one of the following holds:

(i.a) Some discharging V5 of C is identified with Q.
(i.b) C is an integral discharging situation with main Vs identified with some

discharging V5 of some Ck which satisfies (i.a).
(III.ii) If - is any track system in T one of whose tracks leaves V. when --has as a preimage a track system in N (with the same discharging designation
of corresponding tracks).
(III.iii) If E is any integral discharging edge in T which leaves either V or any
discharging Vs of some track system -- as considered in (III.ii) then E has a pre-
image which is an integral discharging edge in N.

Case IV. 2,j > 7. Then CO is a single j-vertex, say Qo, which is
identified with Q, and C1,..., C satisfy the following conditions.
(IV.i) For each 1,..., u, some receiving vertex of C is identified with Q.
(IV.ii) If o is any integral discharging edge (any track system) in T which
discharges to V then has an inverse image which is an integral discharging
edge (a track system) in N.
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Case V. 3, j 5. Then CO is a (fully-specified)plugged Vs-neighbor-
hood, the central Vs, say QO, of which is identified with Q, and C,..., C
satisfy the following conditions.
(V.i) Every 5-vertex of T which is adjacent to a major neighbor of Vj in T has
a preimage (underf fo) in C.
(V.ii) For each 1,..., u, at least one of the following holds.

(i.a) Some discharging V5 of C is identified to Q.
(i.b) C is an integral discharging situation with main Vs identified with some

discharging V5 of some Ck which satisfies Condition (i.a) or with some V5
of CO

(i.c) Some receiving vertex of C and some neighbor vertex of QO in CO are
identified.
(V.iii) (N, f) contains a q2-neighborhood of V in T with pivot at Q. By this
we mean that there exists a qz-neighborhood (N ~, f~) of Vj in T with pivot Q~
as defined in Case III and an immersionfV IN~I _0 INI which respects the leg
specifications of (some specialization of) N and N so that f~ f fv and

(V.iv) For each major neighbor Vk of Q in N, (N, f) contains a q2-neighbor-
hood off(Vk) in T with pivot at
(V.v) For each V5 in C, (N, f) contains a ql-neighborhood off(f(V5)) in
T with pivot at f(Vs).

Case VI. 3, j >_ 7. Then CO is a plugged cluster (Definition I), the
pivot, Qo, of which is identified with Q, and C,..., C satisfy the following
conditions.
(VI.i) If a major vertex V* of T is adjacent to a V-neighbor of V, and if V*
is adjacent to some other 5-vertex, say V, of T, then V has a preimage (under
f fo) in C.
(VI.ii) For every fully specified major vertex Vk of C, N contains a q2-

neighborhood off(f(Vk)) in T with pivot at f(Vk).
(I.iii) For every 5-vertex (for every central 5-vertex) V o of C, N contains a
ql-neighborhood (N contains a q2-neighborhood) off(f(V5)) in T with pivot
at.f(V o5).
(VI.iv) N can be obtained by merging from Co and the q2- and q-neighbor-
hoods mentioned in (VI.ii) and (VI.iii).
The configuration N itself is called a qcneighborhood (of Q). The f-image

of the core Co is called the core of N. A qt-neighborhood of a major vertex Q
is called qt-overchargin9 if qt(Q) > 0 and qt_ (Q) < 0.

THEOREM 12. Let T be a triangulation and V. a vertex of T with degree
j v 6. Then for each l, 2, 3, there exists a q-neiyhborhood N of V in T,
andfor the pivot Q ofN we have q(Q) qf(V).

MAIN LEMMA 2. IfN is a q3-neighborhood ofa vertex Q such that q(Q) > 0
then N contains a geographically good configuration in Size Class (14, 23).
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The proof of this lemma is described in the following sections. The case that
Q is a major vertex with q(Q) > 0 is taken care of by Lemma 11. Thus we
must consider the cases that Q is a vs, and that Q is a major vertex and N is
q3-overcharging.

In each case we must exhibit some geographically good configuration in N.
As stated in the introductory sections, 5 and 6, we shall essentially reduce this
task to the consideration of plugged clusters of Vs-neighborhoods (or in the
case that Q is a 5-vertex, of a single plugged Vs-neighborhood). Certainly we
may ignore such neighborhoods if they contain configurations described in
previous lemmas and we have previously proved that they contain geographically
good configurations. The remaining q3-neighborhoods will be called arranged
q3-neiyhborhoods (Section 21). For each arranged q3-neighborhood N we can
exhibit (Section 22) some plugged cluster N’ and some modification N of N’
such that the core ofN is identical to the core N* ofN and such that N contains
all those preliminary discharging situations which are contained in N and
weakly overlap N*. Moreover, for each major vertex of N’ there is a one-to-one
correspondence between its 5-neighbors in N’ and those of its 5-neighbors in N
which are not main Vs’s of weakly overlapping inteyral discharging situations.
We shall call N’ a demodification of N. We know from previous lemmas and
theorems that if N’ contains a geographically good configuration then so does
N and thus also N. The crucial question at this point is whether N

q3 (Q) > 0
always implies q’(Q) > 0. In Sections 23 and 24 we shall show that the answer
"no" occurs only in a few exceptional cases where complications are caused by
some strongly overlapping preliminary discharging situations in N which are
not present in N’. In some of these exceptional cases a geographically good
configuration can immediately be exhibited; in all of the remaining cases an
augmented plugged cluster N can be derived from N’ either by a simple
modification or by attaching a strongly overlapping preliminary discharging
situation, so that q3(Q) > 0 implies qV ~(Q) > 0. With this, the consideration
of q3-neighborhoods is reduced to the consideration of arranged q3-overcharging
augmented plugged clusters (which will be described in Sections 25, 26 and 27).
The case that Q is a 5-vertex will have been completely treated in Section 23.
We shall describe (in Section 21, Tables 7 and 8) 49 classes of arranged q3-

neighborhoods such that every q3-overcharging arranged q3-neighborhood N is
contained in (at least) one of these classes and such that a convenient treatment
of all regular and exceptional cases is possible.

21. Arrangements

In this section we describe those q3-neighborhoods which will require more
detailed consideration.

DEFINmON W. By an arrangement we mean one of the 49 configurations
drawn in Tables 7 and 8. The (interior 7- or 8-) vertex marked Q is called the
pivot of the arrangement. The eight simple arrangements of Table 7 do not
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TABLE 7. The simple arrangements

contain any discharging tracks while the forty-one augmented arrangements of
Table 8 contain specializations of integral or partial discharging situations. For
the simple arrangements we use the obvious notation 71"55 w 5.., etc. of
Table 7. For the other arrangements we write 8[65 $ 5 w 55..(A1), 71 w
55 II 55 (G1), 7 5 w 5 w 5. (L2r), etc. where the largest discharging situation
a specialization of which is contained in the arrangement is indicated in
parentheses and is called the augmentin9 configuration of the arrangement. The
arrow indicates the discharging Vs, and the letter r indicates that the discharging
situation is reflected (i.e., contained with orientation opposite to that in the
drawing in Table 3, 4, or 5).
Each arrangement Xcontains a subconfiguration X*, a specialization of which

is a cluster of Vs-neighborhoods. X* is called the core of X. The core X* of X
together with all Vs’s of X which are adjacent to vertices of X* (and the corres-
ponding edges and triangles) is called the plu99ed core of X. In Tables 7 and 8,
the plugged cores are indicated by heavy drawings and the plug-V’s are marked
p; those arrangements which are identical with their plugged cores are marked
I. The arrangements marked II and III can be obtained from their plugged
cores by attaching one preliminary discharging situation which weakly or
strongly overlaps the core X*, respectively. If X is a specialization of an
arrangement X then a vertex V of X is called originally specified if it is fully
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AI Az AI A2

AI Az

TABLE 8. Part 1" The augmented arrangements

specified in X. A specialization ofan arrangement which contains an augmenting
configuration and in which all neighbors of the central Vs’s are fully specified
is called an augmented cluster (of Vs-neighborhoods); an augmented plugged
cluster is obtained from an augmented cluster by attaching plug-Vs-neighbors
to vertices of the core. An augmented or nonaugmented plugged cluster is
called moderately plugged if it does not contain any discharging situation J1 or
L1 all 5-vertices of’which are plug-V’s of the (augmented) cluster.

DEFINITION X. A q3-neighborhood N of a vertex Q is called arranged if it
has the following properties.

(1) Q is not the receiving vertex of any partial discharging track system in N.
(2) If Vk is a fully specified vertex of N with degree k >_ 7 then the following

conditions are satisfied.
(2.1) qS2(Vk) <_ O.
(2.2) If caps (Vk) < 45 and if C is a configuration as described in the hypo-
thesis of the Load Lemma (Lemma 8) such that N contains a specialization of C
with pivot at Vk then C is a critical combination.
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TABLE 8. Part 2

TABLE 8. Part 3
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(3) If N contains any specialization of a configuration C which is obtained
by merging from two preliminary discharging situations as described in the
hypothesis of Lemma 9 then one of Cases (), (/3) of Lemma 9 applies.

(4) If N contains a specialization Co of a configuration Co which is obtained
from some primary preliminary discharging situation C by 6-to-5 degree
lowering, subsequent modification, and attachment of integral discharging
situations as described in Theorem 4 then one of two cases applies.
(4.1) Co contains a subconfiguration which is a preliminary discharging situ-
ation with the same discharging tracks and pivot as C.
(4.2) C is H1 and Co is the configuration of Figure 15d.

(5) If Q is a major vertex then the following hold.
(5.1) N contains a specialization of some arrangement with pivot of the
arrangement at Q. We say that N corresponds to the arran#ement X (X in
Table 7 or 8) if N contains some specialization of X with pivot at Q.
(5.2) If X and "2 are arrangements and if xl" I.i’l INI and X2 Igl - Nare immersions which respect the leg-specifications of some specializations )i’i,
X of X, X2 and of N so that the pivots of X, X2 are mapped to Q then there
exists an embedding " Ili’i[ - [Xjl (either l, j 2 or 2, j 1) so that
X Xj Xi

(6) If N contains a specialization C of a partial discharging situation such
that some partial discharging track system of (the image of) C leads to some
vertex Vk in the core N* ofN then at least one of the following four cases applies"
(6.a) Vk is the image of the pivot C, and C weakly overlaps N* (see Definition
L); but if N contains a specialization, say X v, of some arrangement X with
pivot at Q, then Vk is not (the image of) an ori#inally specified vertex of X v.
(6.b) Vk is not the image of the pivot of C, but C contains a proper sub-
configuration, say C , which is (a specialization of) a partial discharging
situation so that Vk is the image of the pivot of C .
(6.c) Every 5-neighbor of Vk in N* is a discharging vertex of (the image of) C.
(6.d) There is an arrangement Xand an immersion x" IXI - INI which respects
the leg-specifications of some specialization X of X and of N so that the
following condition is satisfied. X contains a subconfiguration, say C ~, which
is a partial discharging situation such that x([C~l) is identical to the image of
[CI in N.

(7) If N contains a specialization C of an integral discharging situation with
pivot in the core N* of N then one of the following three cases applies.
(7.a) Q is a 5-vertex and C weakly overlaps N*.
(7.b) Q is a major vertex and C weakly overlaps N* so that the following holds.
If N contains a specialization, say X, of some arrangement X with pivot at Q
then the main discharging edge of C is not identified with any edge of the plugged
core of X which is incident to an originally specified V5 of X moreover, the
pivot of C is not identified to any originally specified vertex of X.
(7.c) There is an arrangement X and an immersion x" IXI INI which
respects the leg-specifications of some specialization X of X and of N so that
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FIGURE 27

the following condition holds. X contains a subconfiguration, say C, which is
a specialization of an integral discharging situation such that x(IC I) is identical
to the image of [CI in N.

(8) N does not contain any modification of any one of the eighteen con-
figurations drawn in Figure 27 (where all Vs’s are specified to be nonplug).

LEMMA 12. Let N be a q3-neiyhborhood of a vertex Q such that qU3(Q) > O.
Then either N contains a 9eographically 9ood subconfiguration in Class (10, 23)
or N is arranyed (or both).

22. Demodification

DEFINITION Y. Let N be an arranged q3-neighborhood of a vertex Q which
is obtained by merging from configurations C,..., C" (according to im-

mersionsfi" iCil
_

INI as described in Definition V). Assume that every sub-
configuration of N which is a specialization of any preliminary discharging
situation has a preimage among C1,..., C and if it is a specialization of one
of L1, L4 that it has at least two such preimages. Further assume that the
enumeration of C C" is chosen so that for some v, 0 < v < u, the
following hold.

(i) The pivots of C,..., C are identified to vertices of the core N* of N,
and C C weakly overlap N*

(ii) If v < < u then either the pivot of C is not identified to a vertex of
N*, or C strongly overlaps N*.

Let N be a configuration which is obtained by merging from C,..., Cv,
compatible with the merging of C, C" to N, such that the pivots of C 1,...,
C" are identified with vertices in C. Denote the corresponding immersions by
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f" ICl Irl and assume that fo and fo agree on the core of C (i.e., that/
has the "same core" N* as N).
Then a configuration N’ (in particular, a specialization of a plugged cluster

if Q is a major vertex, and a plugged Vs-neighborhood if Q is a Vs) is called a

demodification of N and also a demodifieation corresponding to N if N is a
modification of N’ such that (in the notation of Definition M) the following
hold.

(a) The C[) (e 1,..., a; 1,..., d) are some (or all) of C1,..., CO;
the f!) are the corresponding immersions among fl,..., fv; (and, trivially
C’ N’, C 2, and C # N*).

(b) If V (1 < cz < a) is a major vertex of C* and V5 is a 5-vertex of N
which is joined to V by an edge, say E, of N then there are a corresponding
5-vertex, say V’, and a corresponding edge, say E" in C" so that E f"(E")
and V5 f"(V’).

(c) N’ does not contain any weakly overlapping preliminary discharging
situation.

THEOREM 13. Let N be an arranged q3-neighborhood of a vertex Q. Then
there exists a demodification N’ corresponding to N. In particular, one of the
following four cases applies.

Case O. Q is a 5-vertex.

Case I. N corresponds to some arrangement, say X, of the twenty-four
arrangements marked I in Tables 7 and 8, but not to any of the arrangements
marked II or III. Then N’ corresponds to the same arrangement X. In particular,
N’ can be obtainedfrom some specialization ofX by attaching 5-vertices.

Case II. N corresponds to some arrangement, say X, marked II in Table 8.
Then there exists a simple modification, say N, ofN’ by a dischargin9 situation

of Class (A) such that (notation as in Definition Y) is an extension ofN# and
so that N # corresponds to X and can be obtainedfrom a specialization of X by
attachin9 Vs’s.

Case III. N corresponds to some arrangement, say X, marked III in Table 8.
Then there exists a configuration, say N’+, which contains N’ as a proper sub-
configuration and which can be obtained from N’ by attachin9 one preliminary
discharging situation (D, J2, K1, J6, or L4) so that N’+ corresponds to X, and
can be obtainedfrom a specialization ofX by attaching Vs’s.

23. qa-positive 5-vertices

In this section we prove Main Lemma 2 for the case that Q is a 5-vertex.

LEMMA 14. Suppose that N is an arranged q3-neighborhood of a 5-vertex Q
such that q(Q) > O. Then N contains a 9eographically good configuration in
Size Class (1O, 10).
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24. q3-overcharging

We still must prove Main Lemma 2 for the case of arranged, qa-overcharging,
qa-neighborhoods N. By Theorem 13, there is a demodification N’ corre-
sponding to N; and, in case of arrangements labelled II or III there exists a
configuration N# or N’+, respectively, as described in Cases II and III of
Theorem 13. In this section we consider all cases in which N’, N #, or N’+,
respectively, is not qa-overcharging and thus we essentially reduce the question
of qa-overcharging to the consideration of the relatively simple configurations
N’, N, and N’+.

THEOREM 14. Let X be a specialization of an arrangement X with pivot Q,
and let N be an augmented or nonaugmented plugged cluster which is obtained

from X by attaching plug-Vs’s to its core N*. Suppose that C is a preliminary
discharging situation such that a subconfiguration C of N is a specialization
of C. Then one of the following cases applies (see Figure 34).

Case (i) C is a subconfiguration of the augmenting configuration M ofX.
Case (ii) The degree of the pivot of C is 7 or 8 and C together with all

5-neighbors of its pivot in N is not a critical combination (see Definition T).

Case (iii) C is a primary situation, and C is contained in the plugged core

ofN so that either qU2~(Q 0 or caps~ (Q) > 30.

Case (iv) C C is J or L1 and weakly overlaps N*.

Case (v) C C" is one ofill, J1, L1, (H1)rl, (H1)z.1, (H2)s, (H2)z.1 and
strongly overlaps N* so that Case (iii) does not apply.

LEMMA 15. Let N be a q3-overcharging, arranged q3-neighborhood of a major
vertex Q. Let X be a specialization of an arrangement X which is a subcon-
figuration of N with pivot at Q. In case X is simple suppose that N does not
contain any specialization of any augmented arrangement with pivot at Q. If X
is augmented we denote the augmenting subconfiguration of X by M, and its

specialization in X" by M ".
Let N’ be a demodification corresponding to N, and, in case X is of type II or

III, let N or N’+ be derivedfrom N’ as described in Case II or III of Theorem
13. Further suppose that none of the central Vs’s ofN* is qUa-positive. According
to whether Case I, II, or III applies, we denote N’, N, or N’+ by N ~.

Let Z be a central V5 ofN* which is not the main V5 ofany specialization ofany
integral discharging situation in N, i.e., qUx(Z) 60. Let F be the fractional
discharging value of (Z, Q) in N (see Definition U), and let F be the fractional
discharging value of (Z, Q) in N ~. Then either F >_ F or N contains a geo-
graphically good configuration in Size Class (10, 23).
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COROLLARY. If N and N are as in Lemma 15 then either N is q3-over-

chargin9 or N contains a geographically good configuration as described in
Lemma 15.

Supplement. If N and N are as in Lemma 15 then either N is arranged
(and moderately plugged) or N contains a geographically good configuration as
described in Lemma 15.

25. Critical plugged clusters

The remaining task is to examine all q3-overcharging arranged (augmented
or nonaugmented) moderately plugged clusters N for geographically good
subconfigurations. This appears to be the largest case-enumeration problem of
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the procedure, and extensive computer work was required in order to find the
most suitable fractional discharging algorithm (Section 19) and the most suitable
list (Tables 3 and 4) of primary preliminary discharging situations. It is essential
that all disastrous cases (in which a q3-overcharging N does not contain any
geographically good subconfiguration) are eliminated by the preliminary dis-
charging situations (each such N now contains some primary preliminary
discharging situation which prevents N from being q3-overcharging and, in
particular, makes N nonarranged). Moreover, many cases which would yield
excessively many or excessively large geographically good configurations have
been eliminated in the same way. This has reduced the complexity of the
enumeration problem by an order of magnitude. For treating those cases in
which N corresponds to one of the four simple arrangements 7l 55 w 5..,
7 -55..5-, 7 "55"55", 8 .555 w 55. we have used a computer program to
print the relevant cases and exhibit the geographically good subconfigurations
(for more details see Section 27). For all other arrangements, relatively simple
theoretical arguments are sufficient for proving the existence of geographically
good subconfigurations.

In view of the fact that relatively few of the q3-overcharging N~’s have cores
N* with 5- or more-legger vertices, we found it most convenient to first enumer-
ate only those basic N*’s which do not contain any 5- or more-legger vertices.
Then, in each case, we discuss those N~’s which can be derived from N* by
adding plug-Vs’s so as to obtain q3-overcharging. Afterwards we consider those
nonbasic cores which can be derived from N* by raising the degrees of 4-1egger
vertices. In this section we further reduce the enumeration problem by taking
care of all those qa-overcharging N~’s which contain some plugged Vs-neighbor-
hood say C, such that C contains a geographically good subconfiguration. We
do this by determining for each type C* of Vs-neighborhood (which can occur
in a basic cluster N*) the maximal charge-contribution its central V can make
(during the fractional discharging) to the pivot Q (of any N whose core con-
tains C*), if plug-Vs’s are added to C*. We need consider only those cases in
which the added Vs’s do not create a geographically good subconfiguration (see
Table 9). Each basic N* contains 3, 4, or 5 Vs-neighborhoods, and we may
ignore all those N*’s for which the sum of the maximal contributions of those
V-neighborhoods is not greater than [qE(Q)[ (which is 60 or 120). It turns out
that most basic clusters N* are noncritical in this sense and can be ignored; in
fact, for some arrangements, all cases are noncritical.

Remark. While the argument of maximal contributions described above is
extremely effective in the present context, it is expected to be much less effective
in the case that we permit only geographically good configurations without
hanging pairs. In that case, most maximal contributions will be greater than in
Table 9, and more V-neighborhoods (namely those which contain 5-5-5
triangles) will enter into consideration. For this reason, we expect the enumer-
ation problem in that case to be about ten times larger than in the present case
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(but we expect the number of configurations in the unavoidable set to increase
by a much smaller factor).

DEFINITION Z. Let C* be a Vs-neighborhood with central 5-vertex Z such
that one vertex, Q, of C* of degree 7 or 8 is specified to be the pivot of C*.
Then a rational number F is called the maximal 72-, 73-, or 83-contribution of
C* to Q if the following conditions hold.

(a) There exists an arranged, moderately plugged, l/5-neighborhood C with
core C* so that F FC(z, Q) (see Definition U) and either

Begc(Q) 7, tC(Q) 2
or

or
Degc(Q) 7, LC(Q)= 3

Degc(Q) 8, L(Q) 3,
respectively.

(b) There does not exist any arranged, moderately plugged, Vs-neighborhood
C with the properties described in (a) except that FC(z, Q) > E.

Let N* be an arranged, nonaugmented cluster of Vs-neighborhoods with
pivot Q. Then N* is called basic if it does not contain any 5- or more-legger
vertex. Suppose that C1,..., C (3 < v < 5) are the Vs-neighborhoods in N*
and that Z1,..., Z are their central Vs’s. Let Fi (1 < < v) be the maximal
72-, 73-, or 83-contribution of C i, Q according to whether (degn* (Q), L*(Q))
is (7, 2), (7, 3), or (8, 3). Then N* is called critical if it wipes out and if

" 60 ifdegN*(Q) 7(F) .>- 120 if degN* (Q) 8.

THEOREM 15. Let N* be a basic, arranged cluster of Vs-neighborhoods with
pivot Q. Let C* be any Vs-neighborhood in N*. Then C* is (degree-equivalent to)
some Vs-neighborhood in that part of Table 9 which is marked 72, 73, or 83,
according to (deg* (Q), Lg*(Q)) and to which either a number 72, Ta, sa, or
the entry g.g. is assigned.

The entry--in Table 9 means that the Vs-neighborhood is not embeddable
into any arranged cluster; means that it is not embeddable into any basic,
arranged cluster. Row of a Vs-neighborhood determines its type, Row 2 its
subtype. Thus, for example, we may speak of a neighborhood of type 857,
subtype 77.

LEMMA 16. Let N be an arranged, moderately plugged cluster of Vs-neighbor-
hoods with core N* andpivot Q. Let C* be a Vs-neighborhood in N* with central
vertex Z, and let C be the plugged Vs-neighborhood in N which has core C* and
contains all Vs-neighbors of C* in N. Suppose that for d degn (Q) and L
Lnoo(Q), there is an entry g.g. or a number dL in the dL-part of Table 9. Then the
following hoM.
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(a) If the entry is g.g. then C c N* contains a geographically good sub-
configuration. Moreover, if N** is derivedfrom N* by degree-raising offour-or
more-legger vertices, then N** contains the same geographically good con-
figuration.

(b) If the entry is a number Fd, then either FN(Z, Q) < FdL or N contains a
geographically good subconfiguration in Size Class (5, 9) (or both). Moreover,
if N** is derivedfrom N* by degree-raising offour- or more-legger vertices, and
if N is an arranged, moderately plugged cluster with core N** then either
F (Z, Q) < FnL or N contains a geographically good subconfiguration in Size
Class (5, 14) (or both).

TABLE 9 Z W Row 3
F72, FTa, Fs3 for x 5 y Row 2

Q Row
Row 3

Row 2 55 65 56 66 75 57 76 67 77 58 68 78 88

72

655 g.g. g.g. g.g. ,30 30 30 221/2 30 30 181/2
755 g.g. g.g. 30 g.g. ,15 20 221/2 15 20 181/2 131/2
855 g.g. g.g. 30 g.g. ,10 15 15 131/2 15 10 7
955 g.g. g.g. 24 g.g. ,0 12 12 10 10 8 4
656 g.g. g.g. g.g. 30 30 30 30 15
756 g.g. 30 30 30 20 221/2 15 15 10
856 g.g. 20 30 20 15 181/2 10 10 7
956 g.g. 15 24 15 12 15 71/2 71/2 5
757 g.g. 20 20 15 15 15 10 10 71/2
857 g.g. 15 15 10 131/2 13-} 7 7 5
957 g.g. 12 12 71/2 10 10 5 5 31/4
858 g.g. 4 4 4 7 7 4 4 1-31-
958 g.g. 0 0 0 0 0 0 0 0
959 g.g. 0 0 0 0 0 0 0 0

655 g.g. g.g. g.g. g.g. 30 30 15 g.g. 30 15
755 g.g. g.g. 30 g.g. ,15 15 15 15 15 15 10
855 g.g. g.g. 20 g.g. ,0 10 15 10 10 4 2
955 g.g. g.g. 15 g.g. ,0 71/2 12 8 8 0 0
757 g.g. g.g. g.g. g.g. g.g. g.g. 10 10 71/2

73 857 g.g. g.g. g.g. 10 g.g. 10 6- 6 5
957 g.g. g.g. g.g. 71/2 g.g. 8 5 5 31/4
858 g.g. 0 0 0 0 0 0 0 0
958 g.g. 0 0 0 0 0 0 0 0
959 g.g. 0 0 0 0 0 0 0 0

555 g.g. g.g. g.g. g.g. g.g. 30 30 25 g.g. 30 221/2 15
655 g.g. g.g. g.g. g.g. 30 30 23 g.g. 30 20
755 g.g. g.g. 30 g.g. ,20 20 23 20 221/2 20 16
855 g.g. g.g. 20 g.g. ,0 16 20 16 15 10 10
955 g.g. g.g. 15 g.g. ,0 15 16 16 12 71/2 71/2

83 757 g.g. g.g. g.g. g.g. g.g. g.g. 16 16 16
857 g.g. g.g. g.g. 10 g.g. 16 16 16 16
957 g.g. g.g. g.g. 71/2 g.g. 16 15 15 15
858 g.g. 0 0 0 0 0 0 0 0
958 g.g. 0 0 0 0 0 0 0 0
959 g.g. 0 0 0 0 0 0 0 0
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Note that in Table 9 those Vs-neighborhoods marked contain J1, and
consequently, most of them have smaller F-values than some other Vs-neighbor-
hoods which can be obtained from them by degree-raising. But these degree-
raisings cannot be induced by degree-raisings at four- or more-legger vertices
of iV* and thus Lemma 16 holds without exceptions.

COROLLARY. A basic, arranged cluster N* of Vs-neighborhoods C,..., C
with pivot Q, deg* (Q) d, L* L, is critical only if in the dL-part of Table 9

-i for all C (1 < < v) so thatthere are numerical entries Fd

{60 ifd=7FdL >
i= 120 if d 8.

An arbitrary arranged cluster is critical only if it can be derivedfrom a critical,
basic cluster.

26. Discussion of the arrangements

It remains to prove the following lemma.

LEMMA 17. Let N* be an arranged, augmented or nonaugmented cluster of
Vs-neighborhoods with pivot Q. If N* is nonaugmented then assume that N*
fulfills (F) in Definition Z. Let N be a moderately plugged, augmented or non-
augmented cluster which contains N* and suppose that N is qa-overcharging.
Then N contains a geographically good subconfiguration in Size Class (7, 14.

Proof Let X be the arrangement of which N* is a specialization. If X is
augmented, denote the augmenting configuration by M. If X is nonaugmented
and iV* is not critical then N* contains a geographically good subconfiguration
by Definition Z. In what follows we assume that N* is critical (in case it is
nonaugmented).
The main part of the work consists in the enumeration and discussion of all

those cases in which X is one of the four simple arrangements

71 "55 w 5.., 71 "55"-5", 71 "55 w 55., 81 "555 55.;

this case analysis has been printed by computer as will be described in Section 27.
A part of the discussion of 7[ 55-. 5. has been done by hand because of some
irregularities which occur in those cases in which two of the three Vs-neighbor-
hoods C.1, C.2, C.3 in N*, say C.1 and C.2, have F-values (from Table 9)
such that F + j2 60. One of the most complicated cases of such an N*
is drawn in Figure 39. Here we argue as follows. N must contain plug-Vs’s in
three of the four positions A, B, C, D (marked in Figure 39) or in three of the
four positions H, /, J, K, since otherwise N would not be q3-overcharging;
(recall that by hypothesis, no major vertex of N* has load > 3). But N* with
three V’s in positions A, B, C, or D contains (in each of the four possible cases)
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v C.

FIGURE 39

a geographically good subconfiguration, and N* with three Vs’s in positions
H, I, J, or K also contains a geographically good subconfiguration. This
completed the discussion of all choices ofN with core N*. Now we must discuss
all critical clusters which can be derived from N* by degree-raising at four- or
more-legger vertices i.e., at V 1, V 2, or V 3 (or at any combination of these
vertices). We remark that this is one of the few cases in which N* admits
infinitely many critical derivatives (the degree of V 2 may be raised arbitrarily
high and a critical cluster is still obtained). The discussion is still quite simple
as follows. Since none of the geographically good subconfigurations of N (as
exhibited above) contains V 3, every q3-0vercharging plugged cluster, say N’,
with core obtained from N* by degree-raising at V 3 contains one of the same
geographically good configurations. Next we consider the cluster N # of Figure
39 (degree-raising at V 2 by 1). Now any q3-0vercharging, arranged, moderately
plugged cluster with core N # must contain Vs’s in three of positions A, B, C,
D, and thus contains one of the geographically good configurations already
considered above, none of which contains V 2 or V 3. Thus we need not consider
any further degree-raising at V2 or V 3. Last we must consider degree-raising
at V 1. First we consider N** in Figure 39 (degree raising by 1). Any qa-
overcharging, arranged, plugged cluster with core N** must contain Vs’s in
four of the five positions A, B, C, D, E; but N** with four such Vs’s must
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always contain a geographically good subconfiguration which contains neither
V 2 nor V 3. Thus the only remaining derivative is N*** (obtained from N**
by degree-raising at V 1). Here we must extend Table 9 to include the
neighborhood C**.1 (Type 10, 5, 5. Subtype 6, 6)with 72-pivot. (The -value
is 20.) Any qa-overcharging, arranged, moderately plugged cluster with core
N*** must contain Vs’s in three of the four positions H,/, J, K which yields one
of the previous geographically good configurations containing neither V nor
V 3. Since further degree-raising at V 2 does not yield critical clusters, this
completes the discussion of N* and all its critical derivatives.
The discussion of those 45 arrangements which are different from the four

mentioned above can be handled rather easily as follows.
(1) The remaining four simple arrangements

71-5w5w5-, 71w55w5w5, 81w555w55
and

8lw 55 55 5

do not yield any arranged, critical clusters. This is easily seen from Table 9.
For instance, suppose that X= 71w55w5w5. Then (in order to be
critical) N* must contain some Vs-neighborhood, say C.1, of F-value > 15.
But in (the 73-part of) Table 9 there are only five such V5-neighborhoods listed.
Four of them yield geographically good subconfigurations in N*; the only one
which does not is Type 855, Subtype 66 with F 20. But if this V5-neighbor-
hood is in N* then some other V-neighborhood in N*, say C .2, must be of
type 85x with x > 5 and thus has F 2 < 10; therefore there must be a C.3

with F3 > 15 and this must not be of Type 855, Subtype 66 (since otherwise
/4 would be < 10 and N* would not be critical). This completes the discussion.

(2) The twenty-four arrangements 71 " w 5 w 5. and 7 .5 w w 5. do
not yield any N whose augmented core, N*, wipes out. The discussion uses
maximal-contribution arguments; for that one Vs-neighborhood in N* which
does not contain any discharging or receiving vertex of M we may directly use
the ff72-value from Table 9. By reasoning similar to (1), it is found that every
possible N* contains a geographically good subconfiguration.

(3) The remaining seventeen augmented arrangements correspond to simple
arrangements in a rather obvious way as indicated in Figure 40. If N* is a
specialization of one of these augmented arrangements then it can be trans-
formed into the corresponding nonaugmented cluster, say N*#, (by a trans-
formation which is defined as in Figure 40). Moreover, any N with core N* can
be transformed into a corresponding N # with core N*, such that N # is also
q3-overcharging, arranged, and moderately plugged. Then N # contains a
geographically good subconfiguration, say C #, which is exhibited in the
discussion of the simple arrangements. Then the "inverse transformation"
from N # to N transforms C # into a geographically good subconfiguration of N
as demanded.
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FIGURE 40

27. The use of the computer on arrangements
7 .55 w 5., 7 .55-.5., 7 .55 w 55., and 8 -555 J 55.

We restrict ourselves to those properties of the computer programs required
in the proof of Lemma 17.

Description of the proof by computer. In the terminology of Lemma 17 we
will show that N contains a geographically good subconfiguration. We do this
by considering all possible combinations of Vs-neighborhoods in the core of
such a cluster and either showing that no possible addition of plug-Vs’s can
lead to qa-overcharging or examining the possible pluggings and showing that
any such qa-overcharging plugged cluster with this core contains a geographically
good subconfiguration. We adopt the following terminology. The cluster is
thought of as being laid out in rows (as this is most convenient for computer
output). The first row consists of the pivot Q alone, the second row consists of
the neighbors of the pivot (in some cyclic order) and in general the nth row
consists of those neighbors of vertices in the (n 1)st row which do not occur
in the first (n l) rows. Figure 43b shows the layout of the core of the cluster
in Figure 43e in rows.
The Vs-neighborhoods inherit a row-arrangement in which the pivot is row 1,

the central vertex and its two neighbors which are also neighbors of the pivot
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are on row 2 and the remaining two neighbors of the central vertex are on row 3.
(This notation has previously been used in Table 9; indeed, these considerations
motivate the notation in Table 9). Vs-neighborhoods fall into three natural
classes according to row-2 pattern. Class has three Vs’s on row 2. The second
Vs in arrangement 8 "555 w 55. must have a neighborhood in Class 1. Class 2
has two Vs’s on row 2; by symmetry, we list only those of the form X55 (where
X denotes a vertex of degree at least six) and call those of the form 552 mirror-
image symmetries of those listed. Thus the first Vs in arrangement 71 55.. 5.
must have a neighborhood in Class 2 while the second must have a neighborhood
symmetric to one in Class 2. Class 3 neighborhoods have second rows of the
form XS. Hence, given an arrangement we can determine the neighborhood
class ofeach central V. By aplu#ged V-neighborhoodwe mean (in what follows)
that subconfiguration of the plugged cluster N consisting of the Vs-neighbor-
hood and all plug-Vs’s of N adjacent to this Vs-neighborhood. (Note that
plug-neighbors cannot occur on row 2.)

Henceforth we will call a Vs-neighborhood a type. Given a type we can make
a first calculation of the maximal possible contributions of its central Vs to the
pivot by considering all plugged Vs-neighborhoods of which it is the core and
applying the fractional discharging algorithm to each, choosing the largest value
so obtained. However there are some refinements we must make in this pro-
cedure. In Figure 41a, vertex B receives 30 from the central Vs by the partial
discharging procedure (Situation J1) and this precedes (and hence overrides)
the fractional discharging algorithm. Also, if either vertex or/ were made a
plug-Vs the plugged Vs-neighborhood itself would contain a geographically
good subconfiguration. Hence we may take this information into account to
calculate the maximal possible contribution of the type to the pivot of N. We
have done this (by hand) for each type which may occur in a basic critical cluster
in each of the four arrangements (Table 9). These types and their maximal
contributions are listed on the first page of the computer output corresponding
to the arrangement. There are a number of simplifications to reduce the analysis
which must be made by the computer. The initial simplifications concern the
discarding of certain types or combinations of types in various arrangements.
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FIGURE 42

The most important such simplification is to ignore all clusters which contain
preliminary discharging situations which cause the cluster to be noncritical;
(recall that the preliminary discharging situations have been introduced pre-
cisely for the purpose of eliminating all undesirable clusters). We also ignore
clusters which contain geographically good subconfigurations (from a previously
compiled list) and clusters which are not basic. The latter must be considered
eventually but their analyses are immediate consequences of the analyses of the
basic clusters. The method of performing this secondary analysis will be shown
in our example (compare also with (1) in Section 26).

Thus, in our analysis by computer, not all types can appear in all positions in
our arrangements which their classes would appear to permit them. All types
with vertices of degree greater than nine are excluded by the/-legger conditions.
Certain types with vertices of degree nine or eight are similarly excluded if these
vertices appear in positions in the arrangement in which they must be/-leggers.
We list some other eliminations which may be made.

For example, the second V5 in arrangement 7[ .55 w 5.. cannot have the
type symmetric to 5-2 of Figure 41. For the resulting core would have a geo-
graphically good subconfiguration (heavy in Figure 41b). Also certain pairs
cannot occur in certain positions which their classes would appear to entitle
them to without causing geographically good subconfigurations of the core.
For example, if we make the symmetric version of Type 4-1 the neighborhood of
the second V5 in arrangement 71"55 w 5-- and Type 2-2 the neighborhood
of the third Vs (see Figure 42) a nonwipeout core results. These eliminations are
computed by hand and constitute part of the input to the computer program.
They are also listed at the beginning of the output.
Of the many possible clusters built from the types which it considers, the

program can eliminate most quite easily by considerations of total contribution
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FIGURE 43

to the pivot (or more simply yet of conflicting assignments of vertex degrees).
Several hundred remain critical after these initial considerations and must be
treated in greater detail. It is easiest to see how the remaining cases are handled
by an example. (The computer was forced to find an unnaturally complicated
argument for illustrative purposes and the alert reader will probably see a simpler
analysis. The purpose of the programming used for this argument is to permit
the choice of small geographically good configurations when we actually
construct the unavoidable sets.) Figures 43 and 44 (excluding 43e) show the
printout and give some evidence that it is not necessary to know what the com-
puter did in order to easily check the work by hand. Figure 43e is not printed
but is drawn to aid the reader in interpretation of the output.
Note that we are dealing with a 71 55.. 5. arrangement and that Type 6-1

has the first V5 ofthe arrangement as central vertex, Type 7-5 in reversed position
has the second V5 as central vertex and Type 2-5 has the third Vs as central
vertex. (These may be found on the initial sheet of the printout for checking).

Figure 43b gives a diagram of the first and second neighbors of the pivot.
This corresponds to the heavy part of Figure 43e. Vertex degrees are given for
specified vertices. In Figure 43b the vertices on Row 2 (from the bottom) are
the neighbors of the pivot (bottom row). Those on Row 3 are neighbors of
vertices on Row 2 but are not the pivot or its neighbors. Adjacency is deter-
mined as follows. A vertex W on Row 3 is adjacent to a vertex V on Row 2 if
W is (a) printed to the right of the left neighbor of V on Row 2 and (b) printed
no further right than one place to the right of V. Vertices on a given row which
are neighbors of a common vertex on a lower row are printed in clockwise order.
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FIGURE 44

Figure 43c gives the maximal possible contributions to the pivot of the types
used and shows the configuration critical. For the remainder of the analysis it
will be necessary for the program to assign vertex numbers to all vertices which
either appear in Figure 43b or are neighbors of these vertices. This is printed as
43d (with the same conventions as in 43b), again see 43e ’or aid in interpretation.
The next observation is that (Figure 44f) if both Vertex 9 and Vertex 10 are

plug-V 5’s then the neighborhood contains a geographically good configuration
(a smallest such is shown in Figure 44g with the same conventions as Figure
43b). The m and n are the number of vertices and of immediate neighbors of the
subconfigurationwif the configuration is articulated (for reasons of technical
convenience) 100 is added to n. The program records the fact that this means
that Vertex 2 has load at most 2. Since this does not reduce the total contribution
to the pivot below 60 (it actually reduces the pivot contribution of Vertex 3 to
10) it does not choose to print the information.
Next, it discovers that two triples of vertices (9, l, 12 and 10, l, 12) (Figure

44h, i) each lead to a geographically good subconfiguration and hence their
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joint appearances as plug-vertices can be ruled out. But this means that qa-
overcharging is no longer possible as may be seen in Figure 44j and the case is
completed. (We have ignored some additional printout which is extraneous to
our example).
The techniques used in our example include many of those used in the

computation. Others include elimination by geographical goodness of the
addition of a single vertex or of a collection of more than three vertices (no
proper subset of which has otherwise been eliminated). An analysis can also
terminate if additions required to satisfy the load conditions which make possible
an overcharge also force the configuration to be geographically good.
The program prints the following information pertinent to the proof of

Lemma 17. First, the types which are considered, the associated maximal pivot
contributions and forbidden plug-neighbors, and the types or pairs of types
eliminated in various position. The outputs are hand annotated to show the
reasons for either total elimination of certain types or the positional elimination.
Next the arrangement is given, followed, in lexicographic order by analyses of all
cores determined by these types in this arrangement which are not eliminated on
the basis of maximal pivot contributions or other eliminations in the input. It
is not hard to check whether any case is missing and, of course, this has been
done by hand. We have four distinct types of analyses. The first is the standard
analysis given in our example. We call these S-analyses. A second type consists
of those cores which themselves contain geographically good subconfiguration.
To handle these we need only print the subconfiguration for the unavoidable
set (although, when asked to try to find all elements of the unavoidable set with
n bounded by a certain threshold (if possible) the program will sometimes go
through a more sophisticated analysis). We call these O-analyses. In a third
type of analysis the program notices reasons, not evident from the input, that
qa-overcharging is not possible. The reasons include the effects of partial dis-
chargings or forbidden plug-neighbors when the entire core is considered. These
are called E-analyses. A fourth type of analysis, called an R-analysis occurs
when the program initially notes that the required plug-l/5’s cause the plugged
cluster to be a modification of a simpler cluster and hence unnecessary to treat
separately. At the conclusion of the analyses for an arrangement, the program
prints the number of analyses of each of the types, S, O, E, and R, and the
number of elements added to the verifying sets obtained from previous
arrangements.

For our four arrangements the figures are as follows.

Type O Type E Type R Type S additions

71 "55w 5". 33 4 2 0 20

71 "55"’5" 79 31 15 11 36

71 "55w 55. 14 17 0 0 9

8 "555 w 55. 10 30 0 0 6
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FIGURE 45

Now, to complete the proof of Lemma 17 we must justify the exclusion of
/-legger vertices with > 4. Basically the argument is to associate with each
cluster containing such vertices another cluster without them such that the
analyses will correspond. Suppose we have a critical cluster with a vertex Vk,
k > 7, which is a (4 / i)-legger, > 0. We consider the cluster obtained by
replacing it by a Vk- (which is a 4-1egger) and making similar replacements at
all other such vertices. For example if we are given the critical cluster of Figure
45 we note that the V9 is a 5-1egger and if it is replaced by a Va the cluster is that
of Figure 43 and our example. Thus we perform a parallel analysis as follows.

First, in Figure 43c we note that the contribution from the first central V5
(Position 3) is at most l0 (by Table 9) so the total contribution is at most 62.5.
In Figure 43d we would add a leg-position (say between l0 and 11) and call it g

(to avoid renumbering everything). Now lines corresponding to Figure 44 f,
g, h are essentially unchanged (except for contributions as noted above). In 44i
we may replace pair 9, l0 by triple 9, 10, g and make the appropriate change in
the verifying configuration in Figure 44j. The additions in Figure 44 k and
may be replaced by quadruples 9, , 11, 12, and g, 10, l, 12, and 9, 10, l, 12
with the corresponding configurations. To illustrate two other facets of the
procedure, assume that the V9 of Figure 45 was a Vlo. Again the same type of
analysis could be made but now the contribution of the first central vertex is at
most 8.56 and the total contribution is 61.06. Thus after completing the part
of the analysis through Figure 44 and obtaining a single quadruple, the con-
tribution maximum drops to 59.16 and the case is completed.

Returning to Figure 44 we note that the three configurations chosen for the
unavoidable set each have only one major vertex other than the pivot, namely
Vertex 2 which is an 8-vertex. This means that whenever a cluster is changed to
Figure 43b by replacement of/-leggers, ! > 4 by 4-1eggers, the only vertex
which nontrivially enters the analysis is Vertex 2. (Note that although in Figure
44f, Vertex 5 is used, it does not nontrivially contribute to the analysis and could
have been eliminated. It was not eliminated since it did not increase the size of
the unavoidable set.) Thus all other major vertices which have been modified
to obtain the cluster in Figure 43b may be ignored as the analyses above apply
(a fortiori).
Thus the computer output constitutes a proof of Lemma 17 for the case of

the four arrangements considered.
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28. Conclusion

Let /" be the set of those geographically good configurations exhibited in
Lemmas 16 and 17. Let be a set of geographically good configurations such
that every configuration, say C, which is derived from any member, say C’,
of /’ by 6-to-5 degree-lowering and modification (according to Lemmas 3 and
4) (C may be identical to C’) contains at least one member of //. Let q/be the
set of those geographically good configurations exhibited in Lemmas l, 12,
14, 15, and in //.

If N is a qa-neighborhood as in the hypothesis of Main Lemma 2 then by
Theorems 13 and 15, N contains at least one member of q/. This completes the
proof of Main Lemma 2.
Now the Discharging Lemma is a corollary of Main Lemma 2.

DISCHARGING LEMMA. If T is a trianTulation (accordint7 to the Convention in
Section 4) ofa 2-manifoldM2 then either the chartTed triantTulation (T, qT3) (accord-
in# to Definitions A, Q, and U) is completely dischartTed (q(l/) < 0 for every
vertex V T), or T contains at least one member of the set og of #eo#raphically
yood confi#urations described above (ql c (14, 23), or both.

Proof. This follows immediately from Main Lemma 2 by Theorem 12.

COROLLARY. If T is a trian#ulation ofa 2-sphere or a projective plane then T
contains at least one member of the set ql ofyeo#raphically yood confi#urations
described above. In particular, ql is an unavoidable set for planar trian#ulations.

Proof. This follows immediately from the Discharging Lemma since the
Euler Characteristics of the 2-sphere and the projective plane are positive.
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