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O. Introduction

The notion of equivariant cohomology with supports and with coefficients
in a sheaf (module bundle) is defined and studied in Section (Section 2).
Theorem 1.4 shows that, under certain conditions on the supports and on the
coefficients, equivariant cohomology can be reduced to ordinary sheaf theoretic
cohomology. In Section 3 this fact is used in the construction of an equivariant
fl-spectrum for equivariant cohomology when the coefficient module bundle
and the family of supports are of a certain type (Theorem 3.2). In Section 4
hyperequivariant cohomology is introduced. Theorems 4.2 and 4.3 show that,
under various assumptions (Remark 4.4), hyperequivariant cohomology can be
reduced to equivariant cohomology and can be classified by a hyperequivariant
-spectrum. It should be noted that classically the notions of equivariant and
hyperequivariant cohomology coincide due to the fact that a group of auto-
morphisms of a space is also a group in the category of spaces. In this paper
"equivariance" is based on categorical groups (in particular, group bundles)
and "hyperequivariance" is based on automorphism groups (of equivariant
systems).

1. Equivariant cohomology with sheaf coefficients

Let be a sheaf of modules over a sheaf of rings Q on a space X (’ is an
Q-module in the sense of [1, p. 4]). Iff: X Y is a continuous map and d’
is an Q’-module on Y then anyf-cohomomorphism of sheaves of modules

(, r): (’, ’) --, (, )

induces a map [1, p. 45] kr: F(") -. F(’), the image of which has the struc-
ture of a F(Q’)-module. Let T be a compactly generated group bundle over a
compactly generated space B [9, Section 1] and let C (Haus CG $ B)
(see [-6, pp. 46 and 181]) be a left y-space for which q: --, /T, the quotient
map onto the space of orbits, is in C, i.e., /T is Hausdorff (in general, an object
in C and the total space of that object will be denoted by the same letter). Let
d be an Q-module on . A y-structure on , briefly denoted by ,k, consists of
an Q’-module d’ on /T together with a q-cohomomorphism (k, r): (", Q’) --+

(’, Q). Define F(dk), the F(Q’)-module of T-equivariant sections, by F(d)
image k/. If 4’ is a family of supports on let

r,() r() c r,().
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Let K(k) xe ker kx c ’ and say ,k is proper if ker k,, ker ky
whenever q(x) q(y).

1.1. Remark. If s8’k is proper then "acts" on image k as
follows" For x e , 9 e and a e set # a ko(k l(a)) e o whenever
9x is defined. Since k is proper, is well defined. If S e F(k) then clearly
S e F() and satisfies S(gx) S(x) whenever 9x is defined. The converse
is true if K(k) 0 and q is an open map (see proof of 1.2 below).

If has a y-structure then the canonical resolution [1, p. 26] * of
inherits a y-structure; namely, k. *k" *’ * (see [1, p. ]). Thus
C(k) Fo((*)k*) is a cochain complex of F(N’)-modules. Define
H(; k), the n-dimensional v-equivariant cohomology module of with
coefficients in k and supports in 4, by H(; k) H,(C(k)).

1.2. LEMMA. IlK(k) 0 and q is open then K(k,) O, n O.

Proof The definition of o shows K(ko) 0 if K(k) 0. Let g be a
serration of ’ over an open set U / such that kv(g) restricts to a contin-
uous section of over an open set W . If K(k) 0 and q is open then
clearly restricts to a continuous section over the open set q(W). This shows
K((k)) 0 where (k) ko/k" o,/, o/. The lemma now
follows by induction on n in view of the definition of ".

Call 4 a y-family of supports on if q- q(K) whenever K e . In this

case q() {q(K) K e } is a family of supports on /.

1.3. Remark. If a v-family is paracompactifying [1, p. 15] then so is
q() when q is open and -closed [4, 2.6, p. 165].

1.4. THEOREM. Ifk is proper, a v-family ofsupports on and q is an open
map then

(a) H(; k) H(/y; ’/K(k)) where q(4).
I in addition, K(k) is flabby or is paracompactyin9 and K(k) is -soft then

(b) H(; ) = H(/T; ’).

Proo Since q is open, K(k) is a subsheaf of ’ and ’]K(k) is a
well-defined ’-module. Clearly k has the factorization

where p is the quotient map. Since 0 g"K(k) "’ " 0 is exact
with g"K(k) flabby, cg() Cg(’). Since K(k’) O, K(k) 0 by 1.2.
Thus

(k;k/,. r(*) c(’)

is an isomorphism and (a) follows. Part (b) follows from (a) by a standard
argument.
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Theorem 1.4 together with well-known results on resolutions imply"

1.5. COROLLARY. Ifdk is proper, q is open, and d? is a y-family with b q(dp)
paracompactifyiny then H(; k) can be computed by usin9 a b-soft resolution
of ’/K(k), or of’ if K(k) is O-soft.

2. Equivariant cohomology with module bundle coefficients

Let A be a ring bundle, It a left A-module bundle, and y a group bundle, all on
B and all compactly generated (see [10, Section 2]). Suppose left actions of
on A and on It, where for each b B and for 1, g, g’ Yb, l, l’ Ab, m, m’ Itb
(b fiber of over b), satisfy

go’(l) O(o’l), og’(m) 9(o’m),

g(l + l’) gl + gl’, 11 l,
(2.)

9(m + m’)= 9m + 9m’, #(11’) (gl)(gl’),

o(lm) (O1)(Om), lm= m.

Let/ (respectively ) be the sheaf on (a left y-space)_of germs of maps (in C)
# (respectively -. A) and let /T (respectively A’) be the sheaf on

generated by the presheaf U {set of y-equivariant maps (in C) q-lU --,

(respectively q-IU A)}. Conditions (2.1) imply /’ is a ,’-module. The
obvious q-cohomomorphism (k, r)" (/T, .’) --. (/, .) defines a y-structure, /7k,
on/. Note that K(k) 0 in case q is an open map. Define Hv*(," It), the
y-equivariant cohomology of with coefficients in # and supports in b by

/(;/4(, ) ).

3. An equivariant f-spec,trum of module bundles

As in [11 ] let
il0---. It vo It1 vx

(3.1)
in

It -1 V -1 It

be the sequence of A-module bundles obtained from the sequence

S--*IS--*IA S --*’’’--* S"- --+IA S"- 1--*S A S"- S"-*""
(A smash product, I unit interval, S"= n-sphere, p quotient map
I --, I/S S) by letting

i, FB(p A Ids.-1) (R) Id," v,_l

FB(I A Sn-l) (R) It
_

Itn

Fn(S") (R) It

where FB(X) is the trivial bundle on B with fiber the free abelian group generated
by X with the compactly generated topology induced from that of X. By allow-
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ing y to act on the "/-factor" of v, and of/,, the action of y on/ of Section 2 is
extended to actions on v, and/, that satisfy 2.1 and relative to which i, is equi-
variant. By [11], 3.1 is the sequence of Theorem 5.3 [10] when # is an LNDR
[10, Section 2]. Let Cv be the category with objects (, b), where e C
is a left y-space for which q: /y is an open map with /y C, and where
q is a y-family on with q(b) paracompactifying. The morphisms of C are the
equivariant maps f: -o ’ satisfying f-l(,) c b. The "supported" equi-
variant analogue of the results of [10] are summed up in the following theorem.
Compare with [2, Chapter III, Section 3, and Chapter IV, Section 1]. Recall
that/ is a y-LNDR means the functions (u,, h,) representing/ as an LNDR
are y-equivariant (y acts trivially on I).

3.2. THEOREM. (a) If p is a y-LNDR A-module bundle then {p,} n >_ is a
-spectrum for H(-; /0 on C, i.e., H(; #) is naturally isomorphic (as
F(A’)-modules) to [, p,], the set of equivariant fiber homotopy classes of
equivariant maps p, where the homotopies h {ht} have support [hi in

x I ([h[ {(x, t) [ht(x) 0} = K x Ifor some K
(b) Ifl2 is a y-NDR A-module bundle then {/,}, n > 1, is a y-f-spectrum, i.e.,
and fp,+ 1, the vertical loop space of .+ x, are of the same equivariant fiber

homotopy type.

Proof First note that for k q(b), the sequence

(3.3) 0 fi’ - vo ’" v, ""
is a -soft resolution of fi’ on / where is as in Section 2. To see that is
-soft let s F( K) where K . Since ff is paracompactifying, s extends to
a section over an open set U = K where U . Further there is a continuous
map z" U Isuch that z-(1) U, z (U U) 0 where Ux is open and
U U Ux K. Viewing s as an equivariant map q-U v, define
g’v. by

0 ifq(x) Uorzq(x)
(x)

H2q)_,(s(x)) if zq(x)

where H, (Hx id, Ho 0) is the vertical homotopy (shrinking v, to the
0-section) induced by contracting I in the "lst factor" of v,. Since Ht is equi-
variant ( acts on the "2nd factor" of v.) g is seen to be an equivariant map that
extends s lq-(U). This shows ’ is -soft. To see that 3.3 is exact recall
that if is an LNDR then i, has local sections s over elements U of an open
cover { U} of the total space of, (this is essentially [9, 3.3]). If is a -LNDR
then the open sets U and the sections s can be chosen to be equivariant
(x e U implies 9x U and sj(gx)= gs(x) whenever gx is defined). This
follows from an equivariant analogue of the proof (in [8]) of [9, 3.3] (essen-
tially an application of the fibered, equivariant analogue of [7, 4.2] with E
(G) replaced by the restriction of v._ (,_ ) to the open sets in B given in the
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definition of p as a ),-LNDR). Clearly fi, is ker (v, v,+ 1) and i" v,_ "
is onto since germs of equivariant maps into t, (to /) can be lifted by the
equivariant sections sj. This shows 3.3 is exact. By 1.5, 3.3 can be used to
compute H(0;/t). Thus

H(0, U) - ker (F,(v,)- Fq,(v,+ 1))/im (Fq,(v._ 1) Fq,(v.))_
Fq,(fi,)/im (F(9,_ 1)

Therefore H(o;/) is isomorphic to the F(A’)-module of equivalence classes
of equivariant maps /, with support in b, where two such maps So, s are
identified if and only if there is an equivariant map s" v,_ with support
in b such that i,s sl So. However, the existence of such an s is equivalent
to the existence of a vertical, equivariant homotopy h {ht} (ho So, h s)
with support in b x L Indeed if i,s S So let h,(x) sl(x) i,Hs(x)
where H is the equivariant homotopy shrinking v,_ (Ho id, H --0).
Clearly h {h,} is equivariant and since i,(0) 0 H,(0),

Conversely, given h let h’ h So. Then h’ is an equivariant homotopy of
0 to s So with

Ih’l (Ihl u (Isol I)) qb I,

i.e. Ih’l c q-XK I for some K e . Since is paracompactifying there is an
open set U, K c e , U paracompact with Ih’l q- I. As in 1-3,
p. 237, part (b)] there is an open cover W {Wx} (x e q-lU) of q-l with

h’(W,, x [(i- 1)/r, i/r]) U
for some Us where {Uj} is the equivariant cover of t, defined above. The
equivariance of Us and h’ implies Wx can be chosen so that q-(qWx) W.
Since {qW} is an open cover of the paracompact space , {W} is a numerable
cover of q- . Further, the existence of the equivariant section s over Uj
implies i, has the stationary equivariant covering homotopy property for
h’lW x [(i- 1)I/r, i/r]. For if is an equivariant map covering
then t sh’t- sjh_ )/ + is an equivariant covering homotopy of h’
with (_a)/, and , is stationary with h’t [3, Remark 4.10]. This shows
that the equivariant CHPS version of I-3, 4.7] applies and that h’ is covered by
an equivariant (take o 0) on q- I that is stationary with h’. (Note
that the CHPS version of [3, 4.7] is given by [3, 4.10]. The proof of the equi-
variant analogue of [3, 4.7] consists of redoing [3, 2.6, 2.7, 4.5, 4.6] in the case
that the partitions of unity, halos, sections, etc., are all equivariant or invariant
under the action of ,.) Extending h to all of x I by the 0-section of
shows h’ is covered by an equivariant with I1 L Hence s is an
equivariant map, Isl , and i,s h’ sa So. This shows (a). Part (b) is
the equivariant analogue of [10, 6.2]. The action of ? on fp, is given by
(ge)(t) g(e(t)) for g e , e e fp, whenever g(e(t)) is defined. If the maps j
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and ht in the proof of [10, 6.1] are equivariant then clearly r, ?, ks,/s of that
proof are also equivariant (gt is equivariant by the equivariant covering
homotopy theorem). This shows part (b).

3.4. Remark. If the projection of is open and the base space B is para-
compact then 3.2 (a) implies H(;/0 - [’,/,]r where acts on by left
translation. This latter set is clearly isomorphic to the set of vertical homotopy
classes of sections of/, which, in turn, (by [9, 3.7]) is isomorphic to H"(B; !),
n > 1. Thus H(;/0 is independent of and by [10, 5.4 (a)] can be interpreted
as the set of isomorphism classes of local principal/t,_ bundles on B. In par-
ticular if B is a point then H(;/) 0.

4. Hyperequivariant cohomology

Let
off (,, ,, ,, off,, ;, off;, r,, k,)

(respectively M (i, , A,/)) (i 1, 2) be systems as defined in Section
(respectively Section 2). A morphism f: off’ -, off’- (f: M1 --* M=) consists
of a tuple

f (fr, f,f,fc, fe’,f,’) (1= (fr, f,f^,f,))
where fr: Yl --* 2 is a map of group bundles over B, f: 1 --* - is an f-
equivariant map of spaces over B, f:2 1 is an f-cohomomorphism of
sheaves of rings (fA: A1 --* A2 is an fr-equivariant map of ring bundles),
f: off. 0ffl is anf-equivariant, fc-cohomomorphism of sheaves of modules
(Y/t: #1 -+ /’/2 is anfr fA-equivariant map of module bundles), f, andf, are
analogously defined (relative to f/: /1--+ 2/2 induced by f) and are
required to satisfy rl.fe, fsr2 and klf, fk2. Since cg. is functorial, f
induces a map

*(,).
_

and consequently a map I’(((9*off2)k2*) "+ r(((*offl)kl*). Thus any group F of
left operators on offk becomes a group of right operators on r((*off)k*). Define
the F-hyperequivariant cohomology H(; offk)e to be H(F((cK*Off)k*)) where
Fr((cg*off)k*) is the subcochain complex of F((Cg*off)k*) consisting of the elements
fixed under F and

In case g acts trivially (gx x) and (k, r) (id, id), denote r(((*off)k*) by

A morphism f: M1 M2 clearly induces a morphism f: fik, fi, in the
case thatfA andfu are isomorphisms and fx,fg,, (fff, f,) are induced byf, l(f 1).
Thus any group F of operators on M (, , A, #) becomes a group of oper-
ators on ilk. Define H(; ), the F-hyperequivariant cohomology of with
coefficients in/t to be H(; fik)V.
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For any group F (discrete topology) of left operators on 7 define rc F 7,
the semidirect product of 7 by F, to be the fiber product of the trivial bundle on
Bwith fiber Fand 7, and with (f, )(f, #) (ff, f-l(t)g) forf, f F,v, e,
b B as the group bundle operation. If F is a group of left operators on k then
(f, g)(x)= fe(gx) (f F, g 7) defines an action of r on for which the
quotient map q: /rr has the factorization

where Q can be identified with the quotient map /7 (/7)/F (the operation
of F on /7 is induced from that on ). Note that Q is open since

Q- ’O.(v) U f/v).
fF

As in Section it is assumed that /r is in C.
Suppose, now, that b is a 7-family of supports on and that q() is an

F-family of supports on / (Q-Q(K) if K if) where F is a group of left
operators on *. Define Q*’ to be the differential sheaf on /n generated
by the differential presheaf U F o-’(*’ Q- u). A direct calculation
shows that

F

is exact and that is flabby (extend serrations by 0). Thus if
FH ((Q, )) 0 for n > 0 and all y E(O), the extent of 0 [1, p. 16] (note

that by definition r * *’(Q, )y 0 if y E(O)) then , is a flabby resolu-
tion of" Q, and consequently H({/, ") H*(Fo(Qg*’)) where
0 Q(). Further, the first map in the sequence Fo(Q, *

an isomorphism by the definition of Qg and O, and the second
map is easily seen to be an isomorphism in case K(k) 0 and q is open. Under
the foregone conditions, then,

(4.1) H(/rc; 1")
_
H(; k)F.

4.2. THEOREM. IfF is a group of left operators on lk with q open, K(k) O,
dp and q(dp) equivariant supports with 0 Q()= Qq(dp)= q() and
H’((Qg*’)y) 0 for all y E(O), n > O, then

H(; M)Y H(; M)
where k (n F , , , ,Q ,Q , f,).

Here kk’ (f rr’) where k’: " ’ (r’: " ’) is the canonically
induced Q-cohomomorphism.

Proof Note that q is open since both q and Q are open. An easy calculation
shows K(k’) 0, thus K(/) 0. The result now follows from 4.1 and 1.4 (b)
applied to
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4.3. THEOREM. (a) Let F be a group of left operators on M (y, , A, 12)
such that q is open and 12 is both a y and F-LNDR. If dp is a y-family on , k
q(dp) an F-family on /y with 0 Q()paracompactifying and n"((ac*O’)y) 0
for all y E(O), n > 0 then H(; 12)F is isomorphic to [; 12,], the set of
F-y-equivariant fiber homotopy classes of F-y-equivariant maps s’
(s(gx) gs(x) and sfc(x)= f,.(s(x)) where the homotopies have support in

ck x I and the operation ofF on 12, is inducedfrom that on 12.
(b) If 12 is an F-y-NDR then {12n), n > 1, is an F-y-D-spectrum.

Proof. From the definition of zr F y and the way in which it operates
it is readily seen that a map is rc-equivariant if and only if it is F-y-equivariant.
Further, if b is a y-family and , q(b) is an F-family then b is a n-family.
A simple calculation shows Q/’ is generated by the presheaf U {set of
equivariant maps q-I(U) 12). Since K(k) 0 (Section 2) Theorems 4.2 and
3.2 (a) imply H(; 12)F H[, 12,],- [, 12n], n > 1. A check of the
definitions shows [, 12,] [, 12,]. This proves (a). Part (b) follows sim-
ilarly from 3.2 (b).

4.4. Remark. There are many conditions on F, y, , b, etc., that imply the
assumptions of Theorems 4.2 and 4.3. For example, it is easily shown that q
is open in case each x has a continuous local section of q passing through it
or in case the projection of y is open and either y or is locally compact or both
y and satisfy the first axiom of countability (so that the fiber product y has
the product topology [4, Section 9, p. 247]). If F is finite then @ q(b) is an
F-family and Q is @-closed if and only if , is F-closed (fK for all f F,
K ) since Q- 1Q(K) Jy fK. Thus, by 1.3, 0 q(b) is paracompactify-
ing for b paracompactifying, q open and b-closed, F finite and @ q(b)
F-closed. If @ is a paracompactifying F-family and the induced operation of F
on /y is proper [5, p. 134]then r *H (Q0 )y 0 for ally E(O) and n > 0.
To prove this it is sufficient to show that for some x Q-l(y) the induced map

F F(Q( /’ )r li__m F e-v(cg"’ Q U)
yU

li___m F v(C’ V)

--, r (se’ {x))

(.,)

is an isomorphism since (cg*s’) is acyclic. However, the second map is an
isomorphism by [1, 9.15, p. 50] since O is paracompactifying. Thus each
element in (’/’) can be represented by an s e F0v(cgs’ V) with V a
proper neighborhood of x. Extend s to an g on

Q-Q(V) U fv by g(w) cg"(f3,),s(f- (w))
fF
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for w fV. It is readily checked that

g F, o.-its(cg"’’ Q-1U) for U Q(V).

This shows that the map in question is onto. The one-to-one part is trivial and
the assertion follows.
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