EQUIVARIANT AND HYPEREQUIVARIANT COHOMOLOGY

BY

M. V. MIELKE

0. Introduction

The notion of equivariant cohomology with supports and with coefficients in a sheaf (module bundle) is defined and studied in Section 1 (Section 2). Theorem 1.4 shows that, under certain conditions on the supports and on the coefficients, equivariant cohomology can be reduced to ordinary sheaf theoretic cohomology. In Section 3 this fact is used in the construction of an equivariant Ω -spectrum for equivariant cohomology when the coefficient module bundle and the family of supports are of a certain type (Theorem 3.2). In Section 4 hyperequivariant cohomology is introduced. Theorems 4.2 and 4.3 show that, under various assumptions (Remark 4.4), hyperequivariant cohomology can be reduced to equivariant cohomology and can be classified by a hyperequivariant Ω -spectrum. It should be noted that classically the notions of equivariant and hyperequivariant cohomology coincide due to the fact that a group of automorphisms of a space is also a group in the category of spaces. In this paper "equivariance" is based on categorical groups (in particular, group bundles) and "hyperequivariance" is based on automorphism groups (of equivariant systems).

1. Equivariant cohomology with sheaf coefficients

Let \mathscr{A} be a sheaf of modules over a sheaf of rings \mathscr{R} on a space X (\mathscr{A} is an \mathscr{R} -module in the sense of [1, p. 4]). If $f: X \to Y$ is a continuous map and \mathscr{A}' is an \mathscr{R}' -module on Y then any f-cohomomorphism of sheaves of modules

$$(k, r)$$
: $(\mathscr{A}', \mathscr{R}') \to (\mathscr{A}, \mathscr{R})$

induces a map $[1, p. 45] k_Y: \Gamma(\mathscr{A}') \to \Gamma(\mathscr{A})$, the image of which has the structure of a $\Gamma(\mathscr{R}')$ -module. Let γ be a compactly generated group bundle over a compactly generated space B [9, Section 1] and let $\xi \in C = (\text{Haus } CG \downarrow B)$ (see [6, pp. 46 and 181]) be a left γ -space for which $q: \xi \to \xi/\gamma$, the quotient map onto the space of orbits, is in C, i.e., ξ/γ is Hausdorff (in general, an object in C and the total space of that object will be denoted by the same letter). Let \mathscr{A} be an \mathscr{R} -module on ξ . A γ -structure on \mathscr{A} , briefly denoted by \mathscr{A}^k , consists of an \mathscr{R}' -module \mathscr{A}' on ξ/γ together with a q-cohomomorphism $(k, r): (\mathscr{A}', \mathscr{R}') \to$ $(\mathscr{A}, \mathscr{R})$. Define $\Gamma(\mathscr{A}^k)$, the $\Gamma(\mathscr{R}')$ -module of γ -equivariant sections, by $\Gamma(\mathscr{A}^k) =$ image $k_{\xi/\gamma}$. If ϕ is a family of supports on ξ let

$$\Gamma_{\phi}(\mathscr{A}^k) = \Gamma(\mathscr{A}^k) \cap \Gamma_{\phi}(\mathscr{A}).$$

Received August 1, 1974.

Let $K(k) = \bigcup_{x \in \xi} \ker k_x \subset \mathscr{A}'$ and say \mathscr{A}^k is proper if $\ker k_x = \ker k_y$ whenever q(x) = q(y).

1.1. Remark. If \mathscr{A}^k is proper then γ "acts" on $\overline{\mathscr{A}}$ = image $k \subset \mathscr{A}$ as follows: For $x \in \xi$, $g \in \gamma$ and $a \in \overline{\mathscr{A}}_x$ set $g * a = k_{gx}(k_x^{-1}(a)) \in \overline{\mathscr{A}}_{gx}$ whenever gx is defined. Since \mathscr{A}^k is proper, * is well defined. If $S \in \Gamma(\mathscr{A}^k)$ then clearly $S \in \Gamma(\overline{\mathscr{A}})$ and satisfies S(gx) = g * S(x) whenever gx is defined. The converse is true if K(k) = 0 and q is an open map (see proof of 1.2 below).

If \mathscr{A} has a γ -structure then the canonical resolution [1, p. 26] $\mathscr{C}^*\mathscr{A}$ of \mathscr{A} inherits a γ -structure; namely, $k_* = \mathscr{C}^*k: \mathscr{C}^*\mathscr{A}' \to \mathscr{C}^*\mathscr{A}$ (see [1, p. 44]). Thus $C^*_{\phi}(\mathscr{A}^k) = \Gamma_{\phi}((\mathscr{C}^*\mathscr{A})^{k*})$ is a cochain complex of $\Gamma(\mathscr{R}')$ -modules. Define $H^n_{\phi}(\zeta; \mathscr{A}^k)$, the *n*-dimensional γ -equivariant cohomology module of ζ with coefficients in \mathscr{A}^k and supports in ϕ , by $H^n_{\phi}(\zeta; \mathscr{A}^k) = H^n(C^*_{\phi}(\mathscr{A}^k))$.

1.2. LEMMA. If K(k) = 0 and q is open then $K(k_n) = 0$, $n \ge 0$.

Proof. The definition of \mathscr{C}^0 shows $K(k_0) = 0$ if K(k) = 0. Let \overline{S} be a servation of \mathscr{A}' over an open set $U \subset \xi/\gamma$ such that $k_U(\overline{S})$ restricts to a continuous section of \mathscr{A} over an open set $W \subset \xi$. If K(k) = 0 and q is open then clearly \overline{S} restricts to a continuous section over the open set q(W). This shows $K(\mathscr{L}^1(k)) = 0$ where $\mathscr{L}^1(k) = k_0/k \colon \mathscr{C}^0 \mathscr{A}' | \mathscr{A}' \to \mathscr{C}^0 \mathscr{A} | \mathscr{A}$. The lemma now follows by induction on n in view of the definition of \mathscr{C}^n .

Call ϕ a γ -family of supports on ξ if $q^{-1}\overline{q(K)} \in \phi$ whenever $K \in \phi$. In this case $q(\phi) = \{\overline{q(K)} \mid K \in \phi\}$ is a family of supports on ξ/γ .

1.3. Remark. If a γ -family ϕ is paracompactifying [1, p. 15] then so is $q(\phi)$ when q is open and ϕ -closed [4, 2.6, p. 165].

1.4. THEOREM. If \mathscr{A}^k is proper, ϕ a γ -family of supports on ξ and q is an open map then

(a) $H^*_{\phi}(\xi; \mathscr{A}^k) \simeq H^*_{\psi}(\xi/\gamma; \mathscr{A}'/K(k))$ where $\psi = q(\phi)$.

If, in addition, K(k) is flabby or ψ is paracompactifying and K(k) is ψ -soft then (b) $H^*_{\phi}(\xi; \mathscr{A}^k) \simeq H^*_{\psi}(\xi/\gamma; \mathscr{A}').$

Proof. Since q is open, K(k) is a subsheaf of \mathscr{A}' and $\mathscr{A}'/K(k) = \mathscr{B}$ is a well-defined \mathscr{R}' -module. Clearly k has the factorization

$$\mathscr{A}' \xrightarrow{p} \mathscr{B} \xrightarrow{k'} \mathscr{A}$$

where p is the quotient map. Since $0 \to \mathscr{C}^n K(k) \to \mathscr{C}^n \mathscr{A}' \to \mathscr{C}^n \mathscr{B} \to 0$ is exact with $\mathscr{C}^n K(k)$ flabby, $C^n_{\phi}(\mathscr{A}^k) = C^n_{\phi}(\mathscr{A}^{k'})$. Since K(k') = 0, $K(k'_*) = 0$ by 1.2. Thus

$$(k'_*)_{\xi/\gamma} \colon \Gamma_{\psi}(\mathscr{C}^*\mathscr{B}) \to C^*_{\phi}(\mathscr{A}^{k'})$$

is an isomorphism and (a) follows. Part (b) follows from (a) by a standard argument.

Theorem 1.4 together with well-known results on resolutions imply:

1.5. COROLLARY. If \mathscr{A}^k is proper, q is open, and ϕ is a γ -family with $\psi = q(\phi)$ paracompactifying then $H^n_{\phi}(\xi; \mathscr{A}^k)$ can be computed by using a ψ -soft resolution of $\mathscr{A}'/K(k)$, or of \mathscr{A}' if K(k) is ψ -soft.

2. Equivariant cohomology with module bundle coefficients

Let Λ be a ring bundle, μ a left Λ -module bundle, and γ a group bundle, all on B and all compactly generated (see [10, Section 2]). Suppose left actions of γ on Λ and on μ , where for each $b \in B$ and for 1, $g, g' \in \gamma_b, l, l' \in \Lambda_b, m, m' \in \mu_b$ $(\xi_b = \text{fiber of } \xi \text{ over } b)$, satisfy

(2.1)
$$gg'(l) = g(g'l), \qquad gg'(m) = g(g'm), \\g(l + l') = gl + gl', \qquad 1l = l, \\g(m + m') = gm + gm', \qquad g(ll') = (gl)(gl'), \\g(lm) = (gl)(gm), \qquad 1m = m.$$

Let $\tilde{\mu}$ (respectively $\tilde{\Lambda}$) be the sheaf on ξ (a left γ -space) of germs of maps (in C) $\xi \to \mu$ (respectively $\xi \to \Lambda$) and let $\tilde{\mu}'$ (respectively $\tilde{\Lambda}'$) be the sheaf on ξ/γ generated by the presheaf $U \to \{\text{set of } \gamma\text{-equivariant maps (in C) } q^{-1}U \to \mu$ (respectively $q^{-1}U \to \Lambda$). Conditions (2.1) imply $\tilde{\mu}'$ is a $\tilde{\Lambda}'$ -module. The obvious q-cohomomorphism $(k, r): (\tilde{\mu}', \tilde{\Lambda}') \to (\tilde{\mu}, \tilde{\Lambda})$ defines a γ -structure, $\tilde{\mu}^k$, on $\tilde{\mu}$. Note that K(k) = 0 in case q is an open map. Define $H^*_{\gamma}(\xi_{\phi}; \mu)$, the γ -equivariant cohomology of ξ with coefficients in μ and supports in ϕ by $H^*_{\gamma}(\xi_{\phi}; \mu) = H^*_{\phi}(\xi; \tilde{\mu}^k)$.

3. An equivariant Ω-spectrum of module bundles

As in [11] let

(3.1)
$$0 \longrightarrow \mu \longrightarrow v_0 \xrightarrow{i_1} \mu_1 \longrightarrow v_1 \longrightarrow \cdots$$
$$\longrightarrow \mu_{n-1} \longrightarrow v_{n-1} \xrightarrow{i_n} \mu_n \longrightarrow \cdots$$

be the sequence of Λ -module bundles obtained from the sequence

 $S^0 \to I \xrightarrow{p} S^1 \to I \land S^1 \to \cdots \to S^{n-1} \to I \land S^{n-1} \to S^1 \land S^{n-1} = S^n \to \cdots$ (\land = smash product, I = unit interval, S^n = *n*-sphere, p = quotient map $I \to I/S^0 = S^1$) by letting

$$i_n = F_B(p \land \operatorname{Id}_{S^{n-1}}) \otimes \operatorname{Id}_{\mu}: v_{n-1}$$
$$= F_B(I \land S^{n-1}) \otimes \mu \to \mu_n$$
$$= F_B(S^n) \otimes \mu$$

where $F_B(X)$ is the trivial bundle on B with fiber the free abelian group generated by X with the compactly generated topology induced from that of X. By allowing γ to act on the " μ -factor" of v_n and of μ_n , the action of γ on μ of Section 2 is extended to actions on v_n and μ_n that satisfy 2.1 and relative to which i_n is equivariant. By [11], 3.1 is the sequence of Theorem 5.3 [10] when μ is an LNDR [10, Section 2]. Let C_{γ} be the category with objects $\xi_{\phi} = (\xi, \phi)$, where $\xi \in C$ is a left γ -space for which $q: \xi \to \xi/\gamma$ is an open map with $\xi/\gamma \in C$, and where ϕ is a γ -family on ξ with $q(\phi)$ paracompactifying. The morphisms of C_{γ} are the equivariant maps $f: \xi \to \xi'$ satisfying $f^{-1}(\phi') \subset \phi$. The "supported" equivariant analogue of the results of [10] are summed up in the following theorem. Compare with [2, Chapter III, Section 3, and Chapter IV, Section 1]. Recall that μ is a γ -LNDR means the functions (u_{α}, h_{α}) representing μ as an LNDR are γ -equivariant (γ acts trivially on I).

3.2. THEOREM. (a) If μ is a γ -LNDR Λ -module bundle then $\{\mu_n\}$ $n \geq 1$ is a γ -spectrum for $H^*_{\gamma}(-; \mu)$ on C_{γ} , i.e., $H^n_{\gamma}(\xi_{\phi}; \mu)$ is naturally isomorphic (as $\Gamma(\Lambda')$ -modules) to $[\xi_{\phi}, \mu_n]_{\gamma}$, the set of equivariant fiber homotopy classes of equivariant maps $\xi \to \mu_n$ where the homotopies $h = \{h_t\}$ have support |h| in $\phi \times I(|h| = \overline{\{(x, t) \mid h_t(x) \neq 0\}} \subset K \times I$ for some $K \in \phi$).

(b) If μ is a γ -NDR Λ -module bundle then $\{\mu_n\}$, $n \geq 1$, is a γ - Ω -spectrum, i.e., μ_n and $\Omega\mu_{n+1}$, the vertical loop space of μ_{n+1} , are of the same equivariant fiber homotopy type.

Proof. First note that for $\psi = q(\phi)$, the sequence

(3.3)
$$0 \to \tilde{\mu}' \to \tilde{\nu}'_0 \to \cdots \to \tilde{\nu}'_n \to \cdots$$

is a ψ -soft resolution of $\tilde{\mu}'$ on ξ/γ where \sim' is as in Section 2. To see that $\tilde{\nu}'_n$ is ψ -soft let $s \in \Gamma(\tilde{\nu}'_n \mid K)$ where $K \in \psi$. Since ψ is paracompactifying, s extends to a section over an open set $U \supset K$ where $\overline{U} \in \psi$. Further there is a continuous map $\tau: \overline{U} \to I$ such that $\tau^{-1}(1) \supset \overline{U}_1, \tau \mid (\overline{U} - U) = 0$ where U_1 is open and $U \supset \overline{U}_1 \supset U_1 \supset K$. Viewing s as an equivariant map $q^{-1}U \to \nu_n$ define $\overline{s}: \xi \to \nu_n$ by

$$\bar{s}(x) = \begin{cases} 0 & \text{if } q(x) \notin \overline{U} \text{ or } \tau q(x) \le \frac{1}{2} \\ H_{2\tau q(x) - 1}(s(x)) & \text{if } \tau q(x) \ge \frac{1}{2} \end{cases}$$

where H_t ($H_1 = id$, $H_0 = 0$) is the vertical homotopy (shrinking v_n to the 0-section) induced by contracting I in the "1st factor" of v_n . Since H_t is equivariant (γ acts on the "2nd factor" of v_n) \bar{s} is seen to be an equivariant map that extends $s \mid q^{-1}(U_1)$. This shows \tilde{v}' is ψ -soft. To see that 3.3 is exact recall that if μ is an LNDR then i_n has local sections s_j over elements U_j of an open cover $\{U_j\}$ of the total space of μ_n (this is essentially [9, 3.3]). If μ is a γ -LNDR then the open sets U_j and the sections s_j can be chosen to be equivariant ($x \in U_j$ implies $gx \in U_j$ and $s_j(gx) = gs_j(x)$ whenever gx is defined). This follows from an equivariant analogue of the proof (in [8]) of [9, 3.3] (essentially an application of the fibered, equivariant analogue of [7, 4.2] with E (G) replaced by the restriction of v_{n-1} (μ_{n-1}) to the open sets in B given in the

definition of μ as a γ -LNDR). Clearly $\tilde{\mu}'_n$ is ker $(\tilde{v}'_n \to \tilde{v}'_{n+1})$ and $\tilde{\iota}'_n \colon \tilde{v}'_{n-1} \to \tilde{\mu}'_n$ is onto since germs of equivariant maps into μ_n ($\mu_0 = \mu$) can be lifted by the equivariant sections s_j . This shows 3.3 is exact. By 1.5, 3.3 can be used to compute $H^*_{\nu}(\xi_{\phi}; \mu)$. Thus

$$\begin{split} H_{\gamma}^{n}(\xi_{\phi};\,\mu) &\simeq \ker\left(\Gamma_{\psi}(\tilde{v}_{n}') \to \Gamma_{\psi}(\tilde{v}_{n+1}')\right)/\operatorname{im}\left(\Gamma_{\psi}(\tilde{v}_{n-1}') \to \Gamma_{\psi}(\tilde{v}_{n}')\right) \\ &\simeq \Gamma_{\psi}(\tilde{\mu}_{n}')/\operatorname{im}\left(\Gamma_{\psi}(\tilde{v}_{n-1}') \to \Gamma_{\psi}(\tilde{\mu}_{n}')\right). \end{split}$$

Therefore $H_{\gamma}^{n}(\xi_{\phi}; \mu)$ is isomorphic to the $\Gamma(\Lambda')$ -module of equivalence classes of equivariant maps $\xi \to \mu_{n}$ with support in ϕ , where two such maps s_{0} , s_{1} are identified if and only if there is an equivariant map $s: \xi \to v_{n-1}$ with support in ϕ such that $i_{n}s = s_{1} - s_{0}$. However, the existence of such an s is equivalent to the existence of a vertical, equivariant homotopy $h = \{h_{t}\} (h_{0} = s_{0}, h_{1} = s_{1})$ with support in $\phi \times I$. Indeed if $i_{n}s = s_{1} - s_{0}$ let $h_{t}(x) = s_{1}(x) - i_{n}H_{t}s(x)$ where H_{t} is the equivariant homotopy shrinking v_{n-1} ($H_{0} = id, H_{1} = 0$). Clearly $h = \{h_{t}\}$ is equivariant and since $i_{n}(0) = 0 = H_{t}(0)$,

$$|h| \subset (|s| \cup |s_1|) \times I \in \phi \times I.$$

Conversely, given h let $h' = h - s_0$. Then h' is an equivariant homotopy of 0 to $s_1 - s_0$ with

$$|h'| \subset (|h| \cup (|s_0| \times I)) \in \phi \times I,$$

i.e. $|h'| \subset q^{-1}K \times I$ for some $K \in \psi$. Since ψ is paracompactifying there is an open set $U, K \subset \overline{U} \in \psi, \overline{U}$ paracompact with $|h'| \subset q^{-1}\overline{U} \times I$. As in [3, p. 237, part (b)] there is an open cover $W = \{W_x\}$ ($x \in q^{-1}\overline{U}$) of $q^{-1}\overline{U}$ with

$$h'(W_x \times [(i-1)/r, i/r]) \subset U_i$$

for some U_i where $\{U_i\}$ is the equivariant cover of μ_n defined above. The equivariance of U_i and h' implies W_x can be chosen so that $q^{-1}(qW_x) = W_x$. Since $\{qW_x\}$ is an open cover of the paracompact space \overline{U} , $\{W_x\}$ is a numerable cover of $q^{-1}\overline{U}$. Further, the existence of the equivariant section s_i over U_i implies i_n has the stationary equivariant covering homotopy property for $h'|W_x \times [(i-1)]/r, i/r]$. For if \bar{h} is an equivariant map covering $h'_{(i-1)/r}$ then $\bar{h}_t = s_j h'_t - s_j h'_{(i-1)/r} + \bar{h}$ is an equivariant covering homotopy of \bar{h}' with $\bar{h}_{(i-1)/r} = \bar{h}$ and \bar{h}_t is stationary with h'_t [3, Remark 4.10]. This shows that the equivariant CHPS version of [3, 4.7] applies and that h' is covered by an equivariant \overline{h} (take $\overline{h}_0 = 0$) on $q^{-1}\overline{U} \times \overline{I}$ that is stationary with h'. (Note that the CHPS version of [3, 4.7] is given by [3, 4.10]. The proof of the equivariant analogue of [3, 4.7] consists of redoing [3, 2.6, 2.7, 4.5, 4.6] in the case that the partitions of unity, halos, sections, etc., are all equivariant or invariant under the action of y.) Extending \bar{h} to all of $\xi \times I$ by the 0-section of v_{n-1} shows h' is covered by an equivariant \bar{h} with $|\bar{h}| \in \phi \times I$. Hence $s = \bar{h}_1$ is an equivariant map, $|s| \in \phi$, and $i_n s = h'_1 = s_1 - s_0$. This shows (a). Part (b) is the equivariant analogue of [10, 6.2]. The action of γ on $\Omega \mu_n$ is given by $(g\alpha)(t) = g(\alpha(t))$ for $g \in \gamma$, $\alpha \in \Omega \mu_n$ whenever $g(\alpha(t))$ is defined. If the maps j and h_t in the proof of [10, 6.1] are equivariant then clearly r, \bar{r} , k_s , \bar{k}_s of that proof are also equivariant (g_t is equivariant by the equivariant covering homotopy theorem). This shows part (b).

3.4. *Remark.* If the projection of γ is open and the base space *B* is paracompact then 3.2 (a) implies $H_{\gamma}^{n}(\gamma; \mu) \simeq [\gamma, \mu_{n}]_{\gamma}$ where γ acts on γ by left translation. This latter set is clearly isomorphic to the set of vertical homotopy classes of sections of μ_{n} which, in turn, (by [9, 3.7]) is isomorphic to $H^{n}(B; \mu)$, $n \ge 1$. Thus $H_{\gamma}^{n}(\gamma; \mu)$ is independent of γ and by [10, 5.4 (a)] can be interpreted as the set of isomorphism classes of local principal μ_{n-1} bundles on *B*. In particular if *B* is a point then $H_{\gamma}^{n}(\gamma; \mu) = 0$.

Hyperequivariant cohomology

Let

$$\mathscr{A}_{i}^{k} = (\gamma_{i}, \xi_{i}, \mathscr{R}_{i}, \mathscr{A}_{i}, \mathscr{R}_{i}', \mathscr{A}_{i}', r_{i}, k_{i})$$

(respectively $M_i = (\gamma_i, \xi_i, \Lambda_i, \mu_i)$) (i = 1, 2) be systems as defined in Section 1 (respectively Section 2). A morphism $f: \mathscr{A}_1^{k_1} \to \mathscr{A}_2^{k_2}$ $(\bar{f}: M_1 \to M_2)$ consists of a tuple

$$f = (f_{\gamma}, f_{\xi}, f_{\Re}, f_{\mathfrak{A}}, f_{\mathfrak{A}'}, f_{\mathfrak{A}'}) \quad (\bar{f} = (f_{\gamma}, f_{\xi}, \bar{f}_{\Lambda}, \bar{f}_{\mu}))$$

where $f_{\gamma}: \gamma_1 \to \gamma_2$ is a map of group bundles over B, $f_{\xi}: \xi_1 \to \xi_2$ is an f_{γ} -equivariant map of spaces over B, $f_{\Re}: \Re_2 \to \Re_1$ is an f_{ξ} -cohomomorphism of sheaves of rings $(\bar{f}_{\Lambda}: \Lambda_1 \to \Lambda_2$ is an f_{γ} -equivariant map of ring bundles), $f_{\mathscr{A}}: \mathscr{A}_2 \to \mathscr{A}_1$ is an $f_{\mathscr{R}}$ -equivariant, f_{ξ} -cohomomorphism of sheaves of modules $(\bar{f}_{\mu}: \mu_1 \to \mu_2 \text{ is an } f_{\gamma} - \bar{f}_{\Lambda}$ -equivariant map of module bundles). $f_{\mathscr{R}'}$ and $f_{\mathscr{A}'}$ are analogously defined (relative to $f_{\xi/\gamma}: \xi_1/\gamma_1 \to \xi_2/\gamma_2$ induced by f_{ξ}) and are required to satisfy $r_1 f_{\mathscr{R}'} = f_{\mathscr{R}} r_2$ and $k_1 f_{\mathscr{A}'} = f_{\mathscr{A}} k_2$. Since \mathscr{C}^* is functorial, f induces a map

$$\mathscr{C}^*\mathscr{A}_1^{(k_1)*} \to \mathscr{C}^*\mathscr{A}_2^{(k_2)*}$$

and consequently a map $\Gamma((\mathscr{C}^*\mathscr{A}_2)^{k_{2^*}}) \to \Gamma((\mathscr{C}^*\mathscr{A}_1)^{k_{1^*}})$. Thus any group F of left operators on \mathscr{A}^k becomes a group of right operators on $\Gamma((\mathscr{C}^*\mathscr{A})^{k_*})$. Define the *F*-hyperequivariant cohomology $H^n_{\phi}(\xi; \mathscr{A}^k)^F$ to be $H^n(\Gamma^F_{\phi}((\mathscr{C}^*\mathscr{A})^{k_*}))$ where $\Gamma^F((\mathscr{C}^*\mathscr{A})^{k_*})$ is the subcochain complex of $\Gamma((\mathscr{C}^*\mathscr{A})^{k_*})$ consisting of the elements fixed under F and

$$\Gamma_{\phi}^{F}((\mathscr{C}^{*}\mathscr{A})^{k*}) = \Gamma^{F}((\mathscr{C}^{*}\mathscr{A})^{k*}) \cap \Gamma_{\phi}(\mathscr{C}^{*}\mathscr{A}).$$

In case γ acts trivially (gx = x) and (k, r) = (id, id), denote $\Gamma_{\phi}^{F}((\mathscr{C}^*\mathscr{A})^{k_*})$ by $\Gamma_{\phi}^{F}(\mathscr{C}^*\mathscr{A})$.

A morphism $\bar{f}: M_1 \to M_2$ clearly induces a morphism $f: \tilde{\mu}_1^{k_1} \to \tilde{\mu}_2^{k_2}$ in the case that \bar{f}_{Λ} and \bar{f}_{μ} are isomorphisms and $f_{\bar{\Lambda}}, f_{\bar{\Lambda}'}(f_{\mu}, f_{\mu'})$ are induced by $\bar{f}_{\Lambda}^{-1}(\bar{f}_{\mu}^{-1})$. Thus any group F of operators on $M = (\xi, \gamma, \Lambda, \mu)$ becomes a group of operators on $\tilde{\mu}^k$. Define $H^n_{\gamma}(\xi_{\phi}; \mu)^F$, the F-hyperequivariant cohomology of ξ_{ϕ} with coefficients in μ to be $H^n_{\phi}(\xi; \tilde{\mu}^k)^F$.

For any group F (discrete topology) of left operators on γ define $\pi = F * \gamma$, the semidirect product of γ by F, to be the fiber product of the trivial bundle on B with fiber F and γ , and with $(\bar{f}, \bar{g})(f, g) = (\bar{f}f, f^{-1}(\bar{g})g)$ for $f, \bar{f} \in F, g, \bar{g} \in \gamma_b$, $b \in B$ as the group bundle operation. If F is a group of left operators on \mathscr{A}^k then $(f, g)(x) = f_{\xi}(gx)$ $(f \in F, g \in \gamma)$ defines an action of π on ξ for which the quotient map $q_{\pi}: \xi \to \xi/\pi$ has the factorization

$$\xi \xrightarrow{q} \xi / \gamma \xrightarrow{Q} \xi / \pi$$

where Q can be identified with the quotient map $\xi/\gamma \to (\xi/\gamma)/F$ (the operation of F on ξ/γ is induced from that on ξ). Note that Q is open since

$$Q^{-1}Q(V) = \bigcup_{f \in F} f_{\xi/\gamma}(V).$$

As in Section 1 it is assumed that ξ/π is in C.

Suppose, now, that ϕ is a γ -family of supports on ξ and that $\psi = q(\phi)$ is an *F*-family of supports on ξ/γ $(Q^{-1}\overline{Q(K)} \in \psi$ if $K \in \psi)$ where *F* is a group of left operators on \mathscr{A}^k . Define $Q^F_{\psi} \mathscr{C}^* \mathscr{A}'$ to be the differential sheaf on ξ/π generated by the differential presheaf $U \to \Gamma^F_{\psi \cap Q^{-1}U}(\mathscr{C}^* \mathscr{A}' \mid Q^{-1}U)$. A direct calculation shows that

$$0 \to Q_{\psi}^{F} \mathscr{A}' \to Q_{\psi}^{F} \mathscr{C}^{0} \mathscr{A}' \to Q_{\psi}^{F} \mathscr{C}^{1} \mathscr{A}'$$

is exact and that $Q_{\psi}^{F} \mathscr{C}^{n} \mathscr{A}'$ is flabby (extend servations by 0). Thus if $H^{n}((Q_{\psi}^{F} \mathscr{C}^{*} \mathscr{A}')_{y}) = 0$ for n > 0 and all $y \in E(\theta)$, the extent of θ [1, p. 16] (note that by definition $(Q_{\psi}^{F} \mathscr{C}^{*} \mathscr{A}')_{y} = 0$ if $y \notin E(\theta)$) then $Q_{\psi}^{F} \mathscr{C}^{*} \mathscr{A}'$ is a flabby resolution of $\mathscr{A}'' = Q_{\psi}^{F} \mathscr{A}'$ and consequently $H_{\theta}^{*}(\xi/\pi; \mathscr{A}') \simeq H^{*}(\Gamma_{\theta}(Q_{\psi}^{F} \mathscr{C}^{*} \mathscr{A}'))$ where $\theta = Q(\psi)$. Further, the first map in the sequence $\Gamma_{\theta}(Q_{\psi}^{F} \mathscr{C}^{*} \mathscr{A}') \to \Gamma_{\psi}^{F}(\mathscr{C}^{*} \mathscr{A}') \to \Gamma_{\phi}^{F}((\mathscr{C}^{*} \mathscr{A})^{k*})$ is an isomorphism by the definition of Q_{ψ}^{F} and θ , and the second map is easily seen to be an isomorphism in case K(k) = 0 and q is open. Under the foregone conditions, then,

(4.1)
$$H^*_{\theta}(\xi/\pi;\mathscr{A}'') \simeq H^*_{\phi}(\xi;\mathscr{A}^k)^F.$$

4.2. THEOREM. If F is a group of left operators on \mathscr{A}^k with q open, K(k) = 0, ϕ and $q(\phi)$ equivariant supports with $\theta = Q(\psi) = Qq(\phi) = q_{\pi}(\phi)$ and $H^n((Q_{\psi}^F \mathscr{C}^* \mathscr{A}')_y) = 0$ for all $y \in E(\theta)$, n > 0, then

$$\begin{aligned} H^*_{\phi}(\xi;\,\mathscr{A}^k)^F &\simeq H^*_{\phi}(\xi;\,\mathscr{A}^k) \\ & \text{where } \mathscr{A}^{\widetilde{k}} = (\pi = F * \gamma,\,\xi,\,\mathscr{R},\,\mathscr{A},\,Q^F_{\psi}\mathscr{R}' = \mathscr{R}'',\,Q^F_{\psi}\mathscr{A}' = \mathscr{A}'',\,\bar{r},\,\bar{k}). \end{aligned}$$

Here $\bar{k} = kk'$ ($\bar{r} = rr'$) where $k' \colon \mathscr{A}'' \to \mathscr{A}'$ ($r' \colon \mathscr{R}'' \to \mathscr{R}'$) is the canonically induced Q-cohomomorphism.

Proof. Note that q_{π} is open since both q and Q are open. An easy calculation shows K(k') = 0, thus $K(\bar{k}) = 0$. The result now follows from 4.1 and 1.4 (b) applied to $\mathscr{A}^{\tilde{k}}$.

4.3. THEOREM. (a) Let F be a group of left operators on $M = (\gamma, \xi, \Lambda, \mu)$ such that q is open and μ is both a γ and F-LNDR. If ϕ is a γ -family on $\xi, \psi = q(\phi)$ an F-family on ξ/γ with $\theta = Q(\psi)$ paracompactifying and $H^n((Q_{\psi}^F \mathscr{C}^* \tilde{\mu}')_y) = 0$ for all $\gamma \in E(\theta)$, n > 0 then $H^n_{\gamma}(\xi_{\phi}; \mu)^F$ is isomorphic to $[\xi_{\phi}; \mu_n]_{\gamma}^F$, the set of F- γ -equivariant fiber homotopy classes of F- γ -equivariant maps $s: \xi \to \mu_n$ $(s(gx) = gs(x) \text{ and } sf_{\xi}(x) = f_{\mu_n}(s(x))$ where the homotopies have support in $\phi \times I$ and the operation of F on μ_n is induced from that on μ .

(b) If μ is an F- γ -NDR then $\{\mu_n\}, n \ge 1$, is an F- γ - Ω -spectrum.

Proof. From the definition of $\pi = F * \gamma$ and the way in which it operates it is readily seen that a map is π -equivariant if and only if it is F- γ -equivariant. Further, if ϕ is a γ -family and $\psi = q(\phi)$ is an F-family then ϕ is a π -family. A simple calculation shows $Q_{\psi}^{F}\tilde{\mu}'$ is generated by the presheaf $U \to \{\text{set of } \pi$ equivariant maps $q_{\pi}^{-1}(U) \to \mu\}$. Since K(k) = 0 (Section 2) Theorems 4.2 and 3.2 (a) imply $H_{\gamma}^{n}(\xi_{\phi}; \mu)^{F} \simeq H_{\pi}^{n}[\xi_{\phi}, \mu_{n}]_{\gamma} \simeq [\xi_{\phi}, \mu_{n}]_{\pi}, n \ge 1$. A check of the definitions shows $[\xi_{\phi}, \mu_{n}]_{\pi} = [\xi_{\phi}, \mu_{n}]_{\gamma}^{F}$. This proves (a). Part (b) follows similarly from 3.2 (b).

4.4. Remark. There are many conditions on F, γ , ξ , ϕ , etc., that imply the assumptions of Theorems 4.2 and 4.3. For example, it is easily shown that q is open in case each $x \in \xi$ has a continuous local section of q passing through it or in case the projection of γ is open and either γ or ξ is locally compact or both γ and ξ satisfy the first axiom of countability (so that the fiber product $\gamma\xi$ has the product topology [4, Section 9, p. 247]). If F is finite then $\psi = q(\phi)$ is an F-family and Q is ψ -closed if and only if ψ is F-closed ($fK \in \psi$ for all $f \in F$, $K \in \psi$) since $Q^{-1}Q(K) = \bigcup_{f \in F} fK$. Thus, by 1.3, $\theta = q_{\pi}(\phi)$ is paracompactifying for ϕ paracompactifying, q open and ϕ -closed, F finite and $\psi = q(\phi)$ F-closed. If ψ is a paracompactifying F-family and the induced operation of F on ξ/γ is proper [5, p. 134] then $H^n(Q_{\psi}^F \mathscr{C}^* \mathscr{A}')_y = 0$ for all $y \in E(\theta)$ and n > 0. To prove this it is sufficient to show that for some $x \in Q^{-1}(y)$ the induced map

$$(Q_{\psi}^{F}\mathscr{C}^{n}\mathscr{A}')_{y} = \lim_{y \in U} \Gamma_{\psi \cap Q^{-1}U}^{F}(\mathscr{C}^{n}\mathscr{A}' \mid Q^{-1}U)$$

$$\rightarrow \lim_{x \in V} \Gamma_{\psi \cap V}(\mathscr{C}^{n}\mathscr{A}' \mid V)$$

$$\rightarrow \Gamma_{\psi \cap \{x\}}(\mathscr{C}^{n}\mathscr{A}' \mid \{x\})$$

$$= (\mathscr{C}^{n}\mathscr{A}')_{x}$$

is an isomorphism since $(\mathscr{C}^*\mathscr{A}')_x$ is acyclic. However, the second map is an isomorphism by [1, 9.15, p. 50] since ψ is paracompactifying. Thus each element in $(\mathscr{C}^n\mathscr{A}')_x$ can be represented by an $s \in \Gamma_{\psi \cap V}(\mathscr{C}^n\mathscr{A}' \mid V)$ with V a proper neighborhood of x. Extend s to an \bar{s} on

$$Q^{-1}Q(V) = \bigcup_{f \in F} fV \quad \text{by } \bar{s}(w) = \mathscr{C}^n(f_{\mathscr{A}'}^{-1})_w s(f^{-1}(w))$$

for $w \in fV$. It is readily checked that

$$\bar{s} \in \Gamma^F_{\psi \cap Q^{-1}U}(\mathscr{C}^n \mathscr{A}' \mid Q^{-1}U) \text{ for } U = Q(V).$$

This shows that the map in question is onto. The one-to-one part is trivial and the assertion follows.

References

- 1. GLEN E. BREDON, Sheaf theory, McGraw-Hill, New York, 1967.
- 2. ——, *Equivariant cohomology theories*, Lecture Notes in Math., no. 34, Springer-Verlag, New York, 1967.
- 3. A. DOLD, Partitions of unity in the theory of fibrations, Ann. of Math., vol. 78 (1963), pp. 223-255.
- 4. JAMES DUGUNDJI, Topology, Allyn and Bacon, Boston, 1967.
- 5. S. MACLANE, Homology, Academic Press, New York, 1963.
- 6. , Categories for the working mathematician, Springer-Verlag, New York, 1971.
- M. C. MCCORD, Classifying spaces and infinite symmetric products, Trans. Amer. Math. Soc., vol. 146 (1969), pp. 273–298.
- 8. M. V. MIELKE, Universal fiber bundles of group bundles (notes).
- 9. —, Cohomology of fiber spaces with group bundle coefficients, Proc. Amer. Math. Soc., vol. 39 (1973), pp. 629–632.
- 10. ——, Cohomology with module bundle coefficients, Duke Math. J., vol. 40 (1973), pp. 449-454.
- 11. , The algebraic structure of certain Ω -spectra, Illinois J. Math., vol. 18 (1974), pp. 602–607.

UNIVERSITY OF MIAMI CORAL GABLES, FLORIDA