AN INEQUALITY IN INTEGRAL REPRESENTATION THEORY

BY
G. J. JANUSZ

Dedicated to the Memory of Irving Reiner
 Colleague and Friend

Let p be a prime number and G an abelian group of order $p^{n}, n \geq 1$. Let M be a $Z G$ module on which G acts faithfully and which is a free Z-module. Let F denote the field of p elements and Q the field of rational numbers. For any G module X, X^{G} denotes the submodule of X consisting of elements left fixed by the action of G. In connection with work on transformation groups acting on topological spaces, A. Adem raised the question of the validity of the bound

$$
\begin{equation*}
\operatorname{rank}_{Z}(M)-\operatorname{dim}_{F}(M / p M)^{G} \geq n \tag{1}
\end{equation*}
$$

in the case that G is elementary abelian, p is odd, and M is a Z-free $Z G$ module on which G acts faithfully. The need for this result arose in a generalization of a theorem of P. Smith which asserts that an abelian group acting freely on a sphere S^{m}, must be cyclic. Adem and Browder have shown that an elementary abelian group of order p^{n} can act freely on the product of k spheres, $\left(S^{m}\right)^{k}$, only when $n \leq k$. In this paper we shall prove a result which implies that the bound (1) does hold. We obtain a result like (1) which holds for all finite abelian groups G, in which the n is replaced by a function that is easily computed from the elementary divisors of G. The inequality is sharp in the sense that for every G, there are modules for which equality holds.

Before stating the precise result, some notation is needed. For a finite abelian p-group A, let $d_{i}(A)$ be the number of elementary divisors of A which equal p^{i}. Thus in a decomposition of A into a direct sum of cyclic groups, exactly $d_{i}(A)$ summands have order p^{i}. Finally, ϕ is Euler's function: we have

$$
\phi\left(p^{i}\right)=p^{i-1}(p-1) \quad \text { for } i \geq 1 .
$$

[^0]Theorem 1. Let G be a finite abelian p-group, p any prime, and let M be a Z-free ZG module on which G acts faithfully. Then

$$
\begin{equation*}
\operatorname{rank}_{Z}(M)-\operatorname{dim}_{F}(M / p M)^{G} \geq \sum_{i=1}^{e} d_{i}(G)\left(\phi\left(p^{i}\right)-1\right) \tag{2}
\end{equation*}
$$

where p^{e} is the exponent of G.
We begin with some notation for the simple $Q G$ modules. Let ζ_{i} denote a primitive p^{i}-th root of unity and let S_{i} denote the field $Q\left(\zeta_{i}\right)$ viewed as a vector space over Q on which G acts as the group $\left\langle\zeta_{i}\right\rangle$ by way of some homomorphism ψ_{i} mapping G onto $\left\langle\zeta_{i}\right\rangle$. Every simple $Q G$ module is obtained as a pair $\left\{S_{i}, \psi_{i}\right\}$ for some ψ_{i} and some i with $0 \leq i \leq e$. The Q dimension of S_{i} is $\phi\left(p^{i}\right)$.

We first prove a result about the dimension of a faithful module.
Proposition. Let G be as in Theorem 1 and let V be a $Q G$ module on which G acts faithfully. Then

$$
\operatorname{dim}_{Q}(V) \geq \sum_{i=1}^{e} d_{i}(G) \phi\left(p^{i}\right)
$$

Proof. The $Q G$ module V may be decomposed as a direct sum

$$
\begin{equation*}
V=A_{1} \oplus \cdots \oplus A_{t} \tag{3}
\end{equation*}
$$

with each A_{i} a simple $Q G$ module. Let A_{i} afford the matrix representation α_{i} so that $\alpha_{i}(G)$ is a cyclic group by Schur's lemma. Let P denote the direct product

$$
\begin{equation*}
P=\alpha_{1}(G) \times \cdots \times \alpha_{t}(G) \tag{4}
\end{equation*}
$$

The condition that G acts faithfully on V translates into the statement that the mapping

$$
g \rightarrow\left(\alpha_{1}(g), \ldots, \alpha_{t}(g)\right)
$$

is a one-to-one homomorphism of G into P. The condition that the abelian group P contains an isomorphic copy of G is expressible in terms of the
elementary divisors of the two groups [1, p. 107]. We obtain

$$
\begin{equation*}
\sum_{j=k}^{e} d_{j}(P) \geq \sum_{j=k}^{e} d_{j}(G) \tag{5}
\end{equation*}
$$

and this must hold for each $k=1, \ldots, e$.
For later use, we derive a consequence of (5) slightly more general than is needed immediately.

Lemma. Assume (5) holds for $1 \leq k \leq e$. If $0 \leq f_{1}<\cdots<f_{e}$ is an increasing sequence of real numbers, then

$$
\begin{equation*}
\sum_{i=1}^{e} d_{i}(P) f_{i} \geq \sum_{i=1}^{e} d_{i}(G) f_{i} \tag{6}
\end{equation*}
$$

Proof. Let $a_{1}=f_{1}$ and $a_{i}=f_{i}-f_{i-1}$ for $1<i \leq e$. Then each a_{i} is nonnegative. Multiply the inequality (5) by a_{k} and add the resulting inequalities for $k=1, \ldots, e$. After interchanging the order of summation, (6) is obtained.

Now the proposition follows by taking $f_{i}=\phi\left(p^{i}\right)$; then $d_{i}(P)$ counts the number of A_{j} which have dimension f_{i} and $\operatorname{dim}_{Q}(V)$ is the sum of the terms $d_{i}(P) f_{i}$.

For a $Z G$ module M, let $\delta(M)=\operatorname{dim}_{F}(M / p M)^{G}$ and let $\lambda(M)$ denote the composition length of the $Q G$ module $Q \otimes_{Z} M=Q M$.

Theorem 2. Let M be a Z-free finitely generated $Z G$ module. Then

$$
\delta(M) \leq \lambda(M)
$$

Proof. We use induction on $\lambda(M)$.
Suppose $\lambda(M)=1$. Then $Q M=S$ is a simple module containing M and so M can be realized as $Z G$ submodule of $Q\left(\zeta_{i}\right)$ for some i. Since G acts as $\left\langle\zeta_{i}\right\rangle$, it follows that M is isomorphic to an ideal of $Z\left[\zeta_{i}\right]$. Every ideal has the form $\pi^{t} Z\left[\zeta_{i}\right] B$ for some integer $t, \pi=1-\zeta_{i}$, and B an ideal relatively prime to p (see [3, §I.9]). Then

$$
M / p M \cong \pi^{t} Z\left[\zeta_{i}\right] B / p \pi^{t} Z\left[\zeta_{i}\right] B \cong Z\left[\zeta_{i}\right] / p Z\left[\zeta_{i}\right]
$$

The G fixed point space in this module is the annihilator of π which is easily seen to be one-dimensional over F; thus $\delta(M)=1=\lambda(M)$.

Now assume $\lambda(M)>1$. Then $Q M=S \oplus U$ for S a simple $Q G$ module and some nonzero $Q G$ module U. Let π_{1} and π_{2} be the projection maps from $Q M$ onto the summands S and U respectively. Set $\pi_{i}(M)=M_{i}$ for $i=1,2$. Then $M_{1} \subset Q M_{1}=S$, and $M_{2} \subset Q M_{2}=U$; each M_{i} is a Z-torsion free, $Z G$
module and $M \subset M_{1} \oplus M_{2}$. Let $N=M \cap M_{1}$ so that N is the kernel of the projection $M \rightarrow M_{2}$ induced by π_{2}. We have an exact sequence

$$
0 \rightarrow N \rightarrow M \rightarrow M_{2} \rightarrow 0
$$

This gives rise to an exact sequence

$$
0 \rightarrow(N+p M) / p M \rightarrow M / p M \rightarrow M_{2} / p M_{2} \rightarrow 0
$$

of $Z G$ modules (actually $F G$ modules). Now $Q N$ is simple and is a module for a cyclic homomorphic image C, of G. The properties of $F C$ modules are well known: every nonzero submodule of an indecomposable $F C$ module is also indecomposable and has a one-dimensional C-fixed point subspace. It follows then that $N / p N$ is indecomposable and so is every homomorphic image of it. In particular, the G-fixed point submodule of any homomorphic image of $N / p N$ has dimension less than or equal to one. Let W be the submodule of M such that $W / p M=(M / p M)^{G}$. In the module $M / p M$, either the submodule $(N+p M) / p M$ is (0), or it has a one-dimensional intersection with $W / p M$, since this is the fixed point space of a homomorphic image of $N / p N$. This means that

$$
\operatorname{dim}_{F}(W / p M)
$$

is either equal to, or is one greater than

$$
\operatorname{dim}_{F}\{(W+N) /(p M+N)\}
$$

In either case, since G acts trivially on both $W / p M$ and $(W+N) /(p M+N)$, we now have

$$
(W+N) /(p M+N) \subset(M /(p M+N))^{G}=\left(M_{2} / p M_{2}\right)^{G}
$$

and

$$
\begin{equation*}
-1+\operatorname{dim}_{F}(W / p M) \leq \operatorname{dim}_{F}\left(M_{2} / p M_{2}\right)^{G}=\delta\left(M_{2}\right) \tag{7}
\end{equation*}
$$

Since M_{2} is a Z-free $Z G$ module with $\lambda\left(M_{2}\right)=\lambda(M)-1$, we may apply the induction hypothesis to obtain $\delta\left(M_{2}\right) \leq \lambda\left(M_{2}\right)=\lambda(M)-1$. Combine this with (7) and the fact that $\delta(M)=\operatorname{dim}_{F}(W / p M)$ to obtain $-1+\delta(M) \leq$ $\lambda\left(M_{2}\right)$. Hence $\delta(M) \leq \lambda(M)$ as required to complete the induction.

Now we can prove the main result. Let M satisfy the hypothesis of Theorem 1 and let $V=Q M$ have the decomposition (3) into the direct sum of the
simple modules A_{j}. Let P be the group defined as in (4). Then:

$$
\begin{aligned}
\lambda(M) & =t=\sum_{i=1}^{e} d_{i}(P) \\
\operatorname{rank}_{Z}(M) & =\sum_{i=1}^{e} d_{i}(P) \phi\left(p^{i}\right) \\
\operatorname{rank}_{Z}(M)-\delta(M) & \geq \operatorname{rank}_{Z}(M)-\lambda(M) \\
& =\sum_{i=1}^{e}\left\{d_{i}(P) \phi\left(p^{i}\right)-d_{i}(P)\right\} \\
& =\sum_{i=1}^{e} d_{i}(G)\left\{\phi\left(p^{i}\right)-1\right\}
\end{aligned}
$$

This completes the proof of Theorem 1.
Notice that when G is an elementary abelian group of order p^{n}, then $e=1$ and $d_{1}(G)=n$; the right-hand side of (2) becomes $n(p-2)$. For $p=2$, this allows the possibility that G acts trivially on $M / 2 M$ even though G acts faithfully on M. This is certainly possible for suitable M. When p is odd, then $n(p-2) \geq n$ and so the bound (1) holds. For general G, we may take M to be the direct sum of certain M_{i} for which $Q M_{i}$ is simple. The bound in the theorem can be attained by arranging the $Q M_{i}$ so that $V=Q M$ is a minimal faithful $Q G$ module with equality in Theorem 2. This can easily be accomplished by taking a module which gives $G=P$ in the proof of the proposition.

References

1. W. Burnside, Theory of groups of finite order, 2nd ed, Cambridge University Press, Cambridge, England, 1911; Dover Publications, New York, 1955.
2. A. Adem and W. Browder, The free rank of symmetry of $\left(S^{n}\right)^{k}$, to appear.
3. G.J. Janusz, Algebraic number fields, Academic Press, Orlando, 1973.

[^0]: Received August 10, 1987.

