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Introduction

Let K/Q be an Abelian/-extension, a prime. In a series of papers written
in the 1950’s, A. FrShlich investigated the/-class group of K through the use
of the central class field of K. (The central class field of K is the maximal
extension L of K such that L/K is Abelian and unramified, L/Q is Galois
and gal(L/K) is in the center of gal(L/Q). It was first introduced by Scholz
in the 1930’s.) One of the most striking consequences of this general theory
was his determination of all such fields K with I not dividing the class number
of K. He recently gave a more modern exposition of these results in [3].

In this paper we reconsider this problem from a somewhat different point of
view. For simplicity we assume throughout that is an odd prime. Well-known
results allow us to reduce the problem to the case where the Galois group of K
over Q, gal(K/Q), is equal to the direct product of its ramification groups.
Our next reduction allows us to simplify to the case when gal(K/Q) is an
elementary Abelian /-group. This reduction theorem allows us to develop a
simple algorithm for computing the rank of the central class field of many
Abelian /-extensions K by means of matrices with coefficients from the finite
field with 1 elements.
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Section I

If K/Q is Abelian, the genus field Ka of K is the maximal unramified
extension of K which is Abelian over Q. Let K/Q be of odd degree n and
el, e2,... e be the ramification indices for the primes in Q that ramify in K.
H. Leopoldt proved that

Ka K ele2 et/n.

It follows that if K/Q is an Abelian /-extension then so is Ka/K. (This can
also be directly proved in an elementary manner without Leopoldt’s theorem.)
In any case, unless Ka K, will divide the class number hr of K. This in
turn can only happen when ele,_.., e n, or gal(K/Q) is the direct product
of its ramification subgroups. Hence forth we will assume that K satisfies
these (equivalent) conditions.
We will let Kc be the central class field of K. (Again Kc is the maximal

/-extension Kc of K such that Kc/K is Abelian and unramified, Kc/Q is
Galois and gal(Kc/K) is in the center of gal(Kc/Q).) Clearly, the genus field
Ka

_
Kc. Furuta determined the structure of gal(Ka/Kc); for example, see

[4]. In our case the answer is that it is a group

(K/Q) Q* 3 Nr/QIr/Nr/QK*

where Ir is the idele group of K and N is the norm map. J. Tate had
previously given a cohomological interpretation of this group. For Tate’s
theorem set G gal(K/Q)and let Gi, 1 < < t, be the decomposition groups
of the primes in Q ramified in K. Then

’(K/Q) H-3(G,Z) modulo the sum of the images of

H- ( Gi Z) under corestriction.

We will analyze this group further in Section 2. For now we note that if G is
an /-group so is e’(K/Q) =_ gal(Kc/K).

Since an /-group must have a lower central series that terminates in the
identity, one sees that hr if and only if l K: KI. We refine the field Kc
a little by taking a slightly smaller field C, where C is the maximal elementary
/-extension of K such that C/K is unramified, C/K is Galois, and gal(C/K)
is in the center of gal(C/Q). We will call C the l-elementary central class field
of K. Clearly, C is the fixed field of Kc under the action of gal(Kc/K)’. Thus

rank, gal( Kc/K )] rank, gal(C/K )1.

Our investigation of gal(C/K) is made much easier by the following theorem
--which may be of independent interest.
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THEOREM 1. Let K/Q be an Abelian l-extension with the genus field of K
satisfying, K K. Let Q c K c K be the maximal intermediate extension
between Q and K such that gal(K1/Q) is an elementary l-group. Then the l-rank
of the central class field ofK is equal to the l-rank of the central class field ofK1.

Our proof of this reduction theorem needs the following lemma from group
theory.

LEMMA. Let G be a finite group and Z the center of G. Suppose that the
commutator subgroup [G, G] c_ Z and [G, G] m e, the identity of G, for some
integer m. Then Gm cc_ Z.

Proof. Define [a, b] a-lb-lab. If a, b, c G we have

ab, c] b-i[a, c]b[ b, c].

If [G, G] _c Z then for g G, the map x [x, g] is a homomorphism from G
to [G, G]. If [G, G] m e, then [x ", g] e for all x in G. Thus Gm CC. Z.

Remark. If a, b G and c a-lb-lab is in the center of G, it is easy to
see by induction that aibi= (ab)ic(-/2. If m is odd, it follows that
arab (ab) which shows that under our hypothesis Gm is a subgroup of Z.
We do not need this fact.

Proof of Theorem 1. Let C and C be the/-elementary central class fields
of K and K respectively. Consider the following diagram:

C

Q

We will show that (i) K n C1 K and (ii) KCI C. It follows from this that
gal(C/K) gal(Cx/K) which proves the theorem.

Let p be a prime of Q ramified in K and let TK/Q(p) be the common
ramification group of the primes above p in K. By our hypothesis that
K K, gal(K/Q)= G IITc/Q(p); where the direct product is over the
ramified primes.



GARY CORNELL AND MICHAEL ROSEN

Now gal(K/K) G I-ITr/o(p)t. Define Tr/rx(p) in the obvious way.
Then

and so gal(K/K1)= FITr/rl(p ). This implies that K1 has no unramified
extensions in K and it follows that K n Ct Kt. This establishes (i).

Let p be a prime in Q ramified in K, and a prime of C lying above p.
Let be gal(C/Q) and let T(t) __C_ f be the ramification group of in ft.
Since C/K is unramified we know that restriction to K gives an isomorphism
of Abelian groups:

T(:) T/o(p) and T(..)’=- TI,:/(p).

Suppose 2 is another prime of C above p. Then there is a g such that

g-T(l)g T(2).

We now use the lemma. Since [if, f] __. gal(C/K) which is in the center of if,
and gal(C/K)t e, we find that T(l)t T(2) is a subgroup of the center
of . Write T(x)t= Tc/ra(p ). It is the common ramification group in
gal(C/Kx) of any prime of C lying above p.

For each ramified prime , we have defined a subgroup Tc/r(p ) which is
the same for all above p. It is also a subgroup of the center of gal(C/K1)
and so 1-lTc/r(p ) is a subgroup of gal(C/K). Let C{ be the fixed field of
this product. C{ is unramified over K so by the remark made above,
C n K K1. It now follows that gal(C/K) maps onto gal(C{/K). This
implies that gal(C{/K) is also elementary Abelian and central in gal(C{/Q).
Since Cx

_
C is maximal with this property, we must have C C{.

From [C" K] [C" K][K" K] [C" C][C K1] we deduce

[c. K] I-Ilr /,c,(p) I-Ilrc: (p) I.
Recalling that Tc/x(p ) = T/x(p) we find that [C" K] < [C" Kx].
On the other hand, KC

_
C, so

[C" K] > [KCi" K] [CI’Ci t3 K] [C" K].

Thus [C" K] [C K1] and so [C" K] [KCi" K] implying KC C.
This establishes (ii) and we’re done.
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Section 2

In this section we suppose that gal(K/Q) =- (Z/lZ)m, where as usual is
an odd prime. Suppose Pl, P2,..., Pt are the primes ramifying in K with
inertia groups T and decomposition groups Gi. As before KG and Kc will be
the genus field of K and the central class field of K respectively. As mentioned
in Section 1, since is odd, Furuta’s theorem implies that gal(Kc/KG)=-
sC’(K/Q), the group of non-zero rationals which are local norms everywhere
modulo global norms. Also, as mentioned before, Tate’s theorem implies that
(K/Q) is the cokernel of the natural map from f..1H-3(Gi, Z) to
H-3(G, Z) induced by co-restriction. It is well known that H-3(G, Z) --- A2(G),the second exterior power of G. (For a direct proof see [5] or for a proof in a
more general setting see Brown [1]. This identification is functorial and we
have:

THEOREM. gal(Kc/K) is isomorphic to the cokernel of the natural map
from (ti_xA2(Gi) to AE(G).

For a proof see Razar’s paper [5].
This theorem when combined with our reduction theorem lends itself to

computations. For these see Section 3. However first note that the dimension
of A2(G) over Z/lZ is m(m- 1)/2 and since the decomposition group
G =- Z/lZ or (Z//Z) 2, the dimension of A2(Gi) is zero or one. Thus we have:

COROLLARY. The dimension of gal(Kc/K) is greater than or equal to
m(m 1)/2 where is the number of ramified primes. When m, we
have K K and dimt(gal(Kc/K)) > m(m 3)/2. So in this case llh: as
soon as m > 4.

For more details see Comell-Rosen [2].

This corollary shows that m 2 and m 3 are the key cases for Frrhlich’s
theorem. The case when m 2 is easily disposed of:

PROPOSITION 2. Suppose m 2 and p 4 I for i= 1,2. Then llhr if and
only if x =- Pl (P2) and x =- P2 (Pl) are both solvable, i.e., iff they are mutual
l-th power residues.

Proof A2(G) is of dimension one in this case. So gal(Kc/K ) is non-trivial
if and only if G T for 1, 2. This holds iff the stated congruences are
solvable. For more details see Proposition 4 of [2]. We must modify this
proposition slightly when one of the primes is 1.
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PROPOSITION 3. Suppose m 2 and and p are the only primes ramified in
K. Then llh r if and only if xt= (p) and pl-1 1 (/2).

We leave the proof of this to the reader.

To deal with the case m 3 we need the following 1emma which is stated
without proof in [5]. For completeness we will give the proof.

LEMMA. Let V be a three-dimensional vector space over a field F. Let V c V
for i= 1,2,3 be proper subspaces. The natural map from /3=lAE(V/) to AEV
is onto if and only if:

(i) dim V/= 2 and V q V. for q= j;
(ii) if V Vj (xij) for q: j, then x2 x3 and x23 is a basis for V.

Proof. The pairing " A2(V) V A3(V) -= F given by

(xAy, z) =xAyAz

is non-degenerate. Assume that 3=A2(V/) - V is onto. Then clearly each of
the V,. has dimension 2 and V/: V. for : j. Thus condition (i) is satisfied.
Write Vx (x12, u), V2 (x12, v), and V (x3, w). By hypothesis, x2 A u,
xxz A v and x3 A w is a basis of AE(v). From the non-degeneracy of we
see x12 A x13 A w 0. Thus x2 and x3 are linearly independent and V
(x2 x13 ). Similarly, V2 (x2, x23), V (x3, x23 ). We now take w x23
so x2 A x3 A x23 : 0 which gives condition (ii).

Conversely suppose (i) and (ii) are satisfied. From (i) and (ii) we see

V1 (x12, x3), V2 (x12, x23 ), V (Xa, X23 ). Thus the image of
/3=1A2(V/) is generated by x2 A x3, x12 A x_ and x13 A x23 which is a

basis of AE(v) by (ii).

THEOREM 2. Suppose m 3 and there are three ramified primes. Let Di,
1,2,3, be the decompositionfield ofpi, i.e., thefixedfield of Gi. Then

if and only if [Di" Q] for each and D1D2D g.

Proof. We know hr if and only if Kc K. By the previous remarks
this happens if and only if the map 3 AE(Gg) - AE(G) is onto. By the lemma
this is true if and only if dim G 2, G Gj for : j and G G2, G G
and G G3 generate G. In terms of fields these conditions are

(i) [Di:Q} for each and D q: Dj for j
and

(ii) DD2 t DD D2D Q.
Suppose (i) and (ii) hold. It follows easily that D DxD2

q DID so that
D D2D3 Q. This implies that D.D2D K. Conversely if DID2D K
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and [DI" Q] I for each i, then we must have

D1ND2D3=Q and DI=D1Dg.ND1D

so both (i) and (ii) hold.

Theorem 2 has a pleasing symmetry about it but the field-theoretic condi-
tion given there isn’t easy to verify. So we are still left with finding an
algorithm for determining whether llhK or not. In the next section we will give
such an algorithm and leave to the reader the task of relating our approach to
that of FrShlich in [3].

Section 3

In this section K is a field such that G gal(K/Q) (Z//Z)m and exactly
m primes ramify from Q to K. For simplicity we will assume is not ramified
in K. The modifications for this case are simple and we leave them to the
reader. Let K be the fixed field of 1-Ij, iTj where Tj is the inertia group of pj.
K is the unique Abelian extension of Q ramified only at p of degree l. (So of
course pg 1 (l)). This in turn implies that K is the unique subfield of Q(’p,)
of degree over Q. Let N PIP2... Pro" Then K is the maximal elementary
Abelian /-extension of Q contained in Q(’s). Let Gs-= (Z/NZ)* be the
Galois group of Q(’s) over Q. G =- Gs/GtN We will do our calculations in
Gs but then interpret the results modulo in order to descend to G. The first
step is to provide explicit generators for T/ and Gg. For this we need some
notation. For any integer n, we let be the reduction of n modulo N and
then modulo l-th powers. Thus can be considered as an element of G. Let ,i
be a primitive root mod Pi and choose *i (Pi) and 1 (pj) for j :/: i.
Then ii generates T. Now choose s such that sg 1 (Pi) and s Pi (Pj) for
j #: i. Then i,. and gi generate G. These assertions follow from the basic
arithmetic properties of cyclotomic fields.
By hypothesis, 1, 2,.--, is a vector space basis for G. Thus

gi "ail’ai2 aim 1 rn

where the a ij are uniquely determined modulo l. These integers a ij are
fundamental to our algorithm so we note that they are easily calculated.
Consider

Si=failfai2 aim (N);"1 "2

reducing mod Pi yields 1 ’ria’i (Pi). Thus a ii 0. Reducing modulo pj for
j 4: gives p )ai+ (pj). Thus to find 8ij, calculate the index of Pi modulo pj
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for the base . then reduce modulo 1. This is most easily done using a table of
indices or a short computer program.
We hope to make matters less confusing now by writing the operation in G

additively, and omitting the bars. Then
(i) si-- Ejaijtj

and
(ii) siAt Eai2t2 A i.

The set { A tjli < j} is a basis for A(G). Using equation (ii) we can
express s A ti as linear combination of these basis elements. The rank of the
resulting coefficient matrix is the dimension of the image of A:(G) in
A:(G). Call this number r. Then

dimt(gal(Kc/K)) m(m 1)/2 r.

In the case m 3 the matrix in question is

-a12 -a13 0

a21 0 --a23 ).0 a31 a32

Since m(m 1)/2 3 in this case we have hr only if the matrix (, ,)
is non-singular. We finish this paper by giving examples when 1 3 which
show that r, the rank of (, ), can take on any value between zero and three.
For a matrix of rank three, take px 7, P2 13r and P3 19 with

corresponding primitive roots 3, 2, and 2. The matrix entries aj correspond-
ing to this choice of primitive roots are

a12 11, a13 6, a21 3, a23--- 5, a31 5, a32- 5.

Reducing modulo 3 and substituting into (, ,) yields

1 0 0)0 0 1
0 2 2

which is of rank 3. It follows that the maximal 3-extension of Q in Q(7.13.19)
has class number prime to 3.

For a matrix of rank 2, take Pl 7, P2 13, and P3 43 with correspond-
ing primitive roots 3, 2, and 3. The a2 are

a12 11, a13 25, a21 3, a23 32, a31 0, a32 2.
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Reducing modulo 3 and substituting into (. ) yields

1 1 0)0 0 1
0 0 2

which has rank 2. It follows that the central class field of the maximal
3-extension of Q in Q(7.13.43) has rank equal to 1.
For a matrix of rank 1, take Pl 7, P2 13, and P3 "-421 with corre-

sponding primitive roots 3, 2, and 2. The a i. are

a12 11, a13 366, a21 3, a23 63, a31 0, a32 9.

Reducing modulo 3 and substituting into (. ) yields

1 0 0)0 0 0
0 0 0

which has rank 1. It follows that the central class field of the maximal
3-extension of Q in Q(7.13.421) has rank 2.

Finally, take Pl 7, P2 181, and P3 673 with corresponding primitive
roots 3, 2, and 5. The a ij are

a12 5, a13 486, a21 3, a23 531, a31 0, a32 141.

Since all these numbers are divisible by 3, the matrix under consideration is
the zero matrix which, of course, has rank zero. Thus the central class field of
the maximal 3-extension of Q in Q(7.181.673) has the maximal possible rank,
namely 3.
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