THE CLASS GROUP OF AN ABSOLUTELY ABELIAN *I*-EXTENSION

BY

GARY CORNELL¹ AND MICHAEL ROSEN²

In Memoriam Irving Reiner

Introduction

Let K/\mathbb{Q} be an Abelian *l*-extension, *l* a prime. In a series of papers written in the 1950's, A. Fröhlich investigated the *l*-class group of K through the use of the central class field of K. (The central class field of K is the maximal extension L of K such that L/K is Abelian and unramified, L/\mathbb{Q} is Galois and gal(L/K) is in the center of $gal(L/\mathbb{Q})$. It was first introduced by Scholz in the 1930's.) One of the most striking consequences of this general theory was his determination of all such fields K with *l* not dividing the class number of K. He recently gave a more modern exposition of these results in [3].

In this paper we reconsider this problem from a somewhat different point of view. For simplicity we assume throughout that l is an odd prime. Well-known results allow us to reduce the problem to the case where the Galois group of K over \mathbf{Q} , $gal(K/\mathbf{Q})$, is equal to the direct product of its ramification groups. Our next reduction allows us to simplify to the case when $gal(K/\mathbf{Q})$ is an elementary Abelian *l*-group. This reduction theorem allows us to develop a simple algorithm for computing the rank of the central class field of many Abelian *l*-extensions K by means of matrices with coefficients from the finite field with l elements.

We would like to thank the Mathematical Sciences Research Institute for its hospitality during the period when the research on this paper was carried out.

© 1988 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received December 16, 1986.

¹Partially supported by a grant from the Vaughn Foundation. Research at MSRI sponsored by a grant from the National Science Foundation.

²Partially supported by grants from the Vaughn Foundation and the National Science Foundation.

Section 1

If K/\mathbf{Q} is Abelian, the genus field K_G of K is the maximal unramified extension of K which is Abelian over \mathbf{Q} . Let K/\mathbf{Q} be of odd degree n and e_1, e_2, \ldots, e_t be the ramification indices for the primes in \mathbf{Q} that ramify in K. H. Leopoldt proved that

$$[K_G:K] = e_1 e_2 \dots e_t / n.$$

It follows that if K/\mathbf{Q} is an Abelian *l*-extension then so is K_G/K . (This can also be directly proved in an elementary manner without Leopoldt's theorem.) In any case, unless $K_G = K$, *l* will divide the class number h_K of *K*. This in turn can only happen when $e_1e_2 \dots e_t = n$, or $gal(K/\mathbf{Q})$ is the direct product of its ramification subgroups. Hence forth we will assume that *K* satisfies these (equivalent) conditions.

We will let K_C be the central class field of K. (Again K_C is the maximal *l*-extension K_C of K such that K_C/K is Abelian and unramified, K_C/\mathbf{Q} is Galois and $gal(K_C/K)$ is in the center of $gal(K_C/\mathbf{Q})$.) Clearly, the genus field $K_G \subseteq K_C$. Furuta determined the structure of $gal(K_G/K_C)$; for example, see [4]. In our case the answer is that it is a group

$$\mathscr{A}(K/\mathbf{Q}) = \mathbf{Q}^* \cap \mathbf{N}_{K/O} I_K / \mathbf{N}_{K/O} K^*,$$

where I_K is the idele group of K and N is the norm map. J. Tate had previously given a cohomological interpretation of this group. For Tate's theorem set $G = gal(K/\mathbb{Q})$ and let $G_i, 1 \le i \le t$, be the decomposition groups of the primes in \mathbb{Q} ramified in K. Then

$$\mathscr{A}(K/\mathbb{Q}) \cong H^{-3}(G,\mathbb{Z})$$
 modulo the sum of the images of
 $H^{-3}(G_i,\mathbb{Z})$ under corestriction.

We will analyze this group further in Section 2. For now we note that if G is an *l*-group so is $\mathscr{A}(K/\mathbb{Q}) \cong gal(K_C/K_G)$.

Since an *l*-group must have a lower central series that terminates in the identity, one sees that $l + h_K$ if and only if $l + |K_C: K|$. We refine the field K_C a little by taking a slightly smaller field C, where C is the maximal elementary *l*-extension of K such that C/K is unramified, C/K is Galois, and gal(C/K) is in the center of gal(C/Q). We will call C the *l*-elementary central class field of K. Clearly, C is the fixed field of K_C under the action of $gal(K_C/K)^l$. Thus

$$\operatorname{rank}_{l}[\operatorname{gal}(K_{C}/K)] = \operatorname{rank}_{l}[\operatorname{gal}(C/K)].$$

Our investigation of gal(C/K) is made much easier by the following theorem —which may be of independent interest.

THEOREM 1. Let K/\mathbb{Q} be an Abelian l-extension with the genus field of K satisfying, $K_G = K$. Let $\mathbb{Q} \subset K_1 \subset K$ be the maximal intermediate extension between \mathbb{Q} and K such that $gal(K_1/\mathbb{Q})$ is an elementary l-group. Then the l-rank of the central class field of K is equal to the l-rank of the central class field of K_1 .

Our proof of this reduction theorem needs the following lemma from group theory.

LEMMA. Let G be a finite group and Z the center of G. Suppose that the commutator subgroup $[G, G] \subseteq Z$ and $[G, G]^m = e$, the identity of G, for some integer m. Then $G^m \subseteq Z$.

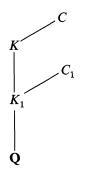
Proof. Define $[a, b] = a^{-1}b^{-1}ab$. If $a, b, c \in G$ we have

$$[ab, c] = b^{-1}[a, c]b[b, c].$$

If $[G, G] \subseteq \mathbb{Z}$ then for $g \in G$, the map $x \mapsto [x, g]$ is a homomorphism from G to [G, G]. If $[G, G]^m = e$, then $[x^m, g] = e$ for all x in G. Thus $G^m \subseteq Z$.

Remark. If $a, b \in G$ and $c = a^{-1}b^{-1}ab$ is in the center of G, it is easy to see by induction that $a^ib^i = (ab)^ic^{i(i-1)/2}$. If m is odd, it follows that $a^mb^m = (ab)^m$ which shows that under our hypothesis G^m is a subgroup of Z. We do not need this fact.

Proof of Theorem 1. Let C and C_1 be the *l*-elementary central class fields of K and K_1 respectively. Consider the following diagram:



We will show that (i) $K \cap C_1 = K_1$ and (ii) $KC_1 = C$. It follows from this that $gal(C/K) \cong gal(C_1/K_1)$ which proves the theorem.

Let p be a prime of Q ramified in K and let $T_{K/Q}(p)$ be the common ramification group of the primes above p in K. By our hypothesis that $K = K_G$, $gal(K/Q) = G = \prod T_{K/Q}(p)$; where the direct product is over the ramified primes.

Now $gal(K/K_1) = G^l = \prod T_{K/Q}(p)^l$. Define $T_{K/K_1}(p)$ in the obvious way. Then

$$T_{K/K_1}(p) = T_{K/Q}(p) \cap G^l = T_{K/Q}(p)^l$$

and so $gal(K/K_1) = \prod T_{K/K_1}(p)$. This implies that K_1 has no unramified extensions in K and it follows that $K \cap C_1 = K_1$. This establishes (i).

Let p be a prime in \mathbb{Q} ramified in K, and \mathscr{P}_1 a prime of C lying above p. Let \mathscr{G} be $gal(C/\mathbb{Q})$ and let $T(\mathscr{P}_1) \subseteq \mathscr{G}$ be the ramification group of \mathscr{P}_1 in \mathscr{G} . Since C/K is unramified we know that restriction to K gives an isomorphism of Abelian groups:

$$T(\mathscr{P}_1) \cong T_{K/\mathbb{Q}}(p)$$
 and $T(\mathscr{P}_1)^l \cong T_{K/K_1}(p)$.

Suppose \mathscr{P}_2 is another prime of C above p. Then there is a $g \in \mathscr{G}$ such that

$$g^{-1}T(\mathscr{P}_1)g = T(\mathscr{P}_2).$$

We now use the lemma. Since $[\mathscr{G}, \mathscr{G}] \subseteq gal(C/K)$ which is in the center of \mathscr{G} , and $gal(C/K)^l = e$, we find that $T(\mathscr{P}_1)^l = T(\mathscr{P}_2)^l$ is a subgroup of the center of \mathscr{G} . Write $T(\mathscr{P}_1)^l = T_{C/K_1}(p)$. It is the common ramification group in $gal(C/K_1)$ of any prime of C lying above p.

For each ramified prime \mathscr{P} , we have defined a subgroup $T_{C/K_1}(p)$ which is the same for all \mathscr{P} above p. It is also a subgroup of the center of $gal(C/K_1)$ and so $\prod T_{C/K_1}(p)$ is a subgroup of $gal(C/K_1)$. Let C'_1 be the fixed field of this product. C'_1 is unramified over K_1 so by the remark made above, $C'_1 \cap K = K_1$. It now follows that gal(C/K) maps onto $gal(C'_1/K_1)$. This implies that $gal(C'_1/K_1)$ is also elementary Abelian and central in $gal(C'_1/Q)$. Since $C_1 \subseteq C'_1$ is maximal with this property, we must have $C_1 = C'_1$.

From $[C: K_1] = [C: K][K: K_1] = [C: C_1][C_1: K_1]$ we deduce

$$[C:K] \cdot \Pi |T_{K/K_1}(p)| \le [C_1:K_1] \cdot \Pi |T_{C/K_1}(p)|.$$

Recalling that $T_{C/K_1}(p) \cong T_{K/K_1}(p)$ we find that $[C:K] \leq [C_1:K_1]$. On the other hand, $KC_1 \subseteq C$, so

$$[C:K] \ge [KC_1:K] = [C_1:C_1 \cap K] = [C_1:K_1].$$

Thus $[C: K] = [C_1: K_1]$ and so $[C: K] = [KC_1: K]$ implying $KC_1 = C$. This establishes (ii) and we're done.

456

Section 2

In this section we suppose that $gal(K/\mathbb{Q}) \cong (\mathbb{Z}/l\mathbb{Z})^m$, where as usual *l* is an odd prime. Suppose p_1, p_2, \ldots, p_l are the primes ramifying in K with inertia groups T_i and decomposition groups G_i . As before K_G and K_C will be the genus field of K and the central class field of K respectively. As mentioned in Section 1, since *l* is odd, Furuta's theorem implies that $gal(K_C/K_G) \cong$ $\mathscr{A}(K/\mathbb{Q})$, the group of non-zero rationals which are local norms everywhere modulo global norms. Also, as mentioned before, Tate's theorem implies that $\mathscr{A}(K/\mathbb{Q})$ is the cokernel of the natural map from $\bigoplus_{i=1}^{t} H^{-3}(G_i, \mathbb{Z})$ to $H^{-3}(G, \mathbb{Z})$ induced by co-restriction. It is well known that $H^{-3}(G, \mathbb{Z}) \cong \wedge^2(G)$, the second exterior power of G. (For a direct proof see [5] or for a proof in a more general setting see Brown [1]. This identification is functorial and we have:

THEOREM. gal (K_C/K_G) is isomorphic to the cokernel of the natural map from $\bigoplus_{i=1}^{t} \bigwedge^2(G_i)$ to $\bigwedge^2(G)$.

For a proof see Razar's paper [5].

This theorem when combined with our reduction theorem lends itself to computations. For these see Section 3. However first note that the dimension of $\bigwedge^2(G)$ over $\mathbb{Z}/l\mathbb{Z}$ is m(m-1)/2 and since the decomposition group $G_i \cong \mathbb{Z}/l\mathbb{Z}$ or $(\mathbb{Z}/l\mathbb{Z})^2$, the dimension of $\bigwedge^2(G_i)$ is zero or one. Thus we have:

COROLLARY. The dimension of $gal(K_C/K_G)$ is greater than or equal to m(m-1)/2 - t where t is the number of ramified primes. When t = m, we have $K_G = K$ and $\dim_l(gal(K_C/K)) \ge m(m-3)/2$. So in this case $l|h_K$ as soon as $m \ge 4$.

For more details see Cornell-Rosen [2].

This corollary shows that m = 2 and m = 3 are the key cases for Fröhlich's theorem. The case when m = 2 is easily disposed of:

PROPOSITION 2. Suppose m = 2 and $p_i \neq l$ for i = 1, 2. Then $l|h_K$ if and only if $x^l \equiv p_1(p_2)$ and $x^l \equiv p_2(p_1)$ are both solvable, i.e., iff they are mutual *l*-th power residues.

Proof. $\wedge^2(G)$ is of dimension one in this case. So $gal(K_C/K)$ is non-trivial if and only if $G_i = T_i$ for i = 1, 2. This holds iff the stated congruences are solvable. For more details see Proposition 4 of [2]. We must modify this proposition slightly when one of the primes is l.

PROPOSITION 3. Suppose m = 2 and l and p are the only primes ramified in K. Then $l|h_K$ if and only if $x^l \equiv l(p)$ and $p^{l-1} \equiv 1(l^2)$.

We leave the proof of this to the reader.

To deal with the case m = 3 we need the following lemma which is stated without proof in [5]. For completeness we will give the proof.

LEMMA. Let V be a three-dimensional vector space over a field F. Let $V_i \subset V$ for i = 1, 2, 3 be proper subspaces. The natural map from $\bigoplus_{i=1}^{3} \bigwedge^2(V_i)$ to $\bigwedge^2 \bigvee$ is onto if and only if:

(i) dim $V_i = 2$ and $V_i \neq V_j$ for $i \neq j$;

(ii) if $V_i \cap V_j = \langle x_{ij} \rangle$ for $i \neq j$, then x_{12} , x_{13} and x_{23} is a basis for V.

Proof. The pairing $\Phi: \wedge^2(V) \times V \to \wedge^3(V) \cong F$ given by

$$\Phi(x \wedge y, z) = x \wedge y \wedge z$$

is non-degenerate. Assume that $\bigoplus_{i=1}^{3} \bigwedge^2(V_i) \to V$ is onto. Then clearly each of the V_i has dimension 2 and $V_i \neq V_j$ for $i \neq j$. Thus condition (i) is satisfied. Write $V_1 = \langle x_{12}, u \rangle$, $V_2 = \langle x_{12}, v \rangle$, and $V_3 = \langle x_{13}, w \rangle$. By hypothesis, $x_{12} \land u$, $x_{12} \land v$ and $x_{13} \land w$ is a basis of $\bigwedge^2(V)$. From the non-degeneracy of Φ we see $x_{12} \land x_{13} \land w \neq 0$. Thus x_{12} and x_{13} are linearly independent and $V_1 = \langle x_{12}, x_{13} \rangle$. Similarly, $V_2 = \langle x_{12}, x_{23} \rangle$, $V_3 = \langle x_{13}, x_{23} \rangle$. We now take $w = x_{23}$ so $x_{12} \land x_{13} \land x_{23} \neq 0$ which gives condition (ii).

Conversely suppose (i) and (ii) are satisfied. From (i) and (ii) we see $V_1 = \langle x_{12}, x_{13} \rangle$, $V_2 = \langle x_{12}, x_{23} \rangle$, $V_3 = \langle x_{13}, x_{23} \rangle$. Thus the image of $\bigoplus_{i=1}^{3} \bigwedge^2(V_i)$ is generated by $x_{12} \land x_{13}$, $x_{12} \land x_{23}$ and $x_{13} \land x_{23}$ which is a basis of $\bigwedge^2(V)$ by (ii).

THEOREM 2. Suppose m = 3 and there are three ramified primes. Let D_i , i = 1, 2, 3, be the decomposition field of p_i , i.e., the fixed field of G_i . Then $l + h_K$ if and only if $[D_i: \mathbf{Q}] = l$ for each i and $D_1 D_2 D_3 = K$.

Proof. We know $l + h_K$ if and only if $K_C = K$. By the previous remarks this happens if and only if the map $\bigoplus \bigwedge^2(G_i) \to \bigwedge^2(G)$ is onto. By the lemma this is true if and only if dim $G_i = 2$, $G_i \neq G_j$ for $i \neq j$ and $G_i \cap G_2$, $G_1 \cap G_3$ and $G_2 \cap G_3$ generate G. In terms of fields these conditions are

(i) $[D_i: \mathbf{Q}] = l$ for each *i* and $D_i \neq D_j$ for $i \neq j$ and

(ii) $D_1D_2 \cap D_1D_3 \cap D_2D_3 = \mathbf{Q}.$

Suppose (i) and (ii) hold. It follows easily that $D_1 = D_1D_2 \cap D_1D_3$ so that $D_1 \cap D_2D_3 = \mathbf{Q}$. This implies that $D_1D_2D_3 = K$. Conversely if $D_1D_2D_3 = K$

and $[D_1: \mathbf{Q}] = l$ for each *i*, then we must have

$$D_1 \cap D_2 D_3 = \mathbf{Q}$$
 and $D_1 = D_1 D_2 \cap D_1 D_3$

so both (i) and (ii) hold.

Theorem 2 has a pleasing symmetry about it but the field-theoretic condition given there isn't easy to verify. So we are still left with finding an algorithm for determining whether $l|h_K$ or not. In the next section we will give such an algorithm and leave to the reader the task of relating our approach to that of Fröhlich in [3].

Section 3

In this section K is a field such that $G = gal(K/\mathbb{Q}) \cong (\mathbb{Z}/l\mathbb{Z})^m$ and exactly m primes ramify from Q to K. For simplicity we will assume l is not ramified in K. The modifications for this case are simple and we leave them to the reader. Let K_i be the fixed field of $\prod_{j \neq i} T_j$ where T_j is the inertia group of p_j . K_i is the unique Abelian extension of **Q** ramified only at p_i of degree l. (So of course $p_i \equiv 1$ (1)). This in turn implies that K_i is the unique subfield of $\mathbf{Q}(\zeta_{p_i})$ of degree *l* over **Q**. Let $N = p_1 p_2 \dots p_m$. Then K is the maximal elementary Abelian *l*-extension of **Q** contained in $\mathbf{Q}(\zeta_N)$. Let $G_N \cong (\mathbf{Z}/N\mathbf{Z})^*$ be the Galois group of $\mathbf{Q}(\zeta_N)$ over \mathbf{Q} . $G \cong G_N/G_N^l$. We will do our calculations in G_N but then interpret the results modulo l in order to descend to G. The first step is to provide explicit generators for T_i and G_i . For this we need some notation. For any integer n, we let \overline{n} be the reduction of n modulo N and then modulo *l*-th powers. Thus \bar{n} can be considered as an element of G. Let τ_i be a primitive root mod p_i and choose $t_i \equiv \tau_i$ (p_i) and $t_i \equiv 1$ (p_i) for $j \neq i$. Then \bar{t}_i generates T_i . Now choose s_i such that $s_i \equiv 1$ (p_i) and $s_i \equiv p_i$ (p_i) for $j \neq i$. Then \bar{t}_i and \bar{s}_i generate G_i . These assertions follow from the basic arithmetic properties of cyclotomic fields.

By hypothesis, $\bar{t}_1, \bar{t}_2, \dots, \bar{t}_m$ is a vector space basis for G. Thus

$$\bar{s}_i = \bar{t}_1^{a_{i1}} \bar{t}_2^{a_{i2}} \dots \bar{t}_m^{a_{im}}, \quad i = 1, \dots, m,$$

where the a_{ij} are uniquely determined modulo *l*. These integers a_{ij} are fundamental to our algorithm so we note that they are easily calculated. Consider

$$s_i \equiv t_1^{a_{i1}} t_2^{a_{i2}} \dots t_m^{a_{im}} (N);$$

reducing mod p_i yields $1 \equiv \tau_i^{a_{ii}}$ (p_i) . Thus $a_{ii} = 0$. Reducing modulo p_j for $j \neq i$ gives $p_i \equiv \tau_j^{a_{ij}}$ (p_j) . Thus to find \bar{a}_{ij} , calculate the index of p_i modulo p_j

for the base τ_j then reduce modulo *l*. This is most easily done using a table of indices or a short computer program.

We hope to make matters less confusing now by writing the operation in G additively, and omitting the bars. Then

(i) $s_i = \sum_j a_{ij} t_j$ and

(ii) $s_i \wedge t_i = \sum a_{ij} t_j \wedge t_i$.

The set $\{t_i \wedge t_j | i < j\}$ is a basis for $\wedge^2(G)$. Using equation (ii) we can express $s_i \wedge t_i$ as linear combination of these basis elements. The rank of the resulting coefficient matrix is the dimension of the image of $\oplus \wedge^2(G_i)$ in $\wedge^2(G)$. Call this number r. Then

$$\dim_l(gal(K_C/K)) = m(m-1)/2 - r.$$

In the case m = 3 the matrix in question is

$$(**) \qquad \begin{pmatrix} -a_{12} & -a_{13} & 0 \\ a_{21} & 0 & -a_{23} \\ 0 & a_{31} & a_{32} \end{pmatrix}.$$

Since m(m-1)/2 = 3 in this case we have $l + h_K$ only if the matrix (**) is non-singular. We finish this paper by giving examples when l = 3 which show that r, the rank of (**), can take on any value between zero and three.

For a matrix of rank three, take $p_1 = 7$, $p_2 = 13$, and $p_3 = 19$ with corresponding primitive roots 3, 2, and 2. The matrix entries a_{ij} corresponding to this choice of primitive roots are

$$a_{12} = 11$$
, $a_{13} = 6$, $a_{21} = 3$, $a_{23} = 5$, $a_{31} = 5$, $a_{32} = 5$.

Reducing modulo 3 and substituting into (* *) yields

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 2 \end{pmatrix}$$

which is of rank 3. It follows that the maximal 3-extension of Q in $Q(\zeta_{7\cdot 13\cdot 19})$ has class number prime to 3.

For a matrix of rank 2, take $p_1 = 7$, $p_2 = 13$, and $p_3 = 43$ with corresponding primitive roots 3, 2, and 3. The a_{ij} are

$$a_{12} = 11$$
, $a_{13} = 25$, $a_{21} = 3$, $a_{23} = 32$, $a_{31} = 0$, $a_{32} = 2$.

460

Reducing modulo 3 and substituting into (**) yields

$$egin{pmatrix} 1 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 2 \end{pmatrix}$$

which has rank 2. It follows that the central class field of the maximal 3-extension of Q in $Q(\zeta_{7.13.43})$ has rank equal to 1.

For a matrix of rank 1, take $p_1 = 7$, $p_2 = 13$, and $p_3 = 421$ with corresponding primitive roots 3, 2, and 2. The a_{ij} are

$$a_{12} = 11, \quad a_{13} = 366, \quad a_{21} = 3, \quad a_{23} = 63, \quad a_{31} = 0, \quad a_{32} = 9.$$

Reducing modulo 3 and substituting into (* *) yields

(1	0	0 \
$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	0	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$
0/	0	0/

which has rank 1. It follows that the central class field of the maximal 3-extension of Q in $Q(\zeta_{7,13,421})$ has rank 2.

Finally, take $p_1 = 7$, $p_2 = 181$, and $p_3 = 673$ with corresponding primitive roots 3, 2, and 5. The a_{ij} are

$$a_{12} = 5$$
, $a_{13} = 486$, $a_{21} = 3$, $a_{23} = 531$, $a_{31} = 0$, $a_{32} = 141$.

Since all these numbers are divisible by 3, the matrix under consideration is the zero matrix which, of course, has rank zero. Thus the central class field of the maximal 3-extension of Q in $Q(\zeta_{7\cdot181\cdot673})$ has the maximal possible rank, namely 3.

References

- 1. K. BROWN, Cohomology of Groups, Springer Verlag, New York, 1982.
- G. CORNELL and M. ROSEN, The l-rank of the real class group of Cyclotomic Fields, Compositio Math., vol. 53 (1984), pp. 133–141.
- 3. A. FRÖHLICH, Central extensions, Galois groups, and the ideal class groups of number fields, Contemp. Math., vol. 24, Amer. Math. Soc., Providence, Rhode Island, 1983.
- Y. FURUTA, On class field towers and the rank of ideal class groups, Nagoya Math. J., vol. 48 (1972), pp. 147–157.
- M. RAZAR, Central and genus class fields and the Hasse norm theorem; Compositio Math., vol. 35 (1977), pp. 281-298.

University of Connecticut Storrs, Connecticut Brown University Providence, Rhode Island