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Introduction

Fix a rational prime and suppose K is an imaginary quadratic field in
which divides neither the class number hr of K nor the order of the group of
units of K. We characterize those abelian/-extensions L/K for which does
not divide hL (Theorem 2.4) in terms of the mutual congruence behavior of
the primes of K which are ramified in L. For abelian extensions of the
rationals Q, Fr/Shlich [4] solved the corresponding problem as a corollary of
his description by generators and relations of the Galois group of the maximal
S-ramified class two/-extension of Q. We used the same approach in the first
version of this paper and found a result completely analogous to Theorem 5.1
of [5], which gives generators and relations for a certain class two/-group. In
[5] Fr/Shlich presents a more modern account of [4]; in [3] Cornell and Rosen
characterize abelian/-extensions L/Q for which does not divide hL (odd l).

1. Background from class field theory

Fix a prime and let L be a finite abelian/-extension of a number field K.
One of our major goals will be to obtain a criterion for the class number h of
L to be relatively prime to in case K is an imaginary quadratic field with
(1, h rl Erl) 1; here Er denotes the unit group of K. Let G(L/K) (resp.
Z(L/K)) denote the genus field (resp. central class field) of L with respect to
K and let g(L/K)= (G(L/K): L). Recall that G(L/K) is the maximal
unramified extension of L which is an abelian extension of K and Z(L/K) is
the maximal unramified extension of L such that the Galois group
Gal(Z(L/K)/L) is contained in the center of Gal(Z(L/K)/K ). The key
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observation is that (/, hL) I if and only if ((Z(L/K): L), l) 1; compare
Lemma 3.9 of [5].

Let Clr be the ideal class group of K, Jr the idele group of K, K the
completion of K at a prime o, Uo the unit group of Ko, and let Ur I-IUo,
product taken over all primes (finite and infinite) of K. From class field theory
Gal(G(L/K)/K) is isomorphic via the reciprocity map to Jr/KX(NUL),
where N denotes the (idele) norm from L to K; e.g., see Prop. 2.4 of [5]. There
is an exact sequence of abelian groups

(1.1) 1 EK/EK NJL FIUo/NU JK/KX(NUL) ClK 1.

For each prime v of K, a prime w of L above v is selected and U denotes the
unit group of Lw; recall the ramification index eo (Uo: NUw). This sequence
gives Furuta’s formula [6]

g(L/K) hKI-Ieo/(L: K)m(L/K),

where m(L/K) (EK: EK N NJz). Define

A (L/K) local norms/global norms Kx Njz,/NLx

and subgroup

B ( L/K ) EK 3 NJI/EK 3 NLx.

From [7] or Theorems 3.6 and 3.11 of [5],

Gal(Z(L/K)/G(L/K)) A(L/K)/B(L/K)

for a Galois extension L/K.
Let DO (resp. To) be the decomposition (resp. inertia) subgroup of a prime

of L dividing v. One can show that (e.g., see Tate [1]) for a Galois extension
L/K,

(1.3) A ( L/K ) -- cokt LIH2( Do, Z) HE(Gal( L/K ), Z)).
o

The mapping, say p, is given by corestriction in homology and v ranges over
all the primes of K. Furthermore if X is a finite abelian group one knows

H2( X, Z) =- (the second exterior power of X) A 2X.

It follows that

cok p -= cokl LI A 2Do A 2Gal(L/K))
o

where the mapping is induced by the inclusions D - Gal(L/K).
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For a finite abelian /-group X define rk X dim(X/IX), dimension taken
over Ft. The following proposition can easily be extracted from Prop. 9 of [8].

(1.4) PROPOSITION. Let L/K be a finite abelian l-extension and L the
maximal elementary abelian l-extension of K in L. Then

rk A (L/K ) rk A ( LI/K ).

COROLLARY. Let K be an imaginary quadraticfieM with (1, levi) 1. Then

rk Oal( Z(L/K)/G(L/K )) rk Gal(Z(Li/K )/G(L1/K )).

Remark. See [3] for a proof without homology of a closely related result
for K Q and ! an odd prime. We do not need (1.4) for what follows.

2. Central class fields

In this section K is an imaginary quadratic extension of Q satisfying
(l, hrlErl) 1, L/K is an abelian /-extension, and we assume (g(L/K), l)

1. Then we determine exactly when (h L, 1) 1. Note the composite of L
and the Hilbert class field of K is a subfield of the genus field G(L/K), so
(hc, 1)= 1 is a reasonable hypothesis; one could also handle the case
divides lEvi, but the analysis would be longer. Under this hypothesis it follows
from (1.1) that (g(L/K), l) 1 if and only if Gal(L/K) is the direct product
FITo. Let S be the set of primes of K ramifying in L; let vx (and if necessary
v,) be the divisors of in K. We shall use v for any prime of K and ,o for
the prime ideal. Note if an inertia subgroup TO of Gal(L/K) is not cyclic, then
v divides 1 and is not sprit in K. Thus there is at most one noncyclic inertia
group and it is denoted Tx.

Let F Gal(L/K), d rk F, s ISI, so s _< d. Let rk Tx (1 < < 3),
so d + s 1. (If vx S, set 1). Note 3 occurs only when 12 and

is the unique prime dividing 2. There is a lower bound for

rk cok tp rk A (L/K).

From the fact that rk A 2F (2d) and the quotient DolT is cyclic, we have by
(1.3) (compare Prop. 2 of [2]),

rkck>(2d)-(t+l-2 }
(s- 1).

Using < 3, we have the interesting result

(2.1) rkcok0>2 if d>5.
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When s < 1 there is the well known push down result due to Iwasawa; e.g.,
see Theorem 10.4 of [10].

(2.2) PROPOSITION. Let L/K be a Galois extension of power degree in
which at most one prime ramifies. Then divides h , implies divides h r.

Thus we are left with the cases 2 _< s _< d < 4. We need to introduce some
notation that will allow us to compute cok tp and in particular to determine
when cok tp 0. For each v S prime to fix x 0o, the valuation ring of
Ko, generating (0o/o0o)x and define [v, z] Z by

to, zl mod ;O, z U.Z-Xv

Let N be the local norm L Ko. Now suppose o divides l; assume
To Uo/N(U) is cyclic and fix a generator x Uo of the quotient group.
For z Uo, write

to,l mod N(Uw).Z=--Xv

Of course [v, z] is not uniquely determined by these congruences, but that
ambiguity causes no difficulty in what follows. Since we assumed (l, hr) 1,
for each prime ideal rio of K there is a smallest positive integer h o, prime to l,
such that ,hoo (o), o K.

(2.3) PROPOSITION. Let K be an imaginary quadratic fieM with (l, h rlErl)
1. Suppose that L/K is an abelian l-extension in which only ol, 02 ramify,

F Gal(L/K ) To
and the l-primary part of Uo2, (Uo2)t, is pro-cyclic. Then F Do1 if and only if
[02, 1] 0 mod 1.

Proof Let E be the subfield of L fixed by To1. The prime 02 is totally
ramified in ElK and no other prime ramifies in ElK. Thus E is contained in
the ray class field over K of conductor ,h, some r >_ 1. Since (l, hK)= 1,
Gal(E/K) --- quotient of (Or/firE) x.

If o2 does not divide l, then r 1. Otherwise o2 divides and is split in
K/Q since (Uo)t is assumed pro-cyclic; thus Or/2 -- Zt/(/r). In both cases,

iff v inert in ElK
iff Frobenius of vl generates Gal(E/K )
iff 1 x’ mod/ (use (l, lEvi) )
iff [/32, ql] t 0 mod l. Q.E.D.
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In this paragraph we define a matrix M(L) whose entries are to be viewed
modulo 1. For notational convenience we restrict to the case where all the
inertia subgroups To of F are cyclic, though this is not necessary. Let w be a
prime of L above v S and define % Gal(Lw/Ko) as a lifting of the local
Artin symbol (Lw/Ko, 7o); then oohv lifts the inverse of the Frobenius auto-
morphism on the maximal unramified extension of Ko in Lw. Choose % in the
inertia subgroup of Gal(Lw/Ko)=-Do which lifts the local Artin symbol
(Lw/Ko, xo). We are identifying local Galois groups with appropriate sub-
groups of Gal(L/K). The column indices of the matrix M(L) are pairs
(v, v’) S S, v 4: o’, and exactly one of (v, v’) and (v’, v) appears. Since
we are assuming F 1-ITo, the columns are indexed by %/x %, for pairs
(v, v’) as above. The image of tp is isomorphic to the subgroup of A2F
generated by {% A %:0 S}, since To and DolT are cyclic groups with
generators % and oo mod T respectively. As in [9], for v’ S, write in
additive notation

o, ao’o’ro, summation over v S,.v v’"

thus %, A oo, Eao,o(%, A %). In M(L) the entry in row v and column
(v, v’) (resp. in row v’ and column (v, v’)) is a oo, (resp. -aoo,) taken modulo
1. Other entries are zero. This completes the description of M(L).
We claim a o’o v, 7o,] mod I. In fact F -= 1-IUo/NUw. The reciprocity

map sends the idele a JK with r7o, in position v’ and ones elsewhere to
%, F. From (1.1), a corresponds in 1-1Uv/NU to I-lxtV’v’l; the second
product is taken over v S, v 4: v’. For example, for d s 3,

M(L)
-Ion, ex] ex] o

o
o [ox,

Let S be the set of primes of K ramified in L. If is not split in K/Q, let
S’ ( v Sly divides ); otherwise S’ . Let S" be the complement of
S’ inS.

(2.4) THEOREM. Let K be an imaginary quadratic field with (l, hKIEK[) 1.
Let L/K be an abelian l-extension with (g(L/K), l) 1. Then (l, hL) 1 in
exactly the following cases (a)-(d).

(a) s=l.
(b) d= 2, S ( v1, v2) and either

(i) S S" and [vl, 2] 0 or [v2, ] 0 mod l,
o/"

(ii) v S’ and v2 does not divide and either [v2, rTx]0 or "Y2
generates Uol/N(Uwx )
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(c) d 3, and either
(i) S (01, 02 ) with 02 not dividing and v S’ and [02, ql] t O,

or
(ii) s=3 anddetM(L)Omod

(d) d 4, S (vl, v2 ) with v2 not dividing and [v2, #] O.

Proof In all cases we have F FITo, product over v S.
(a) Use (2.2). In (b) dearly cok 0 iff F 901 or F Do. In case (i)

we may apply (2.3) twice (by interchanging vt and v2 everywhere). In case (ii),
F Do2 iff Frobenius of v2 generates Gal(E/K) where E is the fixed field of

To2 iff 2 generates Uol/N(Uwl ).
Case (c) (i) follows from (2.3). If d 4, so rk A 2I" 6, we see rk(im) < 5

for s 3, 4. For s 2, we apply (2.3) again. Only the case d s 3 remains.
But det M(L) 0 mod iff cok 0. This completes the proof of the
theorem.

Remark 1. We could have studied im in all cases via the matrix M(L),
but we avoided this more computational approach except in case (c) (ii).

Remark 2. Such extensions L with g(L/K)= 1 are obtained from the
/-part of ray class fields over K with appropriate conductor.
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