CLASS NUMBER RESTRICTIONS FOR CERTAIN *I*-EXTENSIONS OF IMAGINARY QUADRATIC FIELDS

BY

STEPHEN V. ULLOM AND STEPHEN B. WATT

Dedicated to the memory of Irving Reiner

Introduction

Fix a rational prime l and suppose K is an imaginary quadratic field in which l divides neither the class number h_K of K nor the order of the group of units of K. We characterize those abelian l-extensions L/K for which l does not divide h_L (Theorem 2.4) in terms of the mutual congruence behavior of the primes of K which are ramified in L. For abelian extensions of the rationals Q, Fröhlich [4] solved the corresponding problem as a corollary of his description by generators and relations of the Galois group of the maximal S-ramified class two l-extension of Q. We used the same approach in the first version of this paper and found a result completely analogous to Theorem 5.1 of [5], which gives generators and relations for a certain class two l-group. In [5] Fröhlich presents a more modern account of [4]; in [3] Cornell and Rosen characterize abelian l-extensions L/Q for which l does not divide h_L (odd l).

1. Background from class field theory

Fix a prime *l* and let *L* be a finite abelian *l*-extension of a number field *K*. One of our major goals will be to obtain a criterion for the class number h_L of *L* to be relatively prime to *l* in case *K* is an imaginary quadratic field with $(l, h_K | E_K |) = 1$; here E_K denotes the unit group of *K*. Let G(L/K) (resp. Z(L/K)) denote the genus field (resp. central class field) of *L* with respect to *K* and let g(L/K) = (G(L/K)): *L*). Recall that G(L/K) is the maximal unramified extension of *L* which is an abelian extension of *K* and Z(L/K) is the maximal unramified extension of *L* such that the Galois group Gal(Z(L/K)/L) is contained in the center of Gal(Z(L/K)/K). The key

Received September 30, 1987

^{© 1988} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

observation is that $(l, h_L) = 1$ if and only if ((Z(L/K): L), l) = 1; compare Lemma 3.9 of [5].

Let Cl_K be the ideal class group of K, J_K the idele group of K, K_v the completion of K at a prime v, U_v the unit group of K_v , and let $U_K = \prod U_v$, product taken over all primes (finite and infinite) of K. From class field theory Gal(G(L/K)/K) is isomorphic via the reciprocity map to $J_K/K^x(NU_L)$, where N denotes the (idele) norm from L to K; e.g., see Prop. 2.4 of [5]. There is an exact sequence of abelian groups

$$(1.1) \quad 1 \to E_K/E_K \cap NJ_L \to \prod U_v/NU_w \to J_K/K^*(NU_L) \to Cl_K \to 1$$

For each prime v of K, a prime w of L above v is selected and U_w denotes the unit group of L_w ; recall the ramification index $e_v = (U_v : NU_w)$. This sequence gives Furuta's formula [6]

(1.2)
$$g(L/K) = h_K \prod e_v / (L:K) m(L/K),$$

where $m(L/K) = (E_K: E_K \cap NJ_L)$. Define

 $A(L/K) = \text{local norms/global norms} = K^{x} \cap NJ_{L}/NL^{x}$

and subgroup

$$B(L/K) = E_K \cap NJ_L/E_K \cap NL^x.$$

From [7] or Theorems 3.6 and 3.11 of [5],

$$\operatorname{Gal}(Z(L/K)/G(L/K)) \cong A(L/K)/B(L/K)$$

for a Galois extension L/K.

Let D_v (resp. T_v) be the decomposition (resp. inertia) subgroup of a prime of L dividing v. One can show that (e.g., see Tate [1]) for a Galois extension L/K,

(1.3)
$$A(L/K) \cong \operatorname{cok}\left(\coprod_{v} H_{2}(D_{v}, \mathbb{Z}) \to H_{2}(\operatorname{Gal}(L/K), \mathbb{Z})\right).$$

The mapping, say φ , is given by corestriction in homology and v ranges over all the primes of K. Furthermore if X is a finite abelian group one knows

 $H_2(X, \mathbb{Z}) \cong$ (the second exterior power of X) = $\wedge^2 X$.

It follows that

$$\operatorname{cok} \varphi \cong \operatorname{cok} \left(\coprod_{v} \wedge^{2} D_{v} \to \wedge^{2} \operatorname{Gal}(L/K) \right)$$

where the mapping is induced by the inclusions $D_v \rightarrow \text{Gal}(L/K)$.

For a finite abelian *l*-group X define rk $X = \dim(X/lX)$, dimension taken over \mathbf{F}_l . The following proposition can easily be extracted from Prop. 9 of [8].

(1.4) **PROPOSITION.** Let L/K be a finite abelian l-extension and L_1 the maximal elementary abelian l-extension of K in L. Then

$$\operatorname{rk} A(L/K) = \operatorname{rk} A(L_1/K).$$

COROLLARY. Let K be an imaginary quadratic field with $(l, |E_K|) = 1$. Then

 $\operatorname{rk}\operatorname{Gal}(Z(L/K)/G(L/K)) = \operatorname{rk}\operatorname{Gal}(Z(L_1/K)/G(L_1/K)).$

Remark. See [3] for a proof without homology of a closely related result for K = Q and l an odd prime. We do not need (1.4) for what follows.

2. Central class fields

In this section K is an imaginary quadratic extension of Q satisfying $(l, h_K | E_K|) = 1$, L/K is an abelian *l*-extension, and we assume (g(L/K), l) = 1. Then we determine exactly when $(h_L, l) = 1$. Note the composite of L and the Hilbert class field of K is a subfield of the genus field G(L/K), so $(h_K, l) = 1$ is a reasonable hypothesis; one could also handle the case l divides $|E_K|$, but the analysis would be longer. Under this hypothesis it follows from (1.1) that (g(L/K), l) = 1 if and only if Gal(L/K) is the direct product $\prod T_v$. Let S be the set of primes of K ramifying in L; let v_λ (and if necessary v'_λ) be the divisors of l in K. We shall use v for any prime of K and \not/v_v for the prime ideal. Note if an inertia subgroup T_v of Gal(L/K) is not cyclic, then v divides l and l is not split in K. Thus there is at most one noncyclic inertia group and it is denoted T_λ .

Let $\Gamma = \text{Gal}(L/K)$, $d = \text{rk } \Gamma$, s = |S|, so $s \le d$. Let $t = \text{rk } T_{\lambda}$ $(1 \le t \le 3)$, so d = t + s - 1. (If $v_{\lambda} \notin S$, set t = 1). Note t = 3 occurs only when $\lambda | 2$ and λ is the unique prime dividing 2. There is a lower bound for

$$\operatorname{rk}\operatorname{cok}\varphi = \operatorname{rk}A(L/K).$$

From the fact that $\operatorname{rk} \wedge^2 \Gamma = \begin{pmatrix} d \\ 2 \end{pmatrix}$ and the quotient D_v/T_v is cyclic, we have by (1.3) (compare Prop. 2 of [2]),

$$\operatorname{rk}\operatorname{cok} \varphi \geq \begin{pmatrix} d \\ 2 \end{pmatrix} - \begin{pmatrix} t+1 \\ 2 \end{pmatrix} - (s-1).$$

Using $t \leq 3$, we have the interesting result

(2.1)
$$\operatorname{rk} \operatorname{cok} \varphi \geq 2 \quad \text{if } d \geq 5.$$

When $s \le 1$ there is the well known push down result due to Iwasawa; e.g., see Theorem 10.4 of [10].

(2.2) **PROPOSITION.** Let L/K be a Galois extension of l power degree in which at most one prime ramifies. Then l divides h_L implies l divides h_K .

Thus we are left with the cases $2 \le s \le d \le 4$. We need to introduce some notation that will allow us to compute $\operatorname{cok} \varphi$ and in particular to determine when $\operatorname{cok} \varphi = 0$. For each $v \in S$ prime to l fix $x_v \in O_v$, the valuation ring of K_v , generating $(O_v/\underline{/}_v O_v)^x$ and define $[v, z] \in \mathbf{Z}_l$ by

$$z \equiv x_n^{[v, z]} \mod \#_n O_n, \ z \in U_n.$$

Let N be the local norm $L_w \to K_v$. Now suppose v divides l; assume $T_v \cong U_v/N(U_w)$ is cyclic and fix a generator $x_v \in U_v$ of the quotient group. For $z \in U_v$, write

$$z \equiv x_n^{[v, z]} \mod N(U_w).$$

Of course [v, z] is not uniquely determined by these congruences, but that ambiguity causes no difficulty in what follows. Since we assumed $(l, h_K) = 1$, for each prime ideal $\not e_v$ of K there is a smallest positive integer h_v , prime to l, such that $\not e_v^{h_v} = (\tilde{\pi}_v), \ \tilde{\pi}_v \in K$.

(2.3) **PROPOSITION.** Let K be an imaginary quadratic field with $(l, h_K | E_K |) = 1$. Suppose that L/K is an abelian l-extension in which only v_1, v_2 ramify,

$$\Gamma = \operatorname{Gal}(L/K) = T_{v_1} \oplus T_{v_2},$$

and the *l*-primary part of $U_{v_2}, (U_{v_2})_l$, is pro-cyclic. Then $\Gamma = D_{v_1}$ if and only if $[v_2, \tilde{\pi}_1] \neq 0 \mod l$.

Proof. Let E be the subfield of L fixed by T_{v_1} . The prime v_2 is totally ramified in E/K and no other prime ramifies in E/K. Thus E is contained in the ray class field over K of conductor \not/r_2 , some $r \ge 1$. Since $(l, h_K) = 1$, $Gal(E/K) \cong$ quotient of $(O_K/\not/r_2)^x$.

If v_2 does not divide *l*, then r = 1. Otherwise v_2 divides *l* and *l* is split in K/Q since $(U_{v_2})_l$ is assumed pro-cyclic; thus $O_K/\#_2 \cong \mathbb{Z}_l/(l^r)$. In both cases,

In this paragraph we define a matrix M(L) whose entries are to be viewed modulo l. For notational convenience we restrict to the case where all the inertia subgroups T_v of Γ are cyclic, though this is not necessary. Let w be a prime of L above $v \in S$ and define $\sigma_v \in \operatorname{Gal}(L_w/K_v)$ as a lifting of the local Artin symbol $(L_w/K_v, \tilde{\pi}_v)$; then $\sigma_v^{h_v}$ lifts the inverse of the Frobenius automorphism on the maximal unramified extension of K_v in L_w . Choose τ_v in the inertia subgroup of $\operatorname{Gal}(L_w/K_v) \cong D_v$ which lifts the local Artin symbol $(L_w/K_v, x_v)$. We are identifying local Galois groups with appropriate subgroups of $\operatorname{Gal}(L/K)$. The column indices of the matrix M(L) are pairs $(v, v') \in S \times S, v \neq v'$, and exactly one of (v, v') and (v', v) appears. Since we are assuming $\Gamma = \Pi T_v$, the columns are indexed by $\tau_v \wedge \tau_{v'}$ for pairs (v, v') as above. The image of φ is isomorphic to the subgroup of $\wedge^2 \Gamma$ generated by $\{\tau_v \wedge \sigma_v : v \in S\}$, since T_v and D_v/T_v are cyclic groups with generators τ_v and $\sigma_v \mod T_v$ respectively. As in [9], for $v' \in S$, write in additive notation

$$\sigma_{v'} = \sum a_{v'v} \tau_v$$
, summation over $v \in S, v \neq v'$;

thus $\tau_{v'} \wedge \sigma_{v'} = \sum a_{v'v}(\tau_{v'} \wedge \tau_v)$. In M(L) the entry in row v and column (v, v') (resp. in row v' and column (v, v')) is $a_{vv'}$ (resp. $-a_{vv'}$) taken modulo l. Other entries are zero. This completes the description of M(L).

We claim $a_{v'v} \equiv -[v, \tilde{\pi}_{v'}] \mod l$. In fact $\Gamma \cong \prod U_v / NU_w$. The reciprocity map sends the idele $\alpha \in J_K$ with $\tilde{\pi}_{v'}$ in position v' and ones elsewhere to $\sigma_{v'} \in \Gamma$. From (1.1), α corresponds in $\prod U_v / NU_w$ to $\prod x_v^{-[v, \tilde{\pi}_{v'}]}$; the second product is taken over $v \in S$, $v \neq v'$. For example, for d = s = 3,

$$M(L) = \begin{bmatrix} -[v_2, \tilde{\pi}_1] & -[v_3, \tilde{\pi}_1] & 0\\ [v_1, \tilde{\pi}_2] & 0 & -[v_3, \tilde{\pi}_2]\\ 0 & [v_1, \tilde{\pi}_3] & [v_2, \tilde{\pi}_3] \end{bmatrix}.$$

Let S be the set of primes of K ramified in L. If l is not split in K/Q, let $S' = \{v \in S | v \text{ divides } l\}$; otherwise $S' = \emptyset$. Let S'' be the complement of S' in S.

(2.4) THEOREM. Let K be an imaginary quadratic field with $(l, h_K | E_K) = 1$. Let L/K be an abelian l-extension with (g(L/K), l) = 1. Then $(l, h_L) = 1$ in exactly the following cases (a)–(d).

- (a) s = 1. (b) $d = 2, S = \{v_1, v_2\}$ and either (i) S = S'' and $[v_1, \tilde{\pi}_2] \neq 0$ or $[v_2, \tilde{\pi}_1] \neq 0 \mod l$, or
 - (ii) $v_1 \in S'$ and v_2 does not divide l and either $[v_2, \tilde{\pi}_1] \neq 0$ or $\tilde{\pi}_2$ generates $U_{v_1}/N(U_{w_1})$

426

- (c) d = 3, and either (i) $S = \{v_1, v_2\}$ with v_2 not dividing l and $v_1 \in S'$ and $[v_2, \tilde{\pi}_1] \neq 0$, or
 - (ii) s = 3 and det $M(L) \neq 0 \mod l$
- (d) d = 4, $S = \{v_1, v_2\}$ with v_2 not dividing l and $[v_2, \tilde{\pi}_1] \neq 0$.

Proof. In all cases we have $\Gamma = \prod T_v$, product over $v \in S$.

(a) Use (2.2). In (b) clearly $\operatorname{cok} \varphi = 0$ iff $\Gamma = D_{v_1}$ or $\Gamma = D_{v_2}$. In case (i) we may apply (2.3) twice (by interchanging v_1 and v_2 everywhere). In case (ii), $\Gamma = D_{v_2}$ iff Frobenius of v_2 generates $\operatorname{Gal}(E/K)$ where E is the fixed field of T_{v_2} iff $\tilde{\pi}_2$ generates $U_{v_1}/N(U_{w_1})$.

Case (c) (i) follows from (2.3). If d = 4, so $rk \wedge^2 \Gamma = 6$, we see $rk(im \varphi) \le 5$ for s = 3, 4. For s = 2, we apply (2.3) again. Only the case d = s = 3 remains. But det $M(L) \neq 0 \mod l$ iff $\operatorname{cok} \varphi = 0$. This completes the proof of the theorem.

Remark 1. We could have studied im φ in all cases via the matrix M(L), but we avoided this more computational approach except in case (c) (ii).

Remark 2. Such extensions L with g(L/K) = 1 are obtained from the *l*-part of ray class fields over K with appropriate conductor.

REFERENCES

- 1. J.W.S. CASSELS and A. FRÖHLICH, Algebraic number theory, Academic Press, San Diego, California, 1967.
- G. CORNELL and M. ROSEN, The l-rank of the real class group of cyclotomic fields, Compositio Math., vol. 53 (1984), pp. 133–141.
- 3. G. CORNELL and M. ROSEN, The class group of an absolutely abelian l-extension, Illinois J. Math., vol. 32 (1988), pp. 453-461 (this issue).
- 4. A. FRÖHLICH, On fields of class two, Proc. London Math. Soc., vol. 4 (1954), pp. 235-256.
- 5. ____, Central extensions, Galois groups, and ideal class groups of number fields, Contemp. Math., vol. 24, Amer. Math. Soc., Providence, Rhode Island, 1984.
- Y. FURUTA, The genus field and genus number in algebraic number fields, Nagoya Math. J., vol. 29 (1967), 281-285.
- 7. ____, On class field towers and the rank of ideal class groups, Nagoya Math. J., vol. 48 (1972), 147-157.
- M. RAZAR, Central and genus class fields and the Hasse norm theorem, Compositio Math., vol. 35 (1977), pp. 281-298.
- 9. S. ULLOM and S. WATT, Generators and relations for certain class two Galois groups, J. London Math. Soc. (2), vol. 34 (1986), pp. 235-244.
- 10. L. WASHINGTON, Introduction to cyclotomic fields, Springer-Verlag, New York, 1982.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS 8 SHEFFIELD STREET PALMERSTON NORTH, NEW ZEALAND