CLASS NUMBER RESTRICTIONS FOR CERTAIN l-EXTENSIONS OF IMAGINARY QUADRATIC FIELDS

BY
Stephen V. Ullom and Stephen B. Watt
Dedicated to the memory of Irving Reiner

Introduction

Fix a rational prime l and suppose K is an imaginary quadratic field in which l divides neither the class number h_{K} of K nor the order of the group of units of K. We characterize those abelian l-extensions L / K for which l does not divide h_{L} (Theorem 2.4) in terms of the mutual congruence behavior of the primes of K which are ramified in L. For abelian extensions of the rationals Q, Fröhlich [4] solved the corresponding problem as a corollary of his description by generators and relations of the Galois group of the maximal S-ramified class two l-extension of Q. We used the same approach in the first version of this paper and found a result completely analogous to Theorem 5.1 of [5], which gives generators and relations for a certain class two l-group. In [5] Fröhlich presents a more modern account of [4]; in [3] Cornell and Rosen characterize abelian l-extensions L / Q for which l does not divide h_{L} (odd l).

1. Background from class field theory

Fix a prime l and let L be a finite abelian l-extension of a number field K. One of our major goals will be to obtain a criterion for the class number h_{L} of L to be relatively prime to l in case K is an imaginary quadratic field with $\left(l, h_{K}\left|E_{K}\right|\right)=1$; here E_{K} denotes the unit group of K. Let $G(L / K)$ (resp. $Z(L / K)$) denote the genus field (resp. central class field) of L with respect to K and let $g(L / K)=(G(L / K): L)$. Recall that $G(L / K)$ is the maximal unramified extension of L which is an abelian extension of K and $Z(L / K)$ is the maximal unramified extension of L such that the Galois group $\operatorname{Gal}(Z(L / K) / L)$ is contained in the center of $\operatorname{Gal}(Z(L / K) / K)$. The key

[^0]observation is that $\left(l, h_{L}\right)=1$ if and only if $((Z(L / K): L), l)=1$; compare Lemma 3.9 of [5].

Let $C l_{K}$ be the ideal class group of K, J_{K} the idele group of K, K_{v} the completion of K at a prime v, U_{v} the unit group of K_{v}, and let $U_{K}=\Pi U_{v}$, product taken over all primes (finite and infinite) of K. From class field theory $\operatorname{Gal}(G(L / K) / K)$ is isomorphic via the reciprocity map to $J_{K} / K^{x}\left(N U_{L}\right)$, where N denotes the (idele) norm from L to K; e.g., see Prop. 2.4 of [5]. There is an exact sequence of abelian groups

$$
\begin{equation*}
1 \rightarrow E_{K} / E_{K} \cap N J_{L} \rightarrow \Pi U_{v} / N U_{w} \rightarrow J_{K} / K^{x}\left(N U_{L}\right) \rightarrow C l_{K} \rightarrow 1 \tag{1.1}
\end{equation*}
$$

For each prime v of K, a prime w of L above v is selected and U_{w} denotes the unit group of L_{w}; recall the ramification index $e_{v}=\left(U_{v}: N U_{w}\right)$. This sequence gives Furuta's formula [6]

$$
\begin{equation*}
g(L / K)=h_{K} \Pi e_{v} /(L: K) m(L / K) \tag{1.2}
\end{equation*}
$$

where $m(L / K)=\left(E_{K}: E_{K} \cap N J_{L}\right)$. Define

$$
A(L / K)=\text { local norms/global norms }=K^{x} \cap N J_{L} / N L^{x}
$$

and subgroup

$$
B(L / K)=E_{K} \cap N J_{L} / E_{K} \cap N L^{x}
$$

From [7] or Theorems 3.6 and 3.11 of [5],

$$
\operatorname{Gal}(Z(L / K) / G(L / K)) \cong A(L / K) / B(L / K)
$$

for a Galois extension L / K.
Let D_{v} (resp. T_{v}) be the decomposition (resp. inertia) subgroup of a prime of L dividing v. One can show that (e.g., see Tate [1]) for a Galois extension L / K,

$$
\begin{equation*}
A(L / K) \cong \operatorname{cok}\left(\coprod_{v} H_{2}\left(D_{v}, \mathbf{Z}\right) \rightarrow H_{2}(\operatorname{Gal}(L / K), \mathbf{Z})\right) \tag{1.3}
\end{equation*}
$$

The mapping, say φ, is given by corestriction in homology and v ranges over all the primes of K. Furthermore if X is a finite abelian group one knows

$$
H_{2}(X, \mathbf{Z}) \cong(\text { the second exterior power of } X)=\wedge^{2} X
$$

It follows that

$$
\operatorname{cok} \varphi \cong \operatorname{cok}\left(\coprod_{v} \wedge^{2} D_{v} \rightarrow \wedge^{2} \operatorname{Gal}(L / K)\right)
$$

where the mapping is induced by the inclusions $D_{v} \rightarrow \operatorname{Gal}(L / K)$.

For a finite abelian l-group X define $\mathrm{rk} X=\operatorname{dim}(X / l X)$, dimension taken over \mathbf{F}_{l}. The following proposition can easily be extracted from Prop. 9 of [8].
(1.4) Proposition. Let L / K be a finite abelian l-extension and L_{1} the maximal elementary abelian l-extension of K in L. Then

$$
\operatorname{rk} A(L / K)=\operatorname{rk} A\left(L_{1} / K\right)
$$

Corollary. Let K be an imaginary quadratic field with $\left(l,\left|E_{K}\right|\right)=1$. Then

$$
\operatorname{rk} \operatorname{Gal}(Z(L / K) / G(L / K))=\operatorname{rk} \operatorname{Gal}\left(Z\left(L_{1} / K\right) / G\left(L_{1} / K\right)\right)
$$

Remark. See [3] for a proof without homology of a closely related result for $K=Q$ and l an odd prime. We do not need (1.4) for what follows.

2. Central class fields

In this section K is an imaginary quadratic extension of Q satisfying $\left(l, h_{K}\left|E_{K}\right|\right)=1, L / K$ is an abelian l-extension, and we assume $(g(L / K), l)$ $=1$. Then we determine exactly when $\left(h_{L}, l\right)=1$. Note the composite of L and the Hilbert class field of K is a subfield of the genus field $G(L / K)$, so $\left(h_{K}, l\right)=1$ is a reasonable hypothesis; one could also handle the case l divides $\left|E_{K}\right|$, but the analysis would be longer. Under this hypothesis it follows from (1.1) that $(g(L / K), l)=1$ if and only if $\operatorname{Gal}(L / K)$ is the direct product ΠT_{v}. Let S be the set of primes of K ramifying in L; let v_{λ} (and if necessary $\left.v_{\lambda}^{\prime}\right)$ be the divisors of l in K. We shall use v for any prime of K and $\not p_{v}$ for the prime ideal. Note if an inertia subgroup T_{v} of $\operatorname{Gal}(L / K)$ is not cyclic, then v divides l and l is not split in K. Thus there is at most one noncyclic inertia group and it is denoted T_{λ}.

Let $\Gamma=\operatorname{Gal}(L / K), d=\operatorname{rk} \Gamma, s=|S|$, so $s \leq d$. Let $t=\operatorname{rk} T_{\lambda}(1 \leq t \leq 3)$, so $d=t+s-1$. (If $v_{\lambda} \notin S$, set $t=1$). Note $t=3$ occurs only when $\lambda \mid 2$ and λ is the unique prime dividing 2 . There is a lower bound for

$$
\operatorname{rk} \operatorname{cok} \varphi=\operatorname{rk} A(L / K)
$$

From the fact that $\mathrm{rk} \wedge^{2} \Gamma=\binom{d}{2}$ and the quotient D_{v} / T_{v} is cyclic, we have by (1.3) (compare Prop. 2 of [2]),

$$
\mathrm{rk} \operatorname{cok} \varphi \geq\binom{ d}{2}-\binom{t+1}{2}-(s-1)
$$

Using $t \leq 3$, we have the interesting result
rk $\operatorname{cok} \varphi \geq 2$ if $d \geq 5$.

When $s \leq 1$ there is the well known push down result due to Iwasawa; e.g., see Theorem 10.4 of [10].
(2.2) Proposition. Let L / K be a Galois extension of l power degree in which at most one prime ramifies. Then l divides h_{L} implies l divides h_{K}.

Thus we are left with the cases $2 \leq s \leq d \leq 4$. We need to introduce some notation that will allow us to compute $\operatorname{cok} \varphi$ and in particular to determine when $\operatorname{cok} \varphi=0$. For each $v \in S$ prime to l fix $x_{v} \in O_{v}$, the valuation ring of K_{v}, generating $\left(O_{v} / h_{v} O_{v}\right)^{x}$ and define $[v, z] \in \mathbf{Z}_{l}$ by

$$
z \equiv x_{v}^{[v, z]} \bmod \mu_{v} O_{v}, z \in U_{v}
$$

Let N be the local norm $L_{w} \rightarrow K_{v}$. Now suppose v divides l; assume $T_{v} \cong U_{v} / N\left(U_{w}\right)$ is cyclic and fix a generator $x_{v} \in U_{v}$ of the quotient group. For $z \in U_{v}$, write

$$
z \equiv x_{v}^{[v, z]} \bmod N\left(U_{w}\right)
$$

Of course $[v, z]$ is not uniquely determined by these congruences, but that ambiguity causes no difficulty in what follows. Since we assumed $\left(l, h_{K}\right)=1$, for each prime ideal μ_{v} of K there is a smallest positive integer h_{v}, prime to l, such that $\mu_{v}^{h_{v}}=\left(\tilde{\pi}_{v}\right), \tilde{\pi}_{v} \in K$.
(2.3) Proposition. Let K be an imaginary quadratic field with $\left(l, h_{K}\left|E_{K}\right|\right)$ $=1$. Suppose that L / K is an abelian l-extension in which only v_{1}, v_{2} ramify,

$$
\Gamma=\operatorname{Gal}(L / K)=T_{v_{1}} \oplus T_{v_{2}}
$$

and the l-primary part of $U_{v_{2}},\left(U_{v_{2}}\right)_{l}$, is pro-cyclic. Then $\Gamma=D_{v_{1}}$ if and only if $\left[v_{2}, \tilde{\pi}_{1}\right] \not \equiv 0 \bmod l$.

Proof. Let E be the subfield of L fixed by $T_{v_{1}}$. The prime v_{2} is totally ramified in E / K and no other prime ramifies in E / K. Thus E is contained in the ray class field over K of conductor μ_{2}^{r}, some $r \geq 1$. Since $\left(l, h_{K}\right)=1$, $\operatorname{Gal}(E / K) \cong$ quotient of $\left(O_{K} / h_{2}^{r}\right)^{x}$.

If v_{2} does not divide l, then $r=1$. Otherwise v_{2} divides l and l is split in K / Q since $\left(U_{v_{2}}\right)_{l}$ is assumed pro-cyclic; thus $O_{K} / h_{2}^{r} \cong \mathbf{Z}_{l} /\left(l^{r}\right)$. In both cases,

$$
\begin{aligned}
\Gamma=D_{v_{1}} & \text { iff } v_{1} \text { inert in } E / K \\
& \text { iff Frobenius of } v_{1} \text { generates } \operatorname{Gal}(E / K) \\
& \text { iff } \tilde{\pi}_{1} \not \equiv x^{l} \bmod {\not \imath_{2}^{r} \quad\left(\text { use }\left(l,\left|E_{K}\right|\right)=1\right)} \text { iff }\left[v_{2}, \tilde{\pi}_{1}\right] \not \equiv 0 \bmod l .
\end{aligned}
$$

In this paragraph we define a matrix $M(L)$ whose entries are to be viewed modulo l. For notational convenience we restrict to the case where all the inertia subgroups T_{v} of Γ are cyclic, though this is not necessary. Let w be a prime of L above $v \in S$ and define $\sigma_{v} \in \operatorname{Gal}\left(L_{w} / K_{v}\right)$ as a lifting of the local Artin symbol ($L_{w} / K_{v}, \tilde{\pi}_{v}$); then $\sigma_{v}^{h_{v}}$ lifts the inverse of the Frobenius automorphism on the maximal unramified extension of K_{v} in L_{w}. Choose τ_{v} in the inertia subgroup of $\operatorname{Gal}\left(L_{w} / K_{v}\right) \cong D_{v}$ which lifts the local Artin symbol $\left(L_{w} / K_{v}, x_{v}\right)$. We are identifying local Galois groups with appropriate subgroups of $\operatorname{Gal}(L / K)$. The column indices of the matrix $M(L)$ are pairs $\left(v, v^{\prime}\right) \in S \times S, v \neq v^{\prime}$, and exactly one of $\left(v, v^{\prime}\right)$ and $\left(v^{\prime}, v\right)$ appears. Since we are assuming $\Gamma=\Pi T_{v}$, the columns are indexed by $\tau_{v} \wedge \tau_{v^{\prime}}$ for pairs $\left(v, v^{\prime}\right)$ as above. The image of φ is isomorphic to the subgroup of $\wedge^{2} \Gamma$ generated by $\left\{\tau_{v} \wedge \sigma_{v}: v \in S\right\}$, since T_{v} and D_{v} / T_{v} are cyclic groups with generators τ_{v} and $\sigma_{v} \bmod T_{v}$ respectively. As in [9], for $v^{\prime} \in S$, write in additive notation

$$
\sigma_{v^{\prime}}=\sum a_{v^{\prime}} \tau_{v}, \quad \text { summation over } v \in S, \cdot v \neq v^{\prime}
$$

thus $\tau_{v^{\prime}} \wedge \sigma_{v^{\prime}}=\sum a_{v^{\prime} v}\left(\tau_{v^{\prime}} \wedge \tau_{v}\right)$. In $M(L)$ the entry in row v and column (v, v^{\prime}) (resp. in row v^{\prime} and column $\left(v, v^{\prime}\right)$) is $a_{v v^{\prime}}$ (resp. $-a_{v v^{\prime}}$) taken modulo l. Other entries are zero. This completes the description of $M(L)$.

We claim $a_{v^{\prime} v} \equiv-\left[v, \tilde{\pi}_{v^{\prime}}\right] \bmod l$. In fact $\Gamma \cong \Pi U_{v} / N U_{w}$. The reciprocity map sends the idele $\alpha \in J_{K}$ with $\tilde{\pi}_{v^{\prime}}$ in position v^{\prime} and ones elsewhere to $\sigma_{v^{\prime}} \in \Gamma$. From (1.1), α corresponds in $\Pi U_{v} / N U_{w}$ to $\Pi x_{v}^{-\left[v, \tilde{\pi}_{v}\right]}$; the second product is taken over $v \in S, v \neq v^{\prime}$. For example, for $d=s=3$,

$$
M(L)=\left[\begin{array}{ccc}
-\left[v_{2}, \tilde{\pi}_{1}\right] & -\left[v_{3}, \tilde{\pi}_{1}\right] & 0 \\
{\left[v_{1}, \tilde{\pi}_{2}\right]} & 0 & -\left[v_{3}, \tilde{\pi}_{2}\right] \\
0 & {\left[v_{1}, \tilde{\pi}_{3}\right]} & {\left[v_{2}, \tilde{\pi}_{3}\right]}
\end{array}\right] .
$$

Let S be the set of primes of K ramified in L. If l is not split in K / Q, let $S^{\prime}=\{v \in S \mid v$ divides $l\}$; otherwise $S^{\prime}=\varnothing$. Let $S^{\prime \prime}$ be the complement of S^{\prime} in S.
(2.4) Theorem. Let K be an imaginary quadratic field with $\left(l, h_{K}\left|E_{K}\right|\right)=1$. Let L / K be an abelian l-extension with $(g(L / K), l)=1$. Then $\left(l, h_{L}\right)=1$ in exactly the following cases (a)-(d).
(a) $s=1$.
(b) $d=2, S=\left\{v_{1}, v_{2}\right\}$ and either
(i) $S=S^{\prime \prime}$ and $\left[v_{1}, \tilde{\pi}_{2}\right] \not \equiv 0$ or $\left[v_{2}, \tilde{\pi}_{1}\right] \not \equiv 0 \bmod l$, or
(ii) $v_{1} \in S^{\prime}$ and v_{2} does not divide l and either $\left[v_{2}, \tilde{\pi}_{1}\right] \equiv \equiv 0$ or $\tilde{\pi}_{2}$ generates $U_{v_{1}} / N\left(U_{w_{1}}\right)$
(c) $d=3$, and either
(i) $S=\left\{v_{1}, v_{2}\right\}$ with v_{2} not dividing l and $v_{1} \in S^{\prime}$ and $\left[v_{2}, \tilde{\pi}_{1}\right] \not \equiv 0$, or
(ii) $s=3$ and $\operatorname{det} M(L) \not \equiv 0 \bmod l$
(d) $d=4, S=\left\{v_{1}, v_{2}\right\}$ with v_{2} not dividing l and $\left[v_{2}, \tilde{\pi}_{1}\right] \equiv \equiv 0$.

Proof. In all cases we have $\Gamma=\Pi T_{v}$, product over $v \in S$.
(a) Use (2.2). In (b) clearly $\operatorname{cok} \varphi=0$ iff $\Gamma=D_{v_{1}}$ or $\Gamma=D_{v_{2}}$. In case (i) we may apply (2.3) twice (by interchanging v_{1} and v_{2} everywhere). In case (ii), $\Gamma=D_{v_{2}}$ iff Frobenius of v_{2} generates $\operatorname{Gal}(E / K)$ where E is the fixed field of $T_{v_{2}}$ iff $\tilde{\pi}_{2}$ generates $U_{v_{1}} / N\left(U_{w_{1}}\right)$.

Case (c) (i) follows from (2.3). If $d=4$, so rk $\wedge^{2} \Gamma=6$, we see $\operatorname{rk}(\operatorname{im} \varphi) \leq 5$ for $s=3$, 4. For $s=2$, we apply (2.3) again. Only the case $d=s=3$ remains. But $\operatorname{det} M(L) \not \equiv 0 \bmod l$ iff $\operatorname{cok} \varphi=0$. This completes the proof of the theorem.

Remark 1. We could have studied $\operatorname{im} \varphi$ in all cases via the matrix $M(L)$, but we avoided this more computational approach except in case (c) (ii).

Remark 2. Such extensions L with $g(L / K)=1$ are obtained from the l-part of ray class fields over K with appropriate conductor.

References

1. J.W.S. Cassels and A. Fröhlich, Algebraic number theory, Academic Press, San Diego, California, 1967.
2. G. Cornell and M. Rosen, The l-rank of the real class group of cyclotomic fields, Compositio Math., vol. 53 (1984), pp. 133-141.
3. G. Cornell and M. Rosen, The class group of an absolutely abelian l-extension, Illinois J. Math., vol. 32 (1988), pp. 453-461 (this issue).
4. A. Fröhlich, On fields of class two, Proc. London Math. Soc., vol. 4 (1954), pp. 235-256.
5. \qquad , Central extensions, Galois groups, and ideal class groups of number fields, Contemp. Math., vol. 24, Amer. Math. Soc., Providence, Rhode Island, 1984.
6. Y. Furuta, The genus field and genus number in algebraic number fields, Nagoya Math. J., vol. 29 (1967), 281-285.
7. \qquad , On class field towers and the rank of ideal class groups, Nagoya Math. J., vol. 48 (1972), 147-157.
8. M. Razar, Central and genus class fields and the Hasse norm theorem, Compositio Math., vol. 35 (1977), pp. 281-298.
9. S. Ullom and S. Watt, Generators and relations for certain class two Galois groups, J. London Math. Soc. (2), vol. 34 (1986), pp. 235-244.
10. L. Washington, Introduction to cyclotomic fields, Springer-Verlag, New York, 1982.

University of Illinois
Urbana, Illinois
8 Sheffield Street
Palmerston North, New Zealand

[^0]: Received September 30, 1987

