A MAYER-VIETORIS SEQUENCE FOR PICARD GROUPS, WITH APPLICATIONS TO INTEGRAL GROUP RINGS OF DIHEDRAL AND QUATERNION GROUPS

BY
William H. Gustafson and Klaus W. Roggenkamp ${ }^{1}$

In Memoriam Irving Reiner

0. Introduction

In this paper, we show how Mayer-Vietoris sequences can be constructed to permit the computation of Picard groups and outer automorphism groups of orders from fibre product diagrams. We then illustrate the use of these sequences by carrying out the computations for certain group rings. The idea that there might be such sequences was inspired by the use of pullback methods in the construction [20] by the second author and L.L. Scott, Jr. of a counterexample to the Zassenhaus conjecture.

We feel that the mathematics in the paper is very much in the spirit of our dear friend and teacher, the late Irving Reiner. We humbly dedicate this work to his memory.

Let R be a Dedekind domain with field of fractions K; for instance, the ring of algebraic integers in the algebraic number field K. Let Λ be an R-order in a separable K-algebra A. For an R-subalgebra T of the center $Z(\Lambda)$ of Λ, we denote by $\operatorname{Pic}_{T}(\Lambda)$ the group of isomorphism classes [M] of invertible Λ-bimodules with $t m=m t$ whenever $t \in T$ and $m \in M$. This group was first studied in the setting of orders by Fröhlich [3]. We shall consider the subgroup $\operatorname{LFPic}_{T}(\Lambda)$ of $\operatorname{Pic}_{T}(\Lambda)$ consisting of those [M] for which M is locally free on one side. By a result of Swan [23], we have

$$
\operatorname{Pic}_{T}(\mathbf{Z} G)=\operatorname{LFPic}_{T}(\mathbf{Z} G)
$$

where $\mathbf{Z} G$ denotes the integral group ring of the finite group G.

[^0]Given central orthogonal idempotents e_{1} and e_{2} of A with $e_{1}+e_{2}=1$, the order Λ can be written (cf., Lemma 1.1) as a fibre product

$$
\begin{align*}
& \Lambda \xrightarrow{\mathrm{pr}_{1}} \Lambda e_{1}=\Lambda_{1} \\
& \Lambda_{2}=\Lambda e_{2} \xrightarrow{\text { pr }_{2}} \downarrow_{\varphi_{2}} \frac{\varphi_{1}}{\Lambda} \tag{0.1}
\end{align*}
$$

We shall denote by $\operatorname{Pic}_{e, T}(\Lambda)$ and $\operatorname{LFPic}_{e, T}(\Lambda)$ the subgroups of $\operatorname{Pic}_{T}(\Lambda)$ and $\operatorname{LFPic}_{T}(\Lambda)$ consisting of the isomorphism classes of those bimodules M in $\operatorname{Pic}_{T}(\Lambda)$ or $\operatorname{LFPic}_{T}(\Lambda)$ with $e_{i} m=m e_{i}$ for every $m \in M$. It should be noted that

$$
\operatorname{Pic}_{e, T}(\Lambda) \supseteq \operatorname{Picent}(\Lambda)=: \operatorname{Pic}_{Z(\Lambda)}(\Lambda)
$$

Provided that $\operatorname{Ker} \varphi_{i}$ is characteristic in Λ_{i} for $i=1,2$, the maps in the fibre product diagram (0.1) give rise to homomorphisms

$$
\begin{equation*}
\operatorname{pr}_{i}: \operatorname{Pic}_{e, T}(\Lambda) \rightarrow \operatorname{Pic}_{T_{i}}\left(\Lambda_{i}\right) \tag{0.2}
\end{equation*}
$$

and

$$
\varphi_{i}: \operatorname{Pic}_{T_{i}}\left(\Lambda_{i}\right) \rightarrow \operatorname{Pic}_{\bar{T}}(\bar{\Lambda})
$$

where $T_{i}=T e_{i}$ and \bar{T} is the image of T in the center of $\bar{\Lambda}$. Note that if T is the center $Z(\Lambda)$, it is often the case that T_{i} is properly contained in $Z\left(\Lambda_{i}\right)$. In general, $\operatorname{Pic}_{T_{i}}\left(\Lambda_{i}\right)$ is not abelian, and so φ_{1} and φ_{2} do not induce a group homomorphism

$$
\varphi_{1} \oplus \varphi_{2}: \operatorname{Pic}_{T_{1}}\left(\Lambda_{1}\right) \oplus \operatorname{Pic}_{T_{2}}\left(\Lambda_{2}\right) \rightarrow \operatorname{Pic}_{\bar{T}}(\bar{\Lambda})
$$

However, if we define

$$
\begin{align*}
\operatorname{Pic}_{T}\left(\Lambda_{1}, \Lambda_{2}\right)=\left\{\left(\left[M_{1}\right],\left[M_{2}\right]\right):\left[M_{i}\right]\right. & \in \operatorname{Pic}_{T_{i}}\left(\Lambda_{i}\right) \tag{0.3}\\
\varphi_{1}\left(\left[M_{1}\right]\right) & \left.=\varphi_{2}\left(\left[M_{2}\right]\right)\right\},
\end{align*}
$$

then it turns out that $\operatorname{Pic}_{T}\left(\Lambda_{1}, \Lambda_{2}\right)$ is a group.
We shall denote by $u(B)$ the group of units of the ring B, and put $u_{Z}(B)=u(Z(B))$. There is a group homomorphism

$$
\begin{equation*}
\Psi: u_{z}(\bar{\Lambda}) \rightarrow \operatorname{Picent}(\Lambda) \tag{0.4}
\end{equation*}
$$

defined by $\Psi(\bar{u})=\left[\Lambda_{\bar{u}}\right]$, where

$$
\Lambda_{\bar{u}}=\left\{\left(\lambda_{1}, \lambda_{2}\right) \in \Lambda_{1} \oplus \Lambda_{2}: \varphi_{1}\left(\lambda_{1}\right)=\bar{u} \varphi_{2}\left(\lambda_{2}\right)\right\}
$$

We shall show in $\S 1$ that—provided each $\operatorname{Ker} \varphi_{i}$ is characteristic in Λ_{i}-the fibre product diagram gives rise to a Mayer-Vietoris sequence

$$
\begin{align*}
1 & \rightarrow u_{Z}(\bar{\Lambda}) /\left\langle\varphi_{1}\left(u_{Z}\left(\Lambda_{1}\right)\right), \varphi_{2}\left(u_{Z}\left(\Lambda_{2}\right)\right)\right\rangle \rightarrow \operatorname{Pic}_{e, T}(\Lambda) \tag{0.5}\\
& \rightarrow \operatorname{Pic}_{T}\left(\Lambda_{1}, \Lambda_{2}\right) \rightarrow 1
\end{align*}
$$

where $\left\langle\varphi_{1}\left(u_{Z}\left(\Lambda_{1}\right)\right), \varphi_{2}\left(u_{Z}\left(\Lambda_{2}\right)\right)\right\rangle$ is the subgroup of $u_{Z}(\bar{\Lambda})$ generated by $\varphi_{1}\left(u_{Z}\left(\Lambda_{1}\right)\right)$ and $\varphi_{2}\left(u_{Z}\left(\Lambda_{2}\right)\right)$. We have a similar sequence for locally free Picard groups. Let

$$
\boldsymbol{\vartheta}_{T}: \operatorname{LFPic}_{e, T}(\Lambda) \rightarrow \operatorname{Cl}(\Lambda)
$$

where $\mathrm{Cl}(\Lambda)$ is the class group of locally free left Λ-ideals be the natural homomorphism [14], and put $\widetilde{\mathrm{Out}}_{e, T}=\operatorname{ker}\left(\boldsymbol{\vartheta}_{T}\right)$. If Λ satisfies the Eichler condition, then $\widetilde{\mathrm{Out}}_{e, T}(\Lambda)=\mathrm{Out}_{e, T}(\Lambda)$ is the group of T-linear outer automorphisms of Λ that preserve e_{1} and e_{2}. We write $\widetilde{\mathrm{Out}}_{e, C}(\Lambda)$ for $\widetilde{\mathrm{Out}}_{e, Z(\Lambda)}(\Lambda)$.

With or without the Eichler condition, we have

$$
\operatorname{Out}_{T}(\Lambda)=\operatorname{Ker}\left(\operatorname{LFPic}_{T}(\Lambda) \xrightarrow{\vartheta} \operatorname{LF}_{1}(\Lambda)\right),
$$

where $\operatorname{LF}_{1}(\Lambda)$ is the pointed set of isomorphism classes of locally free full left Λ-ideals, with [Λ] as basepoint. Putting

$$
\begin{aligned}
& \operatorname{Out}_{e, T}(\Lambda)=\operatorname{Ker}\left(\left.\boldsymbol{\vartheta}\right|_{\text {LFPic }_{e, T}(\Lambda)}\right) \text {, } \\
& \operatorname{Out}_{T}\left(\Lambda_{1}, \Lambda_{2}\right)=\left\{\left(\alpha_{1}, \alpha_{2}\right): \alpha_{i} \in \operatorname{Out}_{T_{i}}\left(\Lambda_{i}\right), \alpha_{1} \equiv \alpha_{2}{\left.\operatorname{in~} \operatorname{Out}_{\bar{T}}(\bar{\Lambda})\right\}}\right.
\end{aligned}
$$

and

$$
\begin{equation*}
u_{z}\left(\Lambda_{1}, \Lambda_{2}\right)=u_{z}(\bar{\Lambda}) /\left\langle\varphi_{1}\left(u_{z}\left(\Lambda_{1}\right)\right), \varphi_{2}\left(u_{z}\left(\Lambda_{2}\right)\right)\right\rangle \tag{0.6}
\end{equation*}
$$

we obtain an exact sequence

$$
\begin{equation*}
1 \rightarrow u_{Z}\left(\Lambda_{1}, \Lambda_{2}\right) \rightarrow \operatorname{Out}_{e, T}(\Lambda) \xrightarrow{e} \operatorname{Out}_{T}\left(\Lambda_{1}, \Lambda_{2}\right) \tag{0.7}
\end{equation*}
$$

in which ϱ is surjective when $\bar{\Lambda}$ is commutative.

We shall apply these sequences to compute the central Picard groups and the central automorphism groups for the following classes of groups:
(1) Metacyclic groups of order $p q$, where p is an odd prime and $q \mid(p-1)$.
(2) Dihedral groups of order 2^{n+1}.
(3) Quaternion groups of order 2^{n+1}.

It should be noted that the groups in all these classes satisfy the Zassenhaus conjecture, i.e., for any normalized automorphism α of the group ring $\mathbf{Z} G$, there is an automorphism ρ of G such that $\alpha \rho$ is a central automorphism [17], [19], [22]. Note that all these groups have $O_{p^{\prime}}(G)=1$ for some prime p. Moreover, an arbitrary automorphism can be normalized by modifying it with an automorphism induced by an element of $\operatorname{Hom}(G, u(\mathbf{Z}))$. Hence, as indicated in [19], to describe $\operatorname{Pic}_{\mathbf{z}}(\mathbf{Z} G)$ and the outer automorphism group, it suffices to describe $\operatorname{Picent}(\mathbf{Z} G)$ and the group Out ${ }_{C}(\mathbf{Z} G)$ of automorphisms that fix each element of the center.

In the first two cases, the computations have also been made by Endo, Miyata, and Sekiguchi [2]. Their method is less general than ours. They are able to show for these groups that Picent $(\mathbf{Z} G)$ is isomorphic to the locally free class group of the center of $\mathbf{Z} G$. Then, they can apply known Mayer-Vietoris sequences for class groups. Some results on Picard groups of integral group rings of abelian groups were given by Bass and Murthy in [1].

In the discussion of our examples, the reader should keep in mind that the righthand term of the sequence (0.5) is contained in $\operatorname{Pic}_{T_{1}}\left(\Lambda_{1}\right) \oplus \operatorname{Pic}_{T_{2}}\left(\Lambda_{2}\right)$, while that of (0.7) is contained in $\operatorname{Out}_{T_{1}}\left(\Lambda_{1}\right) \oplus \operatorname{Out}_{T_{2}}\left(\Lambda_{2}\right)$. It may be necessary to refer to the subsequent sections to see how the groups explicitly given are embedded in the appropriate factors.
(A) Metacyclic groups. Let p be an odd prime and q a divisor of $p-1$. For an integer n, denote by C_{n} the cyclic group of order n. Let r have order q modulo p and set

$$
G=C_{p} \rtimes C_{q}=\left\langle a, b: a^{p}=b^{q}=1, b a b^{-1}=a^{r}\right\rangle
$$

a subgroup of the 1-dimensional affine group over $\mathbf{Z} / p \mathbf{Z}$. If ζ_{p} is a primitive p th root of unity, we can interpret C_{q} as a subgroup of $\mathrm{Gal}_{\mathbf{z}}\left(\mathbb{Z}\left[\zeta_{p}\right]\right)$. Let S be the fixed ring in $\mathbf{Z}\left[\zeta_{p}\right]$ under C_{q}, and let π be the norm of $1-\zeta_{p}$ in S. For $e_{1}=(1 / p) \sum_{i=1}^{p} a^{i}$ and $e_{2}=1-e_{1}, \mathbf{Z} G$ is the pullback

where

$$
\Lambda=\left(\begin{array}{cccc}
S & \cdots & \cdots & S \\
\pi S & \ddots & & S \\
\vdots & \ddots & \ddots & \vdots \\
\pi S & \cdots & \pi S & S
\end{array}\right)_{q \times q}
$$

Every $\sigma \in \operatorname{Hom}(G,\{ \pm 1\})$ gives rise to an automorphism $\tilde{\boldsymbol{\sigma}}: \mathbf{Z} G \rightarrow \mathbf{Z} G$, induced by $g \mapsto g \sigma(g)$. In (2.15) we prove that there are exact sequences
(0.8) $1 \rightarrow U_{q} \rightarrow \operatorname{Pic}_{\mathbf{z}}(\mathbf{Z} G)$

$$
\rightarrow \mathrm{Cl}(S) \mathrm{Gal}_{\mathbf{z}}(S) \oplus \mathrm{Cl}\left(\mathbf{Z} C_{q}\right) \operatorname{Hom}(G,\{ \pm 1\}) \rightarrow 1
$$

where U_{q} is an abelian group of order $(p-1)^{q-1} /(2, q)$;

$$
\begin{equation*}
1 \rightarrow U_{q} \rightarrow \operatorname{Picent}(\mathbf{Z} G) \rightarrow \mathrm{Cl}(S) \oplus \mathrm{Cl}\left(\mathbf{Z} C_{q}\right) \rightarrow 1 \tag{0.9}
\end{equation*}
$$

and
(0.10) $1 \rightarrow \tilde{U}_{q} \rightarrow \operatorname{Out}_{\mathbf{z}}(\mathbf{Z} G)$

$$
\rightarrow \mathrm{Cl}(S)_{q} \operatorname{Gal}_{\mathbf{z}}(S) \oplus \operatorname{Hom}(G,\{ \pm 1\}) \rightarrow 1
$$

where $\mathrm{Cl}(S)_{q}=\left\{(\mathscr{T}) \in \mathrm{Cl}(S):(\mathscr{T})^{q}=1\right\}$ and \tilde{U}_{q} has order $(p-1)^{q-1} / q$. In both (0.8) and (0.10), $\operatorname{Gal}_{\mathbf{z}}(S)$ should be interpreted as $\operatorname{Out}(G)$.

Remark. In the case where $q=2$, the sequence (0.9) reduces to

$$
1 \rightarrow C_{(p-1) / 2} \rightarrow \operatorname{Picent}(\mathbf{Z} G) \rightarrow \mathrm{Cl}(S) \rightarrow 1
$$

which was previously obtained by Fröhlich, Reiner, and Ullom [3], [5]. They also determined Out ${ }_{C}(\mathbf{Z} G)$ in this case.
(B) Dihedral 2-groups. Let

$$
D_{n}=\left\langle s_{n}, t_{n}: s_{n}^{2^{n}}=t_{n}^{2}=1, t_{n} s_{n} t_{n}=s_{n}^{-1}\right\rangle
$$

and let ζ_{n} be a primitive 2^{n}-th root of unity. Put $S_{n}=\mathbf{Z}\left[\zeta_{n}+\zeta_{n}^{-1}\right]$, the maximal real subfield of $\mathbf{Z}\left[\zeta_{n}\right]$. Then there are exact sequences
(0.11) $0 \rightarrow V \rightarrow \operatorname{Pic}_{\mathbf{z}}\left(\mathbf{Z} D_{n}\right)$

$$
\rightarrow \mathrm{Cl}\left(S_{n}\right) \times \operatorname{Picent}\left(\mathbf{Z} D_{n-1}\right) \operatorname{Out}\left(D_{n}\right) \operatorname{Hom}\left(D_{n},\{ \pm 1\}\right) \rightarrow 1
$$

where V is Klein's 4-group,

$$
\begin{equation*}
0 \rightarrow V \rightarrow \operatorname{Picent}\left(\mathbf{Z} D_{n}\right) \rightarrow \mathrm{Cl}\left(S_{n}\right) \times \operatorname{Picent}\left(\mathbf{Z} D_{n-1}\right) \rightarrow 1 \tag{0.12}
\end{equation*}
$$

and
(0.13) $0 \rightarrow V \rightarrow \mathrm{Out}_{\mathbf{z}}\left(\mathbf{Z} D_{n}\right)$

$$
\rightarrow \mathrm{Cl}\left(S_{n}\right)_{2} \times \operatorname{Out}_{C}\left(\mathbf{Z} D_{n-1}\right) \operatorname{Out}\left(D_{n}\right) \operatorname{Hom}\left(D_{n},\{ \pm 1\}\right) \rightarrow 1 .
$$

Again, this was done for $n=2$ by Fröhlich [3].
(C) Quaternion 2-groups. Let

$$
H_{n}=\left\langle\sigma_{n}, \tau: \sigma_{n}^{2^{n}}=\tau^{4}=1, \sigma_{n}^{2^{n-1}}=\tau^{2}, \tau \sigma_{n} \tau^{-1}=\sigma_{n}^{-1}\right\rangle,
$$

and let S be as above. Then

$$
\begin{align*}
\operatorname{Picent}\left(\mathbf{Z} H_{n}\right) & \cong \operatorname{Picent}\left(\mathbf{Z} D_{n}\right) \\
\operatorname{Pic}_{\mathbf{Z}}\left(\mathbf{Z} H_{n}\right) & =\operatorname{Picent}\left(\mathbf{Z} H_{n}\right) \operatorname{Out}\left(H_{n}\right) \operatorname{Hom}\left(H_{n},\{ \pm 1\}\right), \tag{0.14}
\end{align*}
$$

and there is an exact sequence

$$
\begin{equation*}
0 \rightarrow C_{2} \rightarrow \widetilde{\operatorname{Outc}}\left(\mathbf{Z} H_{n}\right) \rightarrow \mathrm{Cl}\left(S_{n}\right)_{2} \oplus \mathrm{Out}_{C}\left(\mathbf{Z} D_{n-1}\right) \rightarrow 0 \tag{0.15}
\end{equation*}
$$

where $\widetilde{\mathrm{Out}}_{C}\left(\mathbf{Z} H_{n}\right)$ is the kernel of $\operatorname{Picent}\left(\mathbf{Z} H_{n}\right) \rightarrow \mathrm{Cl}\left(\mathbf{Z} H_{n}\right)$. Once more, this was obtained by Fröhlich [3] for $n=2$. For $n \leq 3, \widetilde{\mathrm{Out}}_{\mathbf{Z}}\left(\mathbf{Z} H_{n}\right)=\mathrm{Out}_{\mathbf{z}}\left(\mathbf{Z} H_{n}\right)$.

1. Proof of the Mayer-Vietoris Sequence

As in the introduction, let e_{1}, e_{2} be central idempotents with $e_{1}+e_{2}=1$. We have claimed in the introduction that

$$
\begin{aligned}
& \Lambda \xrightarrow{\mathrm{pr}_{1}} \Lambda e_{1}=\Lambda_{1} \\
& \Lambda e_{2}= \Lambda_{2} \xrightarrow{\mathrm{pr}_{2}}{ }_{\mathrm{\varphi}}^{2} \\
& \varphi_{1} \\
& \Lambda
\end{aligned}
$$

is a pullback. This will follow, once we prove the following.
Lemma 1.1. $\bar{\Lambda}=\Lambda /\left(\left(\Lambda e_{1} \cap \Lambda\right) \oplus\left(\Lambda e_{2} \cap \Lambda\right)\right)$ is isomorphic to $\Lambda_{i} /(\Lambda \cap$ Λ_{i}), for $i=1,2$.

Proof. Multiplication by e_{i} gives an isomorphism $\bar{\Lambda} \cong \Lambda_{i} /\left(\Lambda \cap \Lambda_{i}\right)$, whence the statement.

We assume henceforth that

$$
\operatorname{Ker} \varphi_{i} \text { is characteristic in } \Lambda_{i}
$$

We consider $\operatorname{LFPic}_{e, T}(\Lambda)$, consisting of the isomorphism classes of locally free invertible Λ-bimodules where the e_{i} and T act in the same way on each side. Let T_{i} be the image of T in $\Lambda_{i}, i=1,2$, and let \bar{T} be the image of T in $\bar{\Lambda}$. Note that if $T=Z(\Lambda)$, it is not generally the case that $T_{i}=Z\left(\Lambda_{i}\right)$, where $Z(-)$ denotes the center. We have natural maps

$$
\operatorname{pr}_{i}: \operatorname{LFPic}_{e, T}(\Lambda) \rightarrow \operatorname{LFPic}_{T_{i}}\left(\Lambda_{i}\right)
$$

for $i=1,2$, given by $[M] \mapsto\left[M e_{i}\right]$. We note that $\bar{\Lambda}$ is a finitely generated R-torsion algebra. Hence, the map $\varphi_{i}: \Lambda_{i} \rightarrow \bar{\Lambda}$ factors through a semi-localization $\tilde{\Lambda}_{i}$, and hence, since we work with locally free invertible bimodules, the elements in $\operatorname{LFPic}_{\tilde{T}}\left(\tilde{\Lambda}_{i}\right)$ can be interpreted as automorphisms. Since $\operatorname{Ker} \varphi_{i}$ is characteristic, the same holds for the semi-localization, and hence we obtain a well defined map

$$
\varphi_{i}: \operatorname{LFPic}_{T_{i}}\left(\Lambda_{i}\right) \rightarrow \operatorname{Pic}_{\bar{T}}(\bar{\Lambda})
$$

Let

$$
\begin{aligned}
\operatorname{LFPic}_{T}\left(\Lambda_{1}, \Lambda_{2}\right)= & \left\{\left(\left[M_{1}\right],\left[M_{2}\right]\right): M_{i} \in \operatorname{LFPic}_{T_{i}}\left(\Lambda_{i}\right)\right. \\
& \text { and } \left.\varphi_{1}\left(\left[M_{1}\right]\right)=\varphi_{2}\left(\left[M_{2}\right]\right) \operatorname{in} \operatorname{LFPic}_{\bar{T}}(\bar{\Lambda})\right\} .
\end{aligned}
$$

We note that $\operatorname{LFPic}_{T}\left(\Lambda_{1}, \Lambda_{2}\right)$ is a subgroup of $\operatorname{LFPic}_{T_{1}}\left(\Lambda_{1}\right) \times \operatorname{LFPic}_{T_{2}}\left(\Lambda_{2}\right)$. In fact, whenever $\varrho_{i}: G_{i} \rightarrow G, i=1,2$, are group homomorphisms, the map $\varrho: G_{1} \times G_{2} \rightarrow G$ defined by

$$
\left(g_{1}, g_{2}\right) \mapsto \varrho_{1}\left(g_{1}\right) \cdot \varrho_{2}\left(g_{2}\right)^{-1}
$$

may fail to be a group homomorphism, but $\varrho^{-1}(1)$ is a subgroup of $G_{1} \times G_{2}$. Indeed, if $\left(g_{1}, g_{2}\right)$ and $\left(h_{1}, h_{2}\right)$ belong to this set, then $\varrho_{1}\left(g_{1}\right)=\varrho_{2}\left(g_{2}\right)$ and $\varrho_{1}\left(h_{1}\right)=\varrho_{2}\left(h_{2}\right)$. Multiplying these equations together, we obtain $\varrho_{1}\left(g_{1} h_{1}\right)=$ $\varrho_{2}\left(g_{2} h_{2}\right)$, whence $\left(g_{1} h_{1}, g_{2} h_{2}\right) \in \varrho^{-1}(1)$. Taking inverses of both sides of the first equation gives $\varrho_{1}\left(g_{1}^{-1}\right)=\varrho_{2}\left(g_{2}^{-1}\right)$, and $\varrho^{-1}(1)$ is a subgroup. In particular, $\operatorname{LFPic}_{T}\left(\Lambda_{1}, \Lambda_{2}\right)$ is a subgroup of $\operatorname{Pic}_{T_{1}}\left(\Lambda_{1}\right) \times \operatorname{Pic}_{T_{2}}\left(\Lambda_{2}\right)$. We then have a mapping

$$
\Phi: \operatorname{LFPic}_{e, T}(\Lambda) \rightarrow \operatorname{LFPic}_{T}\left(\Lambda_{1}, \Lambda_{2}\right)
$$

defined by

$$
[M] \mapsto\left(\left[M e_{1}\right],\left[M e_{2}\right]\right)
$$

which is, in fact, a group homomorphism.
Lemma 1.2. $\operatorname{Im} \Phi=\operatorname{LFPic}_{e, T}\left(\Lambda_{1}, \Lambda_{2}\right)$.
Proof. Let $\left(\left[M_{1}\right],\left[M_{2}\right]\right) \in \operatorname{LFPic}_{T}\left(\Lambda_{1}, \Lambda_{2}\right)$. Since $\varphi_{1}\left(\left[M_{1}\right]\right)=\varphi_{2}\left(\left[M_{2}\right]\right)$, there is a $\bar{\Lambda}$-bimodule isomorphism $\varrho: \bar{M}_{1} \rightarrow \bar{M}_{2}$, where \bar{M}_{i} is the $\bar{\Lambda}$-bimodule $\varphi_{i}\left(M_{i}\right)$.

We now consider

$$
M=\left\{\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}: \varrho \varphi_{1}\left(m_{1}\right)=\varphi_{2}\left(m_{2}\right)\right\} .
$$

Since φ_{i} and ϱ are bimodule homomorphisms, we conclude that M is a bimodule that is free on either side, and hence represents an element in $\mathrm{LFPic}_{e, T}(\Lambda)$; see [12, §2] or [13]. Clearly, $\mathrm{pr}_{i} M \cong M_{i}$.

This shows that Φ is surjective. It remains to consider the kernel of Φ. For this, we follow the idea of Reiner and Ullom [13, §5].
(1.3) For a ring B, let $u(B)$ be the units in B and let $u_{z}(B)$ be the units in the center of B.

Define

$$
\begin{equation*}
\Psi: u_{Z}(\bar{\Lambda}) \rightarrow \operatorname{LFPicent}(\Lambda) \tag{1.4}
\end{equation*}
$$

as follows: for $\bar{u} \in u_{Z}(\bar{\Lambda})$, let

$$
\Lambda_{\bar{u}}=\left\{\left(x_{1}, x_{2}\right): x_{i} \in \Lambda_{i}, \varphi_{1}\left(x_{1}\right)=\bar{u} \varphi_{2}\left(x_{2}\right)\right\}
$$

Since \bar{u} is central, $\Lambda_{\bar{u}}$ is a Λ-bimodule. In fact, let $\left(\lambda_{1}, \lambda_{2}\right) \in \Lambda$, i.e., $\varphi_{1} \lambda_{1}=\varphi_{2} \lambda_{2}$; then we have

$$
\left(\lambda_{1}, \lambda_{2}\right)\left(x_{1}, x_{2}\right)=\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}\right)
$$

and

$$
\begin{aligned}
\varphi_{1}\left(\lambda_{1} x_{1}\right) & =\varphi_{1}\left(\lambda_{1}\right) \varphi_{1}\left(x_{1}\right) \\
& =\varphi_{2}\left(\lambda_{2}\right) \bar{u} \varphi_{2}\left(x_{2}\right) \\
& =\bar{u} \varphi_{2}\left(\lambda_{2} x_{2}\right) .
\end{aligned}
$$

Hence, $\Lambda_{\bar{u}}$ is a left Λ-module, and one shows similarly that it is a right Λ-module as well. By [12, §2] or [13, 4.20], $\Lambda_{\bar{u}}$ is locally free, and is hence an
invertible bimodule. Moreover, if $z \in Z(\Lambda)$, then

$$
z\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right) z \quad \text { for }\left(x_{1}, x_{2}\right) \in \Lambda_{\bar{u}}
$$

By $[13,4.20], \Psi$ is a group homomorphism. We point out also that $\Lambda_{\bar{u}} e_{i}=\Lambda e_{i}$, for $i=1,2$.

Lemma 1.5. $\operatorname{Ker} \Psi=\left\langle\varphi_{1}\left(u_{Z}\left(\Lambda_{1}\right)\right), \varphi_{2}\left(u_{Z}\left(\Lambda_{2}\right)\right)\right\rangle$.
Proof. Assume $\Lambda_{\bar{u}} \cong \Lambda$ as bimodules. Since $\Lambda_{\bar{u}}$ and Λ are contained in A, there must exist a central element γ in A with $\Lambda_{\bar{u}} \gamma=\Lambda$, and so $\Lambda_{\bar{u}} e_{i} \gamma=\Lambda_{i}$. In particular, $\gamma_{i}=e_{i} \gamma$ is a central unit of $\Lambda_{i}, i=1,2$. The equation $\Lambda_{\bar{u}} \gamma=\Lambda$ now shows that $\bar{u}=\varphi_{1}\left(\gamma_{1}\right)^{-1} \varphi_{2}\left(\gamma_{2}\right)$. Conversely, assume that $\bar{u}=$ $\varphi_{1}\left(\gamma_{1}\right)^{-1} \varphi_{2}\left(\gamma_{2}\right)$, for central units γ_{i} of Λ_{i}. Then

$$
\Lambda \cong \Lambda\left(\gamma_{1}^{-1}, \gamma_{2}^{-1}\right)=\left\{\left(x_{1}, x_{2}\right): x_{i} \in \Lambda_{i}, \varphi_{1}\left(x_{1}\right)=\bar{u} \varphi_{2}\left(x_{2}\right)\right\}=\Lambda_{\bar{u}}
$$

The lemma now follows.
Theorem 1.6. Under the assumptions announced at the beginning of this section, there is an exact sequence

$$
\begin{aligned}
& 1 \rightarrow u_{Z}(\bar{\Lambda}) /\left\langle\varphi_{1}\left(u_{Z}\left(\Lambda_{1}\right)\right), \varphi_{2}\left(u_{Z}\left(\Lambda_{2}\right)\right)\right\rangle \xrightarrow{\Psi} \operatorname{LFPic}_{e, T}(\Lambda) \\
& \xrightarrow{\Phi} \operatorname{LFPic}_{T}\left(\Lambda_{1}, \Lambda_{2}\right) \rightarrow 1
\end{aligned}
$$

Proof. Let $[M] \in \operatorname{LFPic}_{e, T}(\Lambda)$ lie in the kernel of Φ. Then $M e_{i}$ is isomorphic to Λ_{i}, and hence M must be central. We may thus assume that $M \subset \Lambda$ is a two sided Λ-ideal. Thus, $M e_{i}=\Lambda_{i} \gamma_{i}$, for a central element γ_{i} of Λ_{i}, with $\varphi_{i}\left(\gamma_{i}\right) \in u(\bar{\Lambda})$. Hence, $\bar{M}=\varphi_{1}\left(M e_{1}\right)=\varphi_{2}\left(M e_{2}\right)$ can be chosen to be all of $\bar{\Lambda}$. Consequently, $\varphi_{1}\left(\gamma_{1}\right)=\bar{u} \varphi_{2}\left(\gamma_{2}\right)$ for some $\bar{u} \in u_{Z}(\bar{\Lambda})$. Replacing M with the isomorphic bimodule $M\left(\gamma_{1}^{-1}, \gamma_{2}^{-1}\right)$ gives

$$
M=\left\{\left(\lambda_{1}, \lambda_{2}\right): \lambda_{1} \in \Lambda_{i}, \lambda_{1}=\bar{u} \lambda_{2}\right\} .
$$

Hence, $\operatorname{Im} \Psi \supset \operatorname{Ker} \Phi$. Since it is clear that $\Phi \Psi=0$, the proof is complete.
Remark 1.7 (1) Because of the uncanonical behavior of the center, there is no analogous sequence for the central Picard group Picent.
(2) For locally free class groups, Reiner and Ullom [14, (5.6)] established the exact sequence

$$
\begin{aligned}
1 & \rightarrow u(\bar{\Lambda}) /\left\langle\varphi_{1}\left(u\left(\Lambda_{1}\right)\right), \varphi_{2}\left(u\left(\Lambda_{2}\right)\right)\right\rangle \xrightarrow{\Psi} \operatorname{LFCl}(\Lambda) \\
& \rightarrow \operatorname{LFCl}\left(\Lambda_{1}\right) \oplus \operatorname{LFCl}\left(\Lambda_{2}\right) \rightarrow 1
\end{aligned}
$$

if the Eichler condition is satisfied. In the absence of the Eichler condition, they still get an exact sequence for class groups. However, if one wants to describe the group of outer automorphisms of Λ, then for the natural map $\vartheta: \operatorname{LFPic}_{T}(\Lambda) \rightarrow \operatorname{LFCl}(\Lambda)$, we have $\operatorname{Ker} \boldsymbol{\vartheta}=\operatorname{Out}_{T}(\Lambda)$ if and only if stably free Λ-lattices are free. In particular, this is assured when Eichler's condition holds. The remedy for this is to consider, as did Swan in [25], $\operatorname{LF}_{1}(\Lambda)$, the pointed set of isomorphism classes of locally free left Λ-lattices. For pointed sets, the notions "kernel" and "exact sequence" make sense. Whether or not Λ satisfies the Eichler condition, the kernel of the natural map $\boldsymbol{\vartheta}_{T}: \operatorname{LFPic}_{T}(\Lambda)$ $\rightarrow \mathrm{LF}_{1}(\Lambda)$ is

$$
\begin{equation*}
\operatorname{Ker} \boldsymbol{\vartheta}_{T}=\operatorname{Out}_{T}(\Lambda) \tag{1.8}
\end{equation*}
$$

Examination of the Reiner and Ullom proof of the sequence for class groups reveals that they actually prove:

Theorem. There is an exact sequence of pointed sets

$$
\begin{aligned}
1 & \rightarrow \varphi_{1}\left(u\left(\Lambda_{1}\right)\right) \backslash u(\bar{\Lambda}) / \varphi_{2}\left(u\left(\Lambda_{2}\right)\right) \rightarrow \operatorname{LF}_{1}(\Lambda) \\
& \rightarrow \operatorname{LF}_{1}\left(\Lambda_{1}\right) \times \operatorname{LF}_{1}\left(\Lambda_{1}\right) \rightarrow 1
\end{aligned}
$$

where $\varphi_{1}\left(u\left(\Lambda_{1}\right)\right) \backslash u(\bar{\Lambda}) / \varphi_{2}\left(u\left(\Lambda_{2}\right)\right)$ denotes the pointed set of doubled cosets of $u(\bar{\Lambda})$ with respect to the subgroups $\varphi_{1}\left(u\left(\Lambda_{1}\right)\right)$ and $\varphi_{2}\left(u\left(\Lambda_{2}\right)\right)$.

Now let us put

$$
\begin{equation*}
\operatorname{Out}_{e_{i}, T}(\Lambda)=\left.\operatorname{Ker} \vartheta\right|_{\operatorname{LFPic}_{e_{i},}, T^{(\Lambda)}} \tag{1.9}
\end{equation*}
$$

and

$$
\operatorname{Out}_{T}\left(\Lambda_{1}, \Lambda_{2}\right)=\left\{\left(\alpha_{1}, \alpha_{2}\right): \alpha_{i} \in \operatorname{Out}_{T_{i}}\left(\Lambda_{i}\right), \alpha_{1} \equiv \alpha_{2} \operatorname{in}_{\left.\operatorname{Out}_{\bar{T}}(\bar{\lambda})\right\} .}\right.
$$

Further, we set

$$
\tilde{u}_{Z}\left(\Lambda_{1}, \Lambda_{2}\right)=\left\{\bar{u} \in u_{z}(\bar{\Lambda}): \exists \lambda_{i} \in u\left(\Lambda_{i}\right) \text { with } \bar{u}=\varphi_{1}\left(\lambda_{1}\right) \varphi_{2}\left(\lambda_{2}\right)\right\}
$$

Lemma 1.10. $\tilde{u}_{Z}\left(\Lambda_{1}, \Lambda_{2}\right)$ is a group.
Proof. Let $u=\varphi_{1}\left(\lambda_{1}\right) \varphi_{2}\left(\lambda_{2}\right)$ and $v=\varphi_{1}\left(\mu_{1}\right) \varphi_{2}\left(\mu_{2}\right)$ be two of its elements. As v lies in $Z(\bar{\Lambda})$, we have $u v^{-1}=\varphi_{1}\left(\lambda_{1}\right) \varphi_{1}\left(\mu_{1}^{-1}\right) \varphi_{2}\left(\mu_{2}^{-1}\right) \varphi_{2}\left(\lambda_{2}\right) \in$ $\tilde{u}_{Z}\left(\Lambda_{1}, \Lambda_{2}\right)$. Hence, $\tilde{u}_{Z}\left(\Lambda_{1}, \Lambda_{2}\right)$ is a group.

We now put

$$
u_{z}\left(\Lambda_{1}, \Lambda_{2}\right)=u_{z}(\bar{\Lambda}) /\left\langle\varphi_{1}\left(u_{z}\left(\Lambda_{1}\right)\right), \varphi_{2}\left(u_{z}\left(\Lambda_{2}\right)\right)\right\rangle
$$

Then $u_{Z}\left(\Lambda_{1}, \Lambda_{2}\right)$ is the kernel of the well defined mapping,

$$
\begin{array}{r}
\kappa: u_{Z}(\bar{\Lambda}) /\left\langle\varphi_{1}\left(u_{Z}\left(\Lambda_{1}\right)\right), \varphi_{2}\left(u_{Z}\left(\Lambda_{2}\right)\right)\right\rangle \tag{1.11}\\
\quad \rightarrow \varphi_{1}\left(u\left(\Lambda_{1}\right)\right) \backslash u(\bar{\Lambda}) / \varphi\left(u\left(\Lambda_{2}\right)\right)
\end{array}
$$

that sends a coset in $u_{z}(\bar{\Lambda})$ to the corresponding double coset.
Theorem 1.12. We have a commutative diagram with exact rows and columns:

Moreover, if κ is surjective, e.g., if $\bar{\Lambda}$ is commutative, then ϱ is also surjective.
Proof. This follows from the remarks above and some routine diagram chasing.

Remark 1.13. If Λ satisfies the Eichler condition, then in (1.12), $\mathrm{LF}_{1}(-)$ should be replaced by LFC $(-)$, and $\varphi_{1}\left(u\left(\Lambda_{1}\right)\right) \backslash u(\bar{\Lambda}) / \varphi\left(u\left(\Lambda_{2}\right)\right)$ is a group (cf., [13, §5]).

2. Metacyclic groups of order pq

Let p be a fixed odd prime, and let q be a divisor of $p-1$. For an integer n, we denote by C_{n} the cyclic group of order n. In this section, G is the semidirect product of C_{p} and C_{q}, with C_{q} acting in a fixed-point-free manner on C_{p}. Let a be a generator for C_{p}, and b be a generator for C_{q}. Denote by ζ_{p} a primitive p-th root of unity, and view C_{q} as a subgroup of $\mathrm{Gal}_{\mathbf{Z}}\left(\mathbf{Z}\left[\zeta_{p}\right]\right)$. Let S be the fixed ring $\mathbf{Z}\left[\zeta_{p}\right]^{C_{q}}$, and π the norm $N_{\mathrm{Z}\left[\zeta_{p}\right] / S}\left(1-\zeta_{p}\right)$.

Let $e_{1}=(1 / p) \sum_{i=1}^{p} a^{i}$, and put $e_{2}=1-e_{1}$. Then from [5], it follows that the group ring $\mathbf{Z} G$ is the pullback

where

$$
\Lambda=\left(\begin{array}{cccc}
S & \cdots & \cdots & S \\
\pi S & \ddots & & S \\
\vdots & \ddots & \ddots & \vdots \\
\pi S & \cdots & \pi S & S
\end{array}\right)_{q \times q}
$$

is isomorphic to the twisted group ring $S \circ C_{q}$. See also [15], and note that (2.1) follows easily by looking at the following commutative diagram with exact rows, in which $I\left(C_{q}\right) G$ is the $\mathbf{Z} G$-module induced from the augmentation ideal $I\left(C_{q}\right)$ of $\mathbf{Z} C_{q}$:

Since Λ is an order in a simple algebra and $\mathbf{Z} C_{q}$ is commutative, we have

$$
\begin{equation*}
\operatorname{Pic}_{\mathbf{Z}}(\mathbf{Z} G)=\operatorname{Pic}_{e, \mathbf{Z}}(\mathbf{Z} G) \tag{2.2}
\end{equation*}
$$

We note that $\operatorname{Ker} \varphi_{2} \cong \operatorname{Ker} \operatorname{pr}_{1}=I\left(C_{q}\right) \cdot G$ generates the radical of Λ at p, since $(b-1) \cdot \Lambda$ generates the radical of Λ at p. In particular, it is characteristic in Λ. We have $\operatorname{Ker} \varphi_{2}=p \cdot \mathbf{Z} C_{q}$, and hence this is also characteristic. Thus, we can apply (0.5) to conclude that we have an exact sequence

$$
\begin{align*}
u(Z(\Lambda)) \oplus u\left(\mathbf{Z} C_{q}\right) & \rightarrow u\left(\mathbf{F}_{2} C_{q}\right) \rightarrow \operatorname{Pic}_{\mathbf{z}}(\mathbf{Z} G) \tag{2.3}\\
& \rightarrow \operatorname{Pic}_{\mathbf{z}}(\Lambda) \oplus \operatorname{Pic}_{\mathbf{z}}\left(\mathbf{Z} C_{q}\right)
\end{align*}
$$

Lemma 2.4. $\quad \operatorname{Pic}_{\mathbf{z}}(\Lambda)=\mathrm{Cl}(S)\langle\tilde{\omega}\rangle\langle\tau\rangle$, where $\tilde{\omega}$ is conjugation with

$$
\omega=\left(\begin{array}{llll}
0 & 1 & & \\
& \ddots & \ddots & \\
& & & 1 \\
\pi & & & 0
\end{array}\right)_{q \times q}
$$

and has order q as an automorphism, and τ generates $\operatorname{Gal}_{\mathbf{z}}(S)$.
Proof. From [3, Theorems 2 and 6], [14, §9] we have the exact sequences

$$
\begin{equation*}
0 \rightarrow \operatorname{Picent}(\Lambda) \rightarrow \operatorname{Pic}_{\mathbf{z}}(\Lambda) \rightarrow \operatorname{Aut}_{\mathbf{z}}(S) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \rightarrow \mathrm{Cl}(S) \rightarrow \operatorname{Picent}(\Lambda) \rightarrow \operatorname{Picent}\left(\hat{\Lambda}_{p}\right) \rightarrow 0 \tag{2.6}
\end{equation*}
$$

where $\hat{\Lambda}_{p}=\hat{\mathbf{Z}}_{p} \otimes_{\mathbf{Z}} \Lambda$ and $\hat{\mathbf{Z}}_{p}$ is the ring of p-adic integers. Now, $\operatorname{Aut}_{\mathbf{z}}(S)=$ $\operatorname{Gal}_{\mathbf{z}}(S)=\langle\tau\rangle$. Since πS is the unique prime ideal of S above p, we have $\tau(\pi S)=\pi S$, whence the right-most mapping in (2.5) is a surjection, and (2.5) splits. Moreover, $\operatorname{Picent}\left(\hat{\Lambda}_{p}\right)$ is generated by conjugation with ω. Since πS is principal, it follows that (2.6) splits, and the proof is complete.

In this connection, we point out that a detailed study of Picard groups of hereditary orders is presented in [18].

Lemma 2.7. $\quad \operatorname{Pic}_{\mathbf{Z}}\left(\mathbf{Z} C_{q}\right)=\operatorname{Cl}\left(\mathbf{Z} C_{q}\right) \operatorname{Aut}\left(C_{q}\right) \operatorname{Hom}\left(C_{q},\{ \pm 1\}\right)$, where $\operatorname{Hom}\left(C_{q},\{ \pm 1\}\right)$ induces automorphisms as described before (0.8).

Proof. The sequence

$$
0 \rightarrow \operatorname{Picent}\left(\mathbf{Z} C_{q}\right) \rightarrow \operatorname{Pic}_{\mathbf{Z}}\left(\mathbf{Z} C_{q}\right) \rightarrow \operatorname{Aut}_{\mathbf{z}}\left(\mathbf{Z} C_{q}\right) \rightarrow 0
$$

is exact, since $\mathbf{Z} C_{q}$ is commutative [3, Theorem 2], and it splits, since

$$
\operatorname{Aut}_{\mathbf{z}}\left(\mathbf{Z} C_{q}\right)=\operatorname{Aut}\left(C_{q}\right) \operatorname{Hom}\left(C_{q},\{ \pm 1\}\right)
$$

by the result of Higman's thesis [10]. But $\operatorname{Picent}\left(\mathbf{Z} C_{q}\right)=\mathrm{Cl}\left(\mathbf{Z} C_{q}\right)$, whence the lemma follows.

Remark 2.8. For an order Λ, one must distinguish carefully between the class group $\mathrm{Cl}(\Lambda)$ and the locally free class group $\operatorname{LFCl}(\Lambda)$, made up from modules in the genus of Λ. A similar distinction must be observed between Picent (Λ) and LFPicent (Λ), the latter being made up from invertible two-sided Λ-ideals that are locally free on one side. However, these distinctions disappear in the case of group rings, thanks to a theorem of Swan [23].

Lemma 2.9. $\quad \operatorname{Pic}_{\mathbf{z}}\left(\Lambda, \mathbf{Z} C_{q}\right)=\mathrm{Cl}(S)\langle\tau\rangle \mathrm{Cl}\left(\mathbf{Z} C_{q}\right) \operatorname{Hom}(G,\{ \pm 1\})$.
Proof. Recall that

$$
\begin{aligned}
\operatorname{Pic}_{\mathbf{Z}}\left(\Lambda, \mathbf{Z} C_{q}\right)=\left\{\left(\left[M_{1}\right],\left[M_{2}\right]\right):\left[M_{1}\right]\right. & \in \operatorname{Pic}_{\mathbf{Z}}(\Lambda),\left[M_{2}\right] \in \operatorname{Pic}_{\mathbf{z}}\left(\mathbf{Z} C_{q}\right) \\
& \text { and } \left.\varphi_{1}\left(M_{1}\right) \cong \varphi_{2}\left(M_{2}\right) \text { as bimodules }\right\} .
\end{aligned}
$$

We note that

$$
\mathbf{F}_{p} C_{q} \cong \prod_{i=1}^{q} \mathbf{F}_{p}
$$

since \mathbf{F}_{p} contains the q-th roots of unity. Since the map $\varphi_{2}: \Lambda \rightarrow \mathbf{F}_{p} C_{q}$ is just reduction modulo $\omega \Lambda$, we have $\bar{\Lambda}=\Lambda / \omega \Lambda=\mathbf{F}_{p} C_{q}$. The kernel of

$$
\varphi_{1}: \operatorname{Pic}_{\mathbf{Z}}(\Lambda) \rightarrow \operatorname{Pic}_{\mathbf{F}_{p}}(\bar{\Lambda})
$$

is $\mathrm{CL}(S) \cdot\langle\tau\rangle$. Indeed, since $\bar{\Lambda}$ is artinian, its locally free ideals are free, whence $\mathrm{Cl}(S)$ lies in the kernel. The subgroup $\langle\tau\rangle$ is in the kernel because $\mathrm{Gal}_{\mathrm{z}}(S)$ acts trivially modulo πS.

For the same reasons, the kernel of

$$
\varphi_{1}: \operatorname{Pic}_{\mathbf{Z}}\left(\mathbf{Z} C_{q}\right) \rightarrow \operatorname{Pic}_{\mathbf{F}_{p}}(\bar{\Lambda})
$$

is $\mathrm{Cl}\left(\mathbf{Z} C_{q}\right)$.
Consequently,

$$
\operatorname{Im} \varphi_{2}=\varphi_{2}(\langle\tilde{\omega}\rangle)
$$

and

$$
\operatorname{Im} \varphi_{1}=\varphi_{1}\left(\operatorname{Aut}\left(C_{q}\right) \operatorname{Hom}(G,\{ \pm 1\})\right)
$$

We must now find the equalizer of φ_{1} and φ_{2}. Note that conjugation with ω on $\bar{\Lambda}$ permutes the q copies of \mathbf{F}_{p} in $\mathbf{F}_{p} C_{q}$ cyclically. Thus, we can view ω as the q-cycle $(1, \ldots, q)$, where i represents the i-th copy of \mathbf{F}_{p}.

Claim. The mapping on $\mathbf{F}_{p} C_{q}$ induced by conjugation with ω is not induced by a group automorphism of C_{q}.

Proof. ω acts as a q-cycle on $\prod_{i=1}^{q} \mathbf{F}_{p}$ and so fixes no component. On the other hand, every group automorphism has the trivial module in its fixed-point set. This proves the claim.

Let q be even. Then $a \mapsto a, b \mapsto-b$ induces an automorphism ι of $\mathbf{Z} G$. Let ι_{q} be the map it induces on $\mathbf{F}_{p} C_{q}$. In the regular representation of C_{q} on $\mathbf{F}_{p} C_{q} \cong \prod_{i=1}^{q} \mathbf{F}_{p}$, the element b is represented by $\left(f_{q}^{1}, \ldots, f_{q}^{q}\right)$, where f_{q} is an element of order q in $\mathbf{F}_{p} \times$. Hence,

$$
\iota_{q}\left(\left(f_{q}^{i}\right)\right)=\left(-f_{q}^{i}\right)
$$

But we have $f_{q}^{j}=-f_{q}^{i}$ if and only if $f_{q}^{j-i}=-1=f_{q}^{q / 2}$, i.e., if and only if $j-i \equiv \frac{1}{2} q \bmod q$. It follows that ι_{q} coincides with the map induced on $\mathbf{F}_{p} C_{q}$ by conjugation with $\omega^{q / 2}$ on Λ. But, it is equally clear that ι_{q} is induced by the nontrivial element of $\operatorname{Hom}\left(C_{q},\{ \pm 1\}\right)$ or by that of $\operatorname{Hom}(G,\{ \pm 1\})$. Thus, $\operatorname{Hom}(G,\{ \pm 1\})$ and $\tilde{\omega}^{q / 2}$ have the same image as automorphisms of $\mathbf{F}_{p} C_{q}$, whence (2.9) follows.

Now we must find the images in $\mathbf{F}_{p} C_{q}$ of the units of $\mathbf{Z} C_{q}$ and of $S=Z(\Lambda)$.
LEMMA 2.10. The image of $\varphi_{1}: u\left(\mathbf{Z} C_{q}\right) \rightarrow \bar{\Lambda}=\mathbf{F}_{p} C_{q}=\prod_{i=1}^{q} \mathbf{F}_{p}$ is $\pm C_{q}$. The image of the generator b of C_{q} in $\prod_{i=1}^{q} \mathbf{F}_{p}$ is $\left(f_{q}^{i}\right)_{1 \leq i \leq q}$, where $f_{q} \in \mathbf{F}_{p}^{\times}$has order q. Hence, the image of φ_{1} is generated by $\pm\left(f_{q}^{i}\right)_{1 \leq i \leq q}$.

Proof. This is immediate from the remarks above, since the only units of $\mathbf{Z} C_{q}$ are the $\pm b^{i}, 1 \leq i \leq q$, by [10].

Remark 2.11. It should be noted that $\operatorname{Im} \varphi_{1}$ always has order $2 q$.
Lemma 2.12. The image of $\varphi_{2}: u_{Z}(\Lambda) \rightarrow \bar{\Lambda}=\prod_{i=1}^{q} \mathbf{F}_{p}$ is a diagonal copy ΔV_{q} of the image V_{q} of $u(S)$ in $S / \pi S=\mathbf{F}_{p}$.

Proof. This is clear, since φ_{2} is just reduction modulo

$$
\pi \Lambda=\left(\begin{array}{cccc}
\pi S & S & \cdots & S \\
\vdots & \ddots & \ddots & \vdots \\
\pi S & & \ddots & S \\
\pi S & & \cdots & \pi S
\end{array}\right)_{q \times q}
$$

Remarks 2.13. (1) V_{q} is a subgroup of $\mathbf{F}_{p} \times$ of order at least $(p-1) / q$. For, since p is prime, the elements

$$
\tau_{i}=\frac{1-\zeta_{p}^{i}}{1-\zeta_{p}}=1+\zeta_{p}+\cdots+\zeta_{p}^{i-1}, \quad 2 \leq i<p
$$

are units in $\mathbf{Z}\left[\zeta_{p}\right]$. Then $[i]$ is the image of τ_{i} in \mathbf{F}_{p}, and if $\left[i_{0}\right]$ generates $\mathbf{F}_{p}{ }^{\times}$, the norm of $\tau_{i_{0}}$ in S is a unit whose image is $\left[i_{0}\right]^{q}$, so $\left|V_{q}\right| \geq(p-1) / q$.
(2) In general, $\left|V_{q}\right|>(p-1) / q$. For instance, $\left|V_{2}\right|=p-1$ since the elements $\sigma_{i}=\left(\zeta_{p}^{-i}-\zeta_{p}^{i}\right) /\left(\zeta_{p}^{-1}-\zeta_{p}\right)$ are units in S, for $2 \leq i \leq p$, and the image of σ_{i} is [i].
(3) We note that $[-1]$ is always in V_{q}.
(4) Galovich, Reiner and Ullom [6] have shown that in fact, $\left|V_{q}\right|=$ $(p-1)(2, q) / q$. For a regular prime p, i.e., one that does not divide the class number of $\mathbf{Z}\left[\zeta_{p}\right]$, Galovich [7, §2] has described V_{q} in some detail.

We are now in a position to prove the main result for $\operatorname{Pic}_{\mathbf{z}}(\mathbf{Z} G)$. We introduce some more notation. Let $U_{q}=\prod_{i=1}^{q} \mathbf{F}_{p}^{\times} /\left(\Delta V_{q} \cdot\left\langle\left(f_{q}^{i}\right)\right\rangle\right)$. Then U_{q} is just

$$
u(\bar{\Lambda}) /\left(\operatorname{Im} \varphi_{2}(u(S))\right) \cdot\left(\operatorname{Im} \varphi_{1}\left(u\left(\mathbf{Z} C_{q}\right)\right)\right)
$$

In fact, since $[-1] \in V_{q}$ and $\Delta V_{q} \cap\left\langle\left(f_{q}^{i}\right)\right\rangle=1$, we have, in light of (2.13, 4):
Lemma 2.14.

$$
\left|U_{q}\right|=\frac{(p-1)^{q}}{\left|V_{q}\right| \cdot q}=\frac{(p-1)^{q-1}}{(2, q)} .
$$

Theorem 2.15. We have the exact sequence

$$
1 \rightarrow U_{q} \rightarrow \operatorname{Pic}_{\mathbf{z}}(\mathbf{Z} G) \rightarrow\left(\mathrm{Cl}(S)\langle\tau\rangle \oplus \mathrm{Cl}\left(\mathbf{Z} C_{q}\right)\right) \operatorname{Hom}(G,\{ \pm 1\}) \rightarrow 1 .
$$

The proof is just an application of (0.5), together with (2.4), (2.7), (2.9), (2.11), and (2.12).

Remarks 2.16. (1) Since there is an exact sequence

$$
1 \rightarrow \operatorname{Picent}(\mathbf{Z} G) \rightarrow \operatorname{Pic}_{\mathbf{Z}}(\mathbf{Z} G) \rightarrow \operatorname{Aut}_{\mathbf{z}}(Z(\mathbf{Z} G))
$$

we conclude that there is an exact sequence

$$
0 \rightarrow U_{q} \rightarrow \operatorname{Picent}(\mathbf{Z} G) \rightarrow \mathrm{Cl}(S) \oplus \mathrm{Cl}\left(\mathbf{Z} C_{q}\right) \rightarrow 0
$$

Note that the elements of U_{q} give rise to central bimodules, by means of (0.4).
(2) For the dihedral groups of order $2 p$, we get the exact sequence

$$
0 \rightarrow C_{(p-1) / 2} \rightarrow \operatorname{Picent}(\mathbf{Z} G) \rightarrow \mathrm{Cl}(S) \rightarrow 0
$$

as given in [14, p. 38].
(3) Thanks to (0.4) and (0.5), the exact sequence allows the explicit description of the bimodules forming $\operatorname{Pic}_{\mathbf{z}}(\mathbf{Z} G)$.

We now turn to the description of the group of outer automorphisms of $\mathbf{Z} G$. Since $\mathbf{Z} G$ satisfies Eichler's condition, we must compute the kernel of

$$
\operatorname{Pic}_{\mathbf{Z}}(\mathbf{Z} G) \xrightarrow{\vartheta} \mathrm{Cl}(\mathbf{Z} G),
$$

cf., (0.9). The fibre product sequence, (0.6) and (0.7) give rise to the following commutative diagram with exact rows:

where \tilde{U}_{q} is cyclic of order $q /(q, 2)$ by [6], [14, 7.7]. Note that $\bar{\Lambda}$ is commutative, whence $\boldsymbol{\vartheta}^{\prime}$ is surjective, and the sequence of kernels is exact. We want to find the kernel of ϑ. Recall that

$$
\mathrm{Cl}(S)_{q}=\left\{(\mathscr{T}) \in \mathrm{Cl}(S):(\mathscr{T})^{q}=1\right\} .
$$

Theorem 2.17. We have exact sequences

$$
0 \rightarrow \operatorname{Ker} \vartheta^{\prime} \rightarrow \operatorname{Out}_{\mathbf{z}}(\mathbf{Z} G) \rightarrow \mathrm{Cl}(S)_{q} \cdot\langle\tau\rangle \cdot \operatorname{Hom}(G,\{ \pm 1\}) \rightarrow 0
$$

and

$$
0 \rightarrow \operatorname{Ker} \vartheta^{\prime} \rightarrow \operatorname{Out}_{C}(\mathbf{Z} G) \rightarrow \mathrm{Cl}(S)_{q} \rightarrow 0
$$

where $\mathrm{Out}_{C}(\mathbf{Z} G)$ is the group of automorphisms of $\mathbf{Z} G$ fixing the center elementwise, modulo inner automorphisms.

Remarks 2.18. (1) \tilde{U}_{q} is just U_{q} modulo the image of the units in Λ, where we recall that U_{q} was defined by the units in the center of Λ. Hence,

$$
\left|\operatorname{Ker} \vartheta^{\prime}\right|=\frac{\left|U_{q}\right|}{q /(q, 2)}=\frac{(p-1)^{q-1}}{q}
$$

by (2.14).
(2) For $q=2$, the second exact sequence is that of [5, (4.3)].

Proof. We first compute the kernel of $\vartheta^{\prime \prime}$. Since $\langle\tau\rangle$ and $\operatorname{Hom}(G,\{ \pm 1\})$ come from automorphisms, they surely lie in the kernel of $\vartheta^{\prime \prime}$. As C_{q} is abelian, $\boldsymbol{\vartheta}^{\prime \prime}: \mathrm{Cl}\left(\mathbf{Z} C_{q}\right) \rightarrow \mathrm{Cl}\left(\mathbf{Z} C_{q}\right)$ is an isomorphism. By [21], we can identify $\mathrm{Cl}(\Lambda)$ with $\mathrm{Cl}(S)$, and with this done, it is shown in [18] that $\operatorname{Ker} \vartheta^{\prime \prime}=\mathrm{Cl}(S)_{q}$. Since $\langle\tau\rangle$ and $\operatorname{Hom}(G,\{ \pm 1\})$ do not come from central automorphisms, the theorem follows.

3. The dihedral 2-groups

Let

$$
\begin{equation*}
D_{n}=\left\langle s_{n}, t \mid s_{n}^{2^{n}}=t^{2}=1, t s_{n} t=s_{n}^{-1}\right\rangle \tag{3.1}
\end{equation*}
$$

be the dihedral group of order 2^{n+1}, and let c_{n} be the central involution $s_{n}^{2^{n-1}}$.

Easy computations show the following:
Lemma 3.2. (1) For $n>1$, the conjugacy class sums in $\mathbf{Z} D_{n}$ are $1, c$, and for $1 \leq i \leq 2^{n-1}$, the class sums

$$
\begin{gathered}
K_{i}^{n}=s_{n}^{i}+s_{n}^{-i}, \quad 1 \leq i \leq 2^{n-1}-1 \\
K_{t}^{n}=t\left(1+s_{n}^{2}+s_{n}^{4}+\cdots+s_{n}^{2^{n}-2}\right)=t\left(1+c_{n}\right)\left(1+s_{n}^{2}+\cdots+s_{n}^{2^{n-1}-2}\right) \\
K_{t s_{n}}^{n}=K_{t}^{n} \cdot s_{n}
\end{gathered}
$$

Hence, there are $2^{n-1}+3$ classes.
(2) Under the natural projection $\mathrm{pr}_{n}: \mathbf{Z} D_{n} \rightarrow \mathbf{Z} D_{n-1}$, we have

$$
\begin{aligned}
1 & \mapsto 1 \\
c_{n} & \mapsto 1 \\
K_{i}^{n} & \mapsto K_{i}^{n-1} \quad \text { for } i \neq 2^{n-2} \\
K_{2^{n-2}}^{n} & \mapsto 2 c_{n-1} \\
K_{t}^{n} & \mapsto 2 K_{t}^{n-1} \\
K_{t s_{n}}^{n} & \mapsto 2 K_{t s_{n-1}}^{n-1}
\end{aligned}
$$

Note that each K_{i}^{n-1} is hit twice.
(3) Every automorphism of D_{n} stabilizing the conjugacy classes is inner, and

$$
\operatorname{Out}\left(D_{n}\right) \cong C_{2^{n-2}} \cdot C_{2}
$$

For $n>1$, we let ζ_{n} be a primitive 2^{n}-th root of unity. Set

$$
\omega_{n}= \begin{cases}\zeta_{n}+\zeta_{n}^{-1} & \text { for } n>2 \\ 2 & \text { for } n=2\end{cases}
$$

and $S_{n}=\mathbf{Z}\left[\omega_{n}\right]$. Observe that $S_{2}=\mathbf{Z}$. In order to compute $\operatorname{Pic}_{\mathbf{Z}}\left(\mathbf{Z} D_{n}\right)$, we express $\mathbf{Z} D_{n}$ as a fibre product.

Lemma 3.3. The group ring $\mathbf{Z} D_{n}$ is a pullback

where

$$
\Lambda_{n}=\left(\begin{array}{ccc}
S_{n} & & S_{n} \\
& \omega_{n} & \\
& \vdots & \\
\omega_{n} S_{n} & & S_{n}
\end{array}\right)=\left\{\left(\begin{array}{cc}
s_{1} & s_{2} \\
\omega_{n} s_{3} & s_{1}+\omega_{n} s_{4}
\end{array}\right), s_{i} \in S_{n}\right\}
$$

Proof. Let $e_{1}=\left(1+c_{n}\right) / 2$ and $e_{2}=\left(1-c_{n}\right) / 2$. Then e_{1} and e_{2} are central orthogonal idempotents with $e_{1}+e_{2}=1$, and we have a commutative diagram with exact rows:

$$
\begin{aligned}
& 0 \longrightarrow I\left(c_{n}\right) \mathbf{Z} D_{n} \longrightarrow \underset{\downarrow \cdot e_{2}}{\mathbf{Z} D_{n} \xrightarrow{\cdot e_{1}} \mathbf{Z} D_{n-1} \longrightarrow 0} \\
& 0 \longrightarrow I\left(c_{n}\right) \mathbf{Z} D_{n} \longrightarrow \Lambda_{n} \longrightarrow \mathbf{F}_{2} D_{n-1} \longrightarrow 0 .
\end{aligned}
$$

Hence, we get the fibre product diagram. That Λ_{n} has the asserted structure is shown in [16].

We note in addition that c_{n} acts as -1 on Λ_{n}, so that

$$
\begin{equation*}
\varphi_{2}: \Lambda_{n} \rightarrow \mathbf{F}_{2} D_{n-1} \tag{3.4}
\end{equation*}
$$

is reduction modulo 2. It follows that here also, $\operatorname{Ker} \varphi_{2}$ is characteristic in Λ_{n}, and $\operatorname{Ker} \varphi_{1}$ is characteristic in $\mathbf{Z} D_{n-1}$. Hence, we can apply our MayerVietoris sequence.

We first compute $\operatorname{Pic}_{\mathbf{z}}\left(\Lambda_{n}\right)$. Let $\tilde{\omega}_{n}$ denote conjugation by

$$
\bar{\omega}_{n}=\left(\begin{array}{cc}
0 & 1 \\
\omega_{n} & 0
\end{array}\right)
$$

on Λ_{n}. This is a central automorphism of order 2 of Λ_{n}.
Lemma 3.5. $\quad \operatorname{Pic}_{\mathbf{z}}\left(\Lambda_{n}\right)=\operatorname{Cl}\left(S_{n}\right)\left\langle\tilde{\omega}_{n}\right\rangle \operatorname{Gal}_{\mathbf{z}}\left(S_{n}\right)$.
Proof. Since $\omega_{n} S_{n}$ is the unique maximal ideal of S_{n} lying over 2, it is preserved by every Galois automorphism. As in $\S 1$, in the exact sequence

$$
0 \rightarrow \operatorname{Picent}\left(\Lambda_{n}\right) \rightarrow \operatorname{Pic}_{\mathbf{z}}\left(\Lambda_{n}\right) \rightarrow \operatorname{Aut}_{\mathbf{z}}\left(S_{n}\right)
$$

the right-hand mapping is surjective and splits; see [19]. Moreover, if $\hat{\Lambda}_{n}$
denotes the 2 -adic completion of Λ, the exact sequence

$$
0 \rightarrow \mathrm{Cl}\left(S_{n}\right) \rightarrow \operatorname{Picent}\left(\Lambda_{n}\right) \rightarrow \operatorname{Picent}\left(\hat{\Lambda}_{n}\right) \rightarrow 0
$$

is split, again by [18]. Since $\operatorname{Picent}\left(\hat{\Lambda}_{n}\right)$ is generated by $\tilde{\omega}_{n}$, the result follows (See also [16].)

Lemma 3.6. The map $\operatorname{Picent}\left(\mathbf{Z} D_{n}\right) \rightarrow \operatorname{Picent}\left(\mathbf{Z} D_{n-1}\right)$ is surjective.
Proof. We use Fröhlich's localization sequence

$$
0 \rightarrow \mathrm{Cl}\left(Z\left(\mathbf{Z} D_{n}\right)\right) \rightarrow \operatorname{Picent}\left(\mathbf{Z} D_{n}\right) \rightarrow \operatorname{Picent}\left(\hat{\mathbf{Z}}_{2} D_{n}\right) \rightarrow 0
$$

Since no outer automorphisms of D_{n} stabilize the conjugacy classes (cf., (3.2, 3)), the results in [19] and [2, Theorem 3.3] imply that $\mathrm{Cl}\left(Z\left(\mathbf{Z} D_{n}\right)\right) \cong$ Picent $\left(\mathbf{Z} D_{n}\right)$. Hence, it remains to show that $\mathrm{pr}_{n}: \mathrm{Cl}\left(Z\left(\mathbf{Z} D_{n}\right)\right) \rightarrow \mathrm{Cl}\left(Z\left(\mathbf{Z} D_{n-1}\right)\right)$ is surjective. By (3.2), $\operatorname{pr}_{n}\left(Z\left(\mathbf{Z} D_{n}\right)\right)$ is a subring of finite index in $Z\left(\mathbf{Z} D_{n-1}\right)$. We first note that

$$
\mathrm{Cl}\left(Z\left(\mathbf{Z} D_{n}\right)\right) \rightarrow \mathrm{Cl}\left({\operatorname{Im~} \operatorname{pr}_{n}}\left(Z\left(\mathbf{Z} D_{n}\right)\right)\right)
$$

is surjective. Indeed, we have a fibre product diagram of the form

from (0.1). Then the Meyer-Vietoris sequence for class groups (0.7) shows that

$$
\mathrm{Cl}\left(Z\left(\mathbf{Z} D_{n}\right)\right) \rightarrow \mathrm{Cl}\left(\operatorname{Im~}_{\operatorname{pr}}^{n}\left(Z\left(\mathbf{Z} D_{n}\right)\right)\right)
$$

is surjective, since $\mathrm{Cl}(\bar{\Omega})=0$. (We remark that the Mayer-Vietoris sequence for class groups requires no special conditions on the $\operatorname{Ker} \varphi_{i}$.) On the other hand, for any pair of orders $\Lambda \subset \Lambda^{\prime}$ in the same algebra, $\mathrm{Cl}(\Lambda) \rightarrow \mathrm{Cl}\left(\Lambda^{\prime}\right)$ is surjective (cf., [14, p. 13]). Hence, pr_{n} is surjective, and the lemma follows.

Now, we recall from [19]:
Lemma 3.7. We have a split exact sequence

$$
0 \rightarrow \operatorname{Picent}\left(\mathbf{Z} D_{n}\right) \rightarrow \operatorname{Pic}_{\mathbf{Z}}\left(\mathbf{Z} D_{n}\right) \rightarrow \operatorname{Out}\left(D_{n}\right) \cdot \operatorname{Hom}\left(D_{n},\{ \pm 1\}\right) \rightarrow 0
$$

We also note:
Lemma 3.8. (1) For $n>2$, $\operatorname{Aut}_{\mathbf{z}}\left(S_{n}\right)=\left\langle\tau_{n}\right\rangle$, where τ_{n} is determined by $\zeta_{n} \mapsto \zeta_{n}^{5}$. We have $\tau_{n}^{2^{n-2}}=1$.
(2) $\operatorname{Out}\left(D_{n}\right)=\langle\tau(n)\rangle=\langle\tau(n)\rangle \times\langle\iota\rangle$, where

$$
\begin{aligned}
\tau(n): s_{n} \mapsto s_{n}^{5}, & & t \mapsto t \\
\iota: s_{n} \mapsto s_{n}, & & t \mapsto t s_{n} .
\end{aligned}
$$

Proof. For part (1), note that by [9, p. 388], Aut $\mathbf{z}_{\mathbf{Z}}\left(\mathbf{Z}\left[\zeta_{n}\right]\right)$ is isomorphic to the unit group $u\left(\mathbf{Z} / 2^{n} \mathbf{Z}\right)$. By [9, p. 40], $u\left(\mathbf{Z} / 2^{n} \mathbf{Z}\right)=\langle-1\rangle \times\langle 5\rangle$ is isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2^{n-2} \mathbf{Z}$. Since S_{n} is the fixed ring of $\langle-1\rangle$, (1) now follows from Galois theory.

For part (2), we adapt the discussion of [11, p. 169]. The involutions in D_{n} are $s_{n}^{2^{n-1}}$, which is central, and the elements $t s_{n}^{k}\left(0 \leq k \leq 2^{n}-1\right)$, which are not central. If φ is an automorphism of D_{n}, it must take s_{n} to an element of order 2^{n}; the only such elements are the s_{n}^{r}, where r is a unit of $\mathbf{Z} / 2^{n} \mathbf{Z}$. The element $\varphi(t)$ must be a noncentral involution, hence equal to $t s_{n}^{k}$, for some k. All such choices of r and k do, in fact, give automorphisms. Hence, if we define $\varphi_{r, k}$ by $\varphi_{r, k}\left(s_{n}\right)=s_{n}^{r}$ and $\varphi_{r, k}(t)=t s_{n}^{k}$, then $\operatorname{Aut}\left(D_{n}\right)=\left\{\varphi_{r, k}\right\}$, and we have

$$
\varphi_{r, k} \circ \varphi_{r^{\prime}, k^{\prime}}=\varphi_{r r^{\prime}, k+r k^{\prime}}
$$

It follows that $\operatorname{Aut}\left(D_{n}\right)$ is isomorphic to the split extension of $u\left(\mathbf{Z} / 2^{n} \mathbf{Z}\right)$ by the additive group $\mathbf{Z} / 2^{n} \mathbf{Z}$, i.e., to the holomorph of $\mathbf{Z} / 2^{n} \mathbf{Z}$. It is easily checked that conjugation by s_{n}^{k} is $\varphi_{1,2 k}$, while conjugation by t is $\varphi_{-1,0}$. From this and the structure of $u\left(\mathbf{Z} / 2^{n} \mathbf{Z}\right)$, (2) easily follows.

Lemma 3.9. For $n \geq 3, \tau_{n}^{2^{n-3}}$ is the identity modulo $2 S_{n}$.
Proof. τ_{n} induces an automorphism of order 2^{n-2} on D_{n} stabilizing the augmentation ideal $I\left(s_{n}^{2^{n-1}}\right)$ of the subring $\mathbf{Z}\left\langle s_{n}^{2 n-1}\right\rangle$ and hence inducing τ_{n} on Λ_{n}. On D_{n-1}, τ_{n} induces τ_{n-1}, which has order 2^{n-3} on $\mathbf{Z} D_{n-1}$. Since τ_{n} has order 2^{n-2} on $\mathbf{Z} D_{n}$, it must have order 2^{n-2} on Λ_{n}. Because of the fibre product diagram, $\tau^{2^{n-3}}=1$ on $\mathbf{F}_{2} D_{n-1}$. Then, the exact sequence

$$
0 \rightarrow 2 \Lambda_{n} \rightarrow \Lambda_{n} \rightarrow \mathbf{F}_{2} D_{n-1} \rightarrow 0
$$

shows that $\tau_{n}^{2^{n-3}}$ is the identity modulo $2 S_{n}$, as claimed.

Lemma 3.10. For $n>2, \operatorname{Pic}_{\mathbf{Z}}\left(\Lambda_{n}, \mathbf{Z} D_{n-1}\right)$ is the pullback of the diagram

$$
\begin{aligned}
\operatorname{Picent}\left(\mathbf{Z} D_{n-1}\right) \cdot\left\langle\tau_{n-1}, \iota\right\rangle \cdot \operatorname{Hom}\left(D_{n},\{ \pm 1\}\right) \\
\operatorname{Cl}\left(S_{n}\right) \cdot\left\langle\tilde{\omega}_{n}\right\rangle\left\langle\tau_{n}\right\rangle \xrightarrow{\Upsilon}\left\langle\tau_{n-1}, \iota\right\rangle
\end{aligned}
$$

where $\Upsilon\left(\tau_{n}\right)=\tau_{n-1}$ and $\Upsilon\left(\tilde{\omega}_{n}\right)=\iota$.
Proof. We look at the map

This map has kernel containing $\mathrm{Cl}\left(\Lambda_{n}\right)\left\langle\tau_{n}^{2^{n-3}}\right\rangle$, by (3.9). On the other hand, τ_{n} on Λ_{n} is-modulo conjugation with units-induced from the group automorphism $\tau(n)$ of D_{n}, and since group automorphisms of D_{n} show up in $\mathrm{F}_{2} D_{n-1}$, we conclude that $\mathrm{Cl}\left(\Lambda_{n}\right) \cdot\left\langle\tau_{n}^{2^{n-2}}\right\rangle$ is precisely the kernel. We continue the proof by showing

Claim. Modulo inner automorphisms of $\Lambda_{n}, \tilde{\omega}_{n}$ induces the map ι on $\mathbf{F}_{2} D_{n-1}$.
Proof. Since ι comes from a group automorphism of D_{n}, it is enough to show that ι induces a central automorphism of Λ_{n}, which then must be conjugation with ω_{n}, modulo inner automorphisms. We establish this by an inertia group argument. Let χ be an irreducible character of $\mathbf{C} \otimes_{\mathbf{Z}} \Lambda_{n}$. Then $\chi=\psi \uparrow_{\left\langle s_{n}\right\rangle}^{D_{n}}$, for some character ψ of $\left\langle s_{n}\right\rangle$. Hence, the inertia group of χ is $\left\langle s_{n}\right\rangle$. But the only conjugacy classes K of D_{n} that are moved by ι lie outside $\left\langle s_{n}\right\rangle$. Hence, $\chi(K)=0$, and so ι is central. This proves the claim.

Hence, the image of φ_{2} is $\left\langle\tau_{n-1}, \iota\right\rangle$. On the other hand,

$$
\begin{array}{r}
\operatorname{Pic}_{\mathbf{Z}}\left(\mathbf{Z} D_{n-1}\right) \xrightarrow{\varphi_{1}} \operatorname{Pic}\left(\mathbf{F}_{2} D_{n-1}\right) \\
\operatorname{Picent}_{\mathbf{Z}}\left(\mathbf{Z} D_{n-1}\right)\left\langle\tau_{n-1}, \iota\right\rangle \operatorname{Hom}\left(D_{n},\{ \pm 1\}\right)
\end{array}
$$

has kernel Picent $\left(\mathbf{Z} D_{n-1}\right) \operatorname{Hom}\left(D_{n},\{ \pm 1\}\right)$ and image $\left\langle\tau_{n-1}, \iota\right\rangle$. This completes the proof.

Remarks 3.11. (1) As a subset of $\operatorname{Pic}_{\mathbf{z}}\left(\mathbf{Z} D_{n}\right)$, the pullback of

is just $\left\langle\tau_{n}, \iota\right\rangle$; i.e., the outer automorphism group of D_{n}. Thus, we have the epimorphism

$$
\begin{gathered}
\operatorname{Pic}_{\mathbf{Z}}\left(\mathbf{Z} D_{n}\right) \cong \operatorname{Picent}\left(\mathbf{Z} D_{n}\right) \cdot \operatorname{Out}\left(D_{n}\right) \operatorname{Hom}\left(D_{n} \cdot\{ \pm 1\}\right) \\
\operatorname{Pic}\left(\Lambda_{n}, \mathbf{Z} D_{n-1}\right) \cong \operatorname{Cl}\left(S_{n}\right) \operatorname{Picent}\left(\mathbf{Z} D_{n-1}\right) \operatorname{Out}\left(D_{n}\right) \operatorname{Hom}\left(D_{n},\{ \pm 1\}\right)
\end{gathered}
$$

(2) This also holds for D_{2}, as is easily checked.

We must now determine the kernel of $\operatorname{Pic}_{\mathbf{z}}\left(\mathbf{Z} D_{n}\right) \rightarrow \operatorname{Pic}_{\mathbf{z}}\left(\Lambda_{n}, \mathbf{Z} D_{n-1}\right)$. That is to say, we must find the images in $F_{2} D_{n-1}$ of the units of $Z\left(\Lambda_{n}\right)=S_{n}$ and of $Z\left(\mathbf{Z} D_{n-1}\right)$.

Lemma 3.12. For $n>1$, the subgroup

$$
G_{n}=\left\{1+\sum_{i=1}^{2^{n-1}-1} \alpha_{i} K_{i}^{n}, \quad \alpha_{i} \in \mathbf{F}_{2}\right\}
$$

of the group of units of the center of $\mathbf{F}_{2} D_{n}$ is generated by

$$
\left\{1+K_{i}^{n}, 1 \leq i \leq 2^{n-1}-1, \text { i odd }\right\}
$$

Proof. We use induction on n.
For $n=2, G_{2}=\left\{1+\alpha K_{1}^{2}\right\}$, and the statement is clear.
Now let $n>2$. Then $\left|G_{n}\right|=2^{2^{n-1}}-1$. We consider the subgroup

$$
H_{n}=\left\{1+\sum \alpha_{i}\left(K_{i}^{n}\right)^{2}: \alpha_{i} \in \mathbf{F}_{2}\right\} .
$$

We note that

$$
\left(K_{i}^{n}\right)^{2}=\left(s_{n}^{i}+s_{n}^{-1}\right)^{2}=s_{n}^{2 i}+s_{n}^{-2 i}=K_{2 i}^{n}
$$

in $\mathbf{F}_{2} D_{n}$. Since $\left\langle s_{n}^{2}, t\right\rangle$ is D_{n-1}, we may use induction to conclude that since $\left(K_{2^{n-2}}^{n}\right)^{2}=0, H_{n} \cong G_{n}$ is generated by $\left\{1+\left(K_{i}^{n}\right)^{2}: i\right.$ is odd $\}$. Now, the index [$G_{n}: H_{n}$] is 2^{n-2}. The units $1+K_{2 j+1}^{n}$, for $0 \leq j \leq 2^{n-2}-1$ are independent
modulo H_{n}, and each gives rise to a cyclic group of order 2. As $K_{2 i}^{n}=\left(K_{i}^{n}\right)^{2}$, the result follows.

Lemma 3.13. The group $u\left(Z\left(\mathbf{F}_{2} D_{n}\right)\right)$ of units in the center of $\mathbf{F}_{2} D_{n}$ has order $2^{2^{n-1}+3}$. There is an isomorphism

$$
u\left(Z\left(\mathbf{F}_{2} D_{n}\right)\right) /\left\langle c_{n}\right\rangle \cong G_{n} \times C_{t} \times C_{t s_{n}}
$$

where

$$
C_{t}=\left\langle 1+K_{t}^{n}\right\rangle \quad \text { and } \quad C_{t s_{n}}=\left\langle 1+K_{t s_{n}}^{n}\right\rangle
$$

Proof. $\left\langle c_{n}\right\rangle$ is a normal subgroup of order 2, and

$$
u\left(Z\left(\mathbf{F}_{2} D_{n}\right)\right) /\left\langle c_{n}\right\rangle=\left\{1+\sum \alpha_{i} K_{i}^{n}+\beta K_{t}^{n}+\gamma K_{t s_{n}}^{n}: \alpha_{i}, \beta, \gamma \in \mathbf{F}_{2}\right\}
$$

has order $2^{2^{n-1}+1}$. Moreover,

$$
1+K_{t}^{n}=1+t\left(1+s_{n}^{2}+\cdots+s_{n}^{2^{n-1}-1}+c_{n}\left(1+s_{n}^{2}+\cdots+s_{n}^{2^{n-1}-1}\right)\right)
$$

has square equal to the identity, and so does $1+K_{t s_{n}}^{n}$. The lemma now follows.
Lemma 3.14. For $n>2$ there are units in S_{n} that map onto the elements $1+K_{i}^{n-1}$, for odd i.

Proof. For $n>2$, we claim that $1+\omega_{n}=1+\zeta_{n}+\zeta_{n}^{-1}$ is a unit. For, since

$$
\omega_{n}^{2}=\zeta_{n}^{2}+\zeta_{n}^{-2}+2=\omega_{n-1}+2
$$

we have

$$
\left(1+\omega_{n}\right)\left(\omega_{n}-1\right)=\omega_{n}^{2}-1=\omega_{n-1}+1
$$

For $n=2, \omega_{n-1}=0$, and hence our claim follows by induction. Now, S_{n} is a cyclic Galois extension of \mathbf{Z} with Galois group of order 2^{n-2} generated by τ_{n}. Hence, for each j with $0 \leq j \leq 2^{n-2}-1$, there exists $k(j)$ such that

$$
\zeta_{n}^{2 j+1}+\zeta_{n}^{-2 j-1}=\zeta_{n}^{\tau_{n}^{k(j)}}+\left(\zeta_{n}^{-1}\right)^{\tau_{n}^{k(j)}}
$$

The lemma now follows.
Remark 3.15. Note that G_{n-1} has generators $1+K_{2 j+1}^{n-1}$, for $0 \leq j \leq$ $2^{n-3}-1$, and we have constructed the units $1+\omega_{n}^{\tau_{n}^{k}}$, for $1 \leq k \leq 2^{n-2}$. On
the other hand, we need only 2^{n-3} elements. The explanation is that $\tau_{n}^{2^{n-3}} \equiv 1$ $\bmod 2$, by (3.9).

Lemma 3.16. Let $\overline{u\left(Z\left(\Lambda_{n}\right)\right)}$ and $\overline{u\left(Z\left(\mathbf{Z} D_{n-1}\right)\right)}$ denote the images of the central unit groups $u\left(Z\left(\Lambda_{n}\right)\right)$ and $u\left(Z\left(\mathbf{Z} D_{n-1}\right)\right)$ in $u\left(Z\left(\mathbf{F}_{2} D_{n-1}\right)\right)$. Then for $n>2$,

$$
u\left(Z\left(\mathbf{F}_{2} D_{n-1}\right)\right) /\left\langle\overline{u\left(Z\left(\Lambda_{n}\right)\right)} \cdot \overline{u\left(Z\left(\mathbf{Z} D_{n-1}\right)\right)}\right\rangle \cong C_{t} \times C_{t s_{n-1}}
$$

Proof. By (3.14), $G_{n} \times\left\langle c_{n-1}\right\rangle$ comes from central units in Λ_{n} and $\mathbf{Z} D_{n-1}$. The image of S_{n} in $\mathbf{F}_{2} D_{n}$ is just $\mathbf{F}_{2}\left[\bar{\omega}_{n}\right]$, so no element in $C_{t} \times C_{t s_{n-1}}$ is hit by a unit in S_{n}. Hence, it suffices to show that noting in $C_{t} \times C_{t s_{n-1}}$ is hit by a unit in $\mathbf{Z} D_{n-1}$.

Claim. For $n>1$, if

$$
x=\alpha+\beta c_{n}+\sum \gamma_{i} K_{i}^{n}+\delta K_{t}+\varepsilon K_{t s_{n}}^{n}
$$

is a central unit, then $\delta=\varepsilon=0$.
Proof. We use induction on n.
For $n=2$, the image \bar{x} of x in $\mathbf{Z} D_{1}$ must be unit. However,

$$
\bar{x}=\alpha+\beta+2 \gamma \bar{s}+2 \delta K_{t}+2 \varepsilon K_{t s_{n}} .
$$

Since $\mathbf{Z} D_{1}$ is commutative and has no units of infinite order, the only units are the $\pm g, g \in D_{1}$. Hence, $\delta=\varepsilon=0$.

For $n>2$, consider again the image \bar{x} of x in $\mathbf{Z} D_{n-1}$; it has the form

$$
\bar{x}=\alpha^{\prime}+\beta^{\prime} c_{n-1}+\sum \gamma^{\prime} K_{i}^{n-1}+2 \delta K_{t}+2 \varepsilon K_{t s_{n-1}}
$$

By induction, $\delta=\varepsilon=0$, which proves both the claim and the lemma.
Combining all this, we get a complete inductive description of $\operatorname{Pic}_{\mathbf{Z}}\left(\mathbf{Z} D_{n}\right)$.
Theorem 3.17. For $n>2$ there are exact sequences

$$
\begin{aligned}
0 & \rightarrow C_{t} \times C_{t s_{n-1}} \rightarrow \operatorname{Pic}_{\mathbf{z}}\left(\mathbf{Z} D_{n}\right) \\
& \rightarrow\left(\operatorname{Cl}\left(S_{n}\right) \times \operatorname{Picent}\left(\mathbf{Z} D_{n-1}\right)\right) \cdot \operatorname{Out}\left(D_{n}\right) \cdot \operatorname{Hom}\left(D_{n},\{ \pm 1\}\right)
\end{aligned}
$$

and

$$
0 \rightarrow C_{t} \times C_{t s_{n-1}} \rightarrow \operatorname{Picent}\left(\mathbf{Z} D_{n}\right) \rightarrow \mathrm{Cl}\left(S_{n}\right) \times \operatorname{Picent}\left(\mathbf{Z} D_{n-1}\right)
$$

The case where $n=2$ needs separate treatment, but that has been done for us by Fröhlich [3, Theorem 18]:

Theorem 3.18. Picent $\left(\mathbf{Z} D_{2}\right)$ and Out $_{C}\left(\mathbf{Z} D_{2}\right)$ are each of order 2.
Remark 3.19. The unit group of $\mathbf{Z} D_{1}$ is $\pm D_{1}$, and hence is elementary abelian of order 8. Its image in $u\left(\mathbf{F}_{2} D_{1}\right)$ has order 4 and index 2. Since $u(\mathbf{Z})$ has trivial image in $u\left(\mathbf{F}_{2} D_{1}\right)$, Picent $\left(\mathbf{Z} D_{1}\right)$ is generated by $1+s_{1}+t$ in $\mathbf{F}_{2} D_{1}$.

We now turn to the description of the automorphism group of $\mathbf{Z} D_{n}$. From [19] we have the split exact sequence

$$
\begin{align*}
0 & \rightarrow \operatorname{Out}_{C}\left(\mathbf{Z} D_{n}\right) \tag{3.20}\\
& \rightarrow \operatorname{Out}_{\mathbf{z}}\left(\mathbf{Z} D_{n}\right) \rightarrow \operatorname{Out}\left(D_{n}\right) \cdot \operatorname{Hom}\left(D_{n},\{ \pm 1\}\right) \rightarrow 0
\end{align*}
$$

Hence, it is enough to describe $\mathrm{Out}_{C}\left(\mathbf{Z} D_{n}\right)=\operatorname{Ker}\left(\operatorname{Picent}\left(\mathbf{Z} D_{n}\right) \rightarrow \operatorname{Cl}\left(\mathbf{Z} D_{n}\right)\right)$. It was shown by Fröhlich, Keating and Wilson [4] that

$$
\begin{equation*}
\mathrm{Cl}\left(\mathbf{Z} D_{n}\right) \cong \mathrm{Cl}\left(S_{n}\right) \oplus \mathrm{Cl}\left(\mathbf{Z} D_{n-1}\right) \tag{3.21}
\end{equation*}
$$

Hence, we have the commutative diagram with exact rows
whence an exact sequence

$$
1 \rightarrow C_{t} \times C_{t s_{n}} \rightarrow \operatorname{Out}_{C}\left(\mathbf{Z} D_{n}\right) \rightarrow \operatorname{Ker} \kappa^{\prime} \oplus \operatorname{Ker}_{n-1} \rightarrow 1
$$

of kernels.
Lemma 3.23. $\operatorname{Ker} \kappa^{\prime}=\operatorname{Cl}\left(S_{n}\right)_{2}=\left\{(\mathscr{T}) \in \operatorname{Cl}\left(S_{n}\right): \mathscr{T}^{2}\right.$ is principal $\}$.
Proof. Since the Schur index of $\mathbf{Q} \Lambda_{n}$ is trivial, one has $\mathrm{Cl}\left(\Lambda_{n}\right)=\mathrm{Cl}(\Gamma)=$ $\mathrm{Cl}\left(S_{n}\right)$, for any maximal order $\Gamma \supset \Lambda_{n}$, by [4]. The result now follows as in [18].

We thus have:
Theorem 3.24. There are exact sequences

$$
0 \rightarrow C_{t} \times C_{t s_{n}} \rightarrow \operatorname{Out}_{C}\left(\mathbf{Z} D_{n}\right) \rightarrow \mathrm{Cl}\left(S_{n}\right) \oplus \operatorname{Out}_{C}\left(\mathbf{Z} D_{n-1}\right) \rightarrow 0
$$

and

$$
\begin{aligned}
0 & \rightarrow C_{t} \times C_{t s_{n}} \rightarrow \operatorname{Out}\left(\mathbf{Z} D_{n}\right) \\
& \rightarrow\left(\operatorname{Cl}\left(S_{n}\right) \oplus \operatorname{Out}_{C}\left(\mathbf{Z} D_{n-1}\right)\right) \cdot \operatorname{Out}\left(D_{n}\right) \cdot \operatorname{Hom}\left(D_{n},\{ \pm 1\}\right) \rightarrow 0
\end{aligned}
$$

4. The quaternion 2-groups

Let

$$
\begin{equation*}
H_{n}=\left\langle\sigma_{n}, \tau: \sigma_{n}^{2^{n}}=\tau^{4}=1, \sigma_{n}^{2^{n-1}}=\tau^{2}, \tau \sigma_{n} \tau^{-1}=\sigma^{-1}\right\rangle \tag{4.1}
\end{equation*}
$$

be the generalized quarternion group of order 2^{n+1}, and put $\gamma_{n}=\sigma_{n}^{2^{n-1}}=\tau^{2}$, the central involution. Easy computations show:

Lemma 4.2. (1) For $n>1$, the conjugacy class sums of $\mathbf{Z} H_{n}$ are

$$
\begin{aligned}
& 1, \gamma_{n}, \\
& \mathscr{K}_{i}^{n}=\left(\sigma_{n}^{i}+\sigma_{n}^{-i}\right), \quad 1 \leq i \leq 2^{n-1}, \\
& \mathscr{K}_{\tau}^{n}=\tau\left(1+\sigma_{n}^{2}+\cdots+\sigma_{n}^{2^{n}-2}\right) \\
& \mathscr{K}_{\tau \sigma_{n}}^{n}=\tau \sigma_{n}\left(1+\sigma_{n}^{2}+\cdots+\sigma_{n}^{2^{n}-2}\right)
\end{aligned}
$$

(2) There is a natural homomorphism $H_{n} \rightarrow D_{n-1}$, given by $\sigma_{n} \mapsto s_{n-1}, \tau \rightarrow t$. Its kernel is $\left\langle\gamma_{n}\right\rangle$, and it maps the class sums as follows:

$$
\begin{aligned}
1 & \mapsto 1 \\
\gamma_{n} & \mapsto 1 \\
\mathscr{K}_{i}^{n} & \mapsto K_{i}^{n-1} \quad \text { for } i \neq 2^{n-2}, \\
\mathscr{K}_{2^{n-2}}^{n} & \mapsto 2 c_{n-1}, \\
\mathscr{K}_{\tau}^{n} & \mapsto 2 K_{t}^{n-1}, \\
\mathscr{K}_{\tau \sigma_{n}}^{n} & \mapsto 2 K_{t s_{n-1}}^{n-1} .
\end{aligned}
$$

(3) Every automorphism of H_{n} stabilizing the conjugacy classes is inner, and we have

$$
\operatorname{Out}\left(H_{n}\right) \cong C_{2^{n-2}} \cdot C_{2}
$$

Lemma 4.3. We have a fibre product diagram

where $(c f .,[25]) \Gamma_{n}=\mathbf{Z}\left\langle\zeta_{n}, j\right\rangle=\mathbf{Z}\left[\zeta_{n}\right] \oplus \mathbf{Z}\left[\zeta_{n}\right] j$, with $j^{2}=-1$ and $j a=\bar{a} j$, for $a \in \mathbf{Z}\left[\zeta_{n}\right]$.

We note that as in the previous situations, $\operatorname{Ker} \varphi_{1}=2 \cdot \mathbf{Z} D_{n-1}$ and $\operatorname{Ker} \varphi_{2}$ $=2 \cdot \Gamma_{n}$ are characteristic in $\mathbf{Z} D_{n-1}$ and Γ_{n}, respectively. Hence, the MayerVietoris sequence can be applied.

Theorem 4.4. $\operatorname{Picent}\left(\mathbf{Z} H_{n}\right) \cong \operatorname{Picent}\left(\mathbf{Z} D_{n}\right)$, for $n>1$.
Proof. For a prime p and any p-group G, we have the exact sequence

$$
0 \rightarrow \mathrm{Cl}(Z(\mathbf{Z} G)) \rightarrow \operatorname{Picent}(\mathbf{Z} G) \rightarrow \operatorname{Out}_{C}(G) \rightarrow 1
$$

where $\operatorname{Out}_{C}(G)=\operatorname{Aut}_{C}(G) / \operatorname{Inn}(G)$, and Aut ${ }_{C}(G)$ is the group of automorphisms of G that stabilize the conjugacy classes [19]. Because of (3.2) and (4.2),

$$
\operatorname{Picent}\left(\mathbf{Z} H_{n}\right) \cong \mathrm{Cl}\left(Z\left(\mathbf{Z} H_{n}\right)\right)
$$

and

$$
\operatorname{Picent}\left(\mathbf{Z} D_{n}\right) \cong \mathrm{Cl}\left(Z\left(\mathbf{Z} D_{n}\right)\right)
$$

The result will follow if we prove:
Claim 4.5. $Z\left(\mathbf{Z} D_{n}\right) \cong Z\left(\mathbf{Z} H_{n}\right)$.
Proof. It follows from (3.2) and (4.2) that the maps

$$
\varphi_{1}: \mathbf{Z} D_{n} \rightarrow \mathbf{Z} D_{n-1}, \quad \psi_{1}: \mathbf{Z} H_{n} \rightarrow \mathbf{Z} D_{n-1}
$$

satisfy

$$
\operatorname{Im}\left(\left.\varphi_{1}\right|_{Z\left(\mathbf{Z} D_{n}\right)}\right)=\operatorname{Im}\left(\left.\psi_{1}\right|_{Z\left(\mathbf{Z} H_{n}\right)}\right)
$$

Moreover, the maps

$$
\varphi_{2}: \mathbf{Z} D_{n} \rightarrow \Lambda_{n}, \quad \psi_{1}: \mathbf{Z} H_{n} \rightarrow \Gamma_{n}
$$

satisfy

$$
\operatorname{Im}\left(\left.\varphi_{2}\right|_{Z\left(\mathbf{Z} D_{n}\right)}\right)=\operatorname{Im}\left(\left.\psi_{2}\right|_{Z\left(\mathbf{Z} H_{n}\right)}\right)=S_{n}
$$

For, S_{n} is the center of Λ_{n} and of Γ_{n}, and it is generated by

$$
\omega_{1}=\varphi_{2}\left(s_{n}+s_{n}^{-1}\right)=\psi_{2}\left(\sigma_{n}+\sigma_{n}^{-1}\right) .
$$

It follows that the centers of $\mathbf{Z} H_{n}$ and $\mathbf{Z} D_{n}$ are both pullbacks of

$$
\begin{gathered}
\left.\operatorname{Im} \varphi_{1}\right|_{Z\left(\mathbf{Z} D_{n}\right)}=\left.\operatorname{Im} \psi_{1}\right|_{Z\left(\mathbf{Z} H_{n}\right)} \\
S_{n} \rightarrow Z\left(\mathbf{F}_{2} D_{n-1}\right)
\end{gathered}
$$

and hence are naturally isomorphic. This proves both claim and lemma.
Theorem 4.6. For $n>2$, there is an exact sequence

$$
1 \rightarrow C_{2} \rightarrow \operatorname{Out}_{C}\left(\mathbf{Z} H_{n}\right) \rightarrow \operatorname{Out}_{C}\left(\Gamma_{n}\right) \oplus \operatorname{Out}_{C}\left(\mathbf{Z} D_{n-1}\right) \rightarrow 1
$$

Moreover, Out ${ }_{C}\left(\mathbf{Z H}_{2}\right)=1$.
Proof. From [24], we get the exact sequence of pointed sets
(4.7) $1 \rightarrow C_{2} \cong D\left(\mathbf{Z} H_{n}\right) \rightarrow \operatorname{LF}_{1}\left(\mathbf{Z} H_{n}\right) \rightarrow \mathrm{Cl}\left(\mathbf{Z} D_{n-1}\right) \times \mathrm{LF}_{1}\left(\Gamma_{n}\right) \rightarrow 1$.

Using (1.12) and the description of $\operatorname{Picent}\left(\mathbf{Z} H_{n}\right)$, we get the following commutative diagram with exact rows and columns:

Out ${ }_{C}\left(\mathbf{Z} D_{n-1}\right)$ is described in $\S 3$. We have put

$$
\mathrm{Cl}_{\Gamma_{n}}\left(S_{n}\right)=\left\{(\mathscr{T}) \in \mathrm{Cl}\left(S_{n}\right): \mathscr{T} \Gamma_{n} \text { is a principal ideal }\right\} .
$$

We do not know whether $\mathrm{Out}_{C}\left(\Gamma_{n}\right) \cong \mathrm{Cl}\left(S_{n}\right)_{2}$. It remains to determine the image of ϑ^{\prime}. It was shown by Swan [25] that the projective module generating C_{2} in (4.7) can be chosen as

$$
\Sigma_{n}=3 \mathbf{Z} H_{n}+I\left(\mathbf{Z} H_{n}\right)
$$

where $I\left(\mathbf{Z} H_{n}\right)$ is the augmentation ideal. Since Σ_{n} is surely an invertible bimodule, it follows that ϑ^{\prime} is surjective. Hence, the desired result follows from (1.11), except for the case $n=2$, where $C_{\tau} \times C_{\tau \sigma_{n}}$ is replaced by a cyclic group of order 2, which gives Fröhlich's result that Out ${ }_{C}\left(\mathbf{Z} H_{2}\right)=1$. This completes the proof.

Theorem 4.8. $\quad \operatorname{Pic}_{\mathbf{z}}\left(\mathbf{Z} H_{n}\right) \cong \operatorname{Picent}\left(\mathbf{Z} H_{n}\right) \operatorname{Out}\left(H_{n}\right) \operatorname{Hom}\left(H_{n},\{ \pm 1\}\right)$.
Proof. Let M be an invertible bimodule. Localizing at 2, we obtain from M an automorphism α of $\hat{\mathbf{Z}}_{2} H_{n}$. By [19], α modulo conjugation by units of $\hat{\mathbf{Z}}_{2} H_{n}$ is of the form $\alpha=\varrho \nu$, where $\varrho \in \operatorname{Out}\left(H_{n}\right)$ and $\nu \in \operatorname{Hom}\left(H_{n},\{ \pm 1\}\right)$. In particular, α is in fact a global automorphism and $\alpha_{\alpha^{-1}} M$ is a central bimodule.

This also proves:
Corollary 4.9. $\operatorname{Out}\left(\mathbf{Z} H_{n}\right)=\operatorname{Out}_{C}\left(\mathbf{Z} H_{n}\right) \cdot \operatorname{Out}\left(H_{n}\right) \cdot \operatorname{Hom}\left(H_{n},\{ \pm 1\}\right)$.
Concluding remarks 4.10. (1) For $H_{n}, n \geq 4$, there remains the question of whether $\widetilde{\operatorname{Out}}_{C}\left(\mathbf{Z} H_{n}\right)=\operatorname{Out}_{C}\left(\mathbf{Z H}_{\mathrm{n}}\right)$. The answer is yes if and only if whenever \mathscr{T} is an ideal of S_{n} such that

$$
\mathscr{T} \mathbf{Z} H_{n} \oplus \mathbf{Z} H_{n} \cong \mathbf{Z} H_{n} \oplus \mathbf{Z} H_{n}
$$

as left $\mathbf{Z} H_{n}$-modules, $\mathscr{T} \mathbf{Z} H_{n}$ is a principal ideal. There can never be such an isomorphism as bimodules. There is some evidence in [22] to suggest that

$$
\widetilde{\operatorname{Out} c}\left(\mathbf{Z} H_{n}\right)=\operatorname{Out}_{c}\left(\mathbf{Z} H_{n}\right) .
$$

We have been unable to find an example of a \mathbf{Z}-order Λ and an invertible bimodule M with a left Λ-module isomorphism $M \oplus \Lambda \cong \Lambda \oplus \Lambda$ with M not left Λ-free.
(2) Let K_{n} denote the field of fractions of $S_{n} . K_{n}$ is totally real, and for $n>2$, it has an even number of embeddings into the real field. The central K_{n}-division algebra $A_{n}=K_{n} \Gamma_{n}$ has local invariant $1 / 2$ at each of these
embeddings, since $-1<0$ is fixed by all of them. Now, A_{n} clearly splits at all finite primes of S_{n} except possibly at $\mathfrak{p}=\omega_{n} S_{n}$, which is the only prime of S_{n} over the rational prime 2. But then Hasse's description [8] of the Brauer group of K_{n} implies that A_{n} must split at \mathfrak{p} as well. Hence, a nontrivial division algebra split at all finite primes "occurs in nature". This also shows an example of a group algebra with trivial local Schur indices, but nontrivial global ones, and reminds us not to neglect the infinite primes when using the Hasse principal for quadratic forms.

References

1. H. Bass and M.P. MURPhy, Grothendieck groups and Picard groups of abelian group rings, Ann. of Math., vol. 86 (1967), pp. 16-73.
2. S. Endo, T. Miyata and K. Sekiguchi, Picard groups and automorphism groups of integral group rings of metacyclic groups, J. Algebra, vol. 77 (1982), pp. 286-310.
3. A. Fröhlich, The Picard groups of noncommutative rings, in particular of orders, Trans. Amer. Math. Soc., vol. 180 (1973), pp. 1-45.
4. a. Fröhlich, M.E. Keating and S.M.J. Wilson, The class group of quaternion and dihedral 2-groups, Mathematica, vol. 21 (1974), pp. 64-71.
5. A. Fröhlich, I. Reiner and S. Ullom, Class groups and Picard groups of orders, Proc. London Math. Soc. (3), vol. 29 (1974), pp. 405-434.
6. S. Galovich, I. Reiner and S. Ullom, Class groups for integral representations of metacyclic groups, Mathematica, vol. 19 (1972), pp. 105-111.
7. S. Galovich, The class group of a cyclic p-group, J. Algebra, vol. 30 (1974), pp. 368-387.
8. H. Hasse, Die Struktur der R. Brauerschen Algebrenklassengruppe über einem algebraischen Zahlkörper, Math. Ann., vol. 107 (1933), pp. 731-760.
9. H. HASSE, Zahlentheorie, Akademie-Verlag, Berlin, 1949.
10. G. Higman, The units of group rings, Proc. London Math. Soc. (2), vol. 46 (1940), pp. 231-238.
11. G. Miller, H. Blichfeldt and L. Dickson, Theory and applications of finite groups, John Wiley and Sons, New York, 1916.
12. J. Milnor, Introduction to algebraic K-theory, Ann. of Math. Studies, Princeton University Press, Princeton, New Jersey, 1971.
13. I. Reiner and S. Ullom, A Mayer-Vietoris sequence for class groups, J. Algebra, vol. 31 (1974), pp. 305-342.
14. I. Reiner, Class groups and Picard groups of group rings and orders, American Mathematical Society, Providence, Rhode Island, 1976.
15. K.W. Roggenkamp, Integral representations and structure of finite group rings, Séminaire de Mathématiques Supérieures, Les Presses de L’Université de Montréal, Montréal, 1980.
16. ___, Automorphisms and isomorphisms of integral group rings of finite groups, Lect. Notes Math. 1098 (1984), pp. 118-135.
17. , "Picard groups of integral group rings of nilpotent groups (report on joint work with L.L. Scott)" in Proceedings of the American Mathematical Society Summer Research Institute, Humboldt State University, Arcata, California, 1986 (to appear).
18. K.W. Roggenkamp and W.H. Gustafson, Automorphisms and Picard groups for hereditary orders, to appear.
19. K.W. Roggenkamp and L.L. Scott, Jr., Isomorphisms of p-adic group rings, Ann. of Math., to appear.
20. K.W. Roggenkamp and L.L. Scott, Jr., On a conjecture of H. Zassenhaus, preliminary manuscript, 1987.
21. M. Rosen, Representations of twisted group rings, Ph.D. Thesis, Princeton University, 1963.
22. L.L. Scott, Jr., "Recent progress on the isomorphism problem" in Proceedings of the American Mathematical Society Summer Research Institute, Humboldt State University, Arcata, California, 1986 (to appear).
23. R.G. Swan, Induced representations and projective modules, Ann. of Math. (2), vol. 71 (1960), pp. 552-578.
24. \qquad , "Strong approximation and locally free modules" in Ring theory and algebra III: Proceedings of the Third Oklahoma Conference, Marcel Dekker, New York, 1980, pp. 153-223.
25. __, Projective modules over binary polyhedral groups, J. Reine Angew. Math., vol. 342 (1983), pp. 66-172.

Texas Tech University
Lubbock, Texas
Universität Stuttgart
Stuttgart, West Germany

[^0]: Received July 20, 1987.
 ${ }^{1}$ During the preparation of this paper, this author was an ESA Visiting Scholar at Texas Tech University and was also supported by a grant from the Deutsche Forschungsgemeinschaft.

