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A MAYER-VIETORIS SEQUENCE FOR PICARD GROUPS,
WITH APPLICATIONS TO INTEGRAL GROUP RINGS

OF DIHEDRAL AND QUATERNION GROUPS

BY

WILLIAM H. GUSTAFSON AND KLAUS W. ROGGENKAMP

In Memoriam Irving Reiner

O. Introduction

In this paper, we show how Mayer-Vietoris sequences can be constructed to
permit the computation of Picard groups and outer automorphism groups of
orders from fibre product diagrams. We then illustrate the use of these
sequences by carrying out the computations for certain group rings. The idea
that there might be such sequences was inspired by the use of pullback
methods in the construction [20] by the second author and L.L. Scott, Jr. of a
counterexample to the Zassenhaus conjecture.
We feel that the mathematics in the paper is very much in the spirit of our

dear friend and teacher, the late Irving Reiner. We humbly dedicate this work
to his memory.

Let R be a Dedekind domain with field of fractions K; for instance, the ring
of algebraic integers in the algebraic number field K. Let A be an R-order in a
separable K-algebra A. For an R-subalgebra T of the center Z(A) of A, we
denote by Picr(A) the group of isomorphism classes [M] of invertible
A-bimodules with tm mt whenever T and m M. This group was first
studied in the setting of orders by Fr/Shlich [3]. We shall consider the subgroup
LFPicr(A) of Picr(A) consisting of those [M] for which M is locally free on
one side. By a result of Swan [23], we have

PiCT(ZG ) LFPicr(ZG),

where ZG denotes the integral group ring of the finite group G.
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376 W.H. GUSTAFSON AND K.W. ROGGENKAMP

Given central orthogonal idempotents e and e2 of A with e.1 + e2 1, the
order A can be written (cf., Lemma 1.1) as a fibre product

(0.1)

A2

A P- Aei

=Ae2

=A1

We shall denote by Pice, r(A) and LFPice, r(A) the subgroups of Picr(A) and
LFPicr(A ) consisting of the isomorphism classes of those bimodules M in
Picr(A ) or LFPicr(A ) with elm =mei for every tn M. It Should be noted
that

Pi%, T(A)
_

Picent(A) =: Picz(A) (A).

Provided that Ker % is characteristic in A for 1, 2, the maps in the fibre
product diagram (0.1) give rise to homomorphisms

(0.2) pr," Pi%, r ( A ) --) PiCT, (A),

and

%" Picr,(A,) --, Pic(X),

where T Te and T is the image of T in the center of A. Note that if T is
the center Z(A), it is often the case that T is properly contained in Z(A). In
general, Picr,(A) is not abelian, and so and 2 do not induce a group
homomorphism

(P2" Picr,(A1) Picr=(A2) --) Pic(A).

However, if we define

(0.3) Picr(A1, A2)= {([M1], [M21)" Picr,(A,),

then it turns out that Picr(A1, A2) is a group.
We shall denote by u(B) the group of .units of the ring B, and put

uz(B) u(Z(B)). There is a group homomorphism

(0.4) 9" uz (A) --) Picent(A)
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defined by (fi) [A], where

We shall show in [}1 that--provided each Ker i is characteristic in Ai--the
fibre product diagram gives rise to a Mayer-Vietoris sequence

1 - Piee, T(A )

PiCT(A, A:) 1,

where (pl(uz(al)), 2(uz(A2))) is the subgroup of Uz(X) generated by
tpl(uz(A)) and p2(uz(A2)). We have a similar sequence for locally free
Picard groups. Let

r" LFPi%, T(A) CI(A),

where CI(A) is the class group of locally free left A-ideals be the natural
homomorphism [14], and put OUte, r ker(r). If A satisfies the Eichler

condition, then Oute, r(A) Out e, r(A) is the group of T-linear outer auto-

morphisms of A that preserve ex and e2. We write Oute, c(A ) for Out, z(A(A).
With or without the Eichler condition, we have

Outr ( A ) Ker(LFPicr ( A ) LF1 ( A )),

where LF(A) is the pointed set of isomorphism classes of locally free full left
A-ideals, with [A] as basepoint. Putting

OUte, T(A) Ker(lLFPice, r(A)),
Outr(A, A2) ((a1, a2)" Ot - OUtT(Ai) a a2 in Out())

and

(0.6) Uz(A1, 52) Uz(X)/fDl(uz(il)), (p2(uz(i2))),

we obtain an exact sequence

(o.7) 1 uz(A, A2) - Oute, r(A ) Outv(A, A2),

in which q is surjective when A is commutative.



378 W.H. GUSTAFSON AND K.W. ROGGENKAMP

We shall apply these sequences to compute the central Picard groups and
the central automorphism groups for the following classes of groups:

(1)
(2)
(3)

Metacyclic groups of order pq, where p is an odd prime and ql(P 1).
Dihedral groups of order 2n+l.
Quaternion groups of order 2n+l.

It should be noted that the groups in all these classes satisfy the Zassenhaus
conjecture, i.e., for any normalized automorphism a of the group ring ZG,
there is an automorphism p of G such that ap is a central automorphism [17],
[19], [22]. Note that all these groups have O,,(G)= 1 for some prime p.
Moreover, an arbitrary automorphism can be normalized by modifying it with
an automorphism induced by an element of Hom(G, u(Z)). Hence, as indi-
cated in [19], to describe Picz(ZG) and the outer automorphism group, it
suffices to describe Picent(ZG)and the group Outc(ZG) of automorphisms
that fix each element of the center.

In the first two cases, the computations have also been made by Endo,
Miyata, and Sekiguchi [2]. Their method is less general than ours. They are
able to show for these groups that Picent(ZG) is isomorphic to the locally free
class group of the center of ZG. Then, they can apply known Mayer-Vietoris
sequences for class groups. Some results on Picard groups of integral group
tings of abelian groups were given by Bass and Murthy in [1].

In the discussion of our examples, the reader should keep in mind that the
righthand term of the sequence (0.5) is contained in Picr(A1) Picr(A2),
while that of (0.7) is contained in Outr(A) Outr(A2). It may be necessary
to refer to the subsequent sections to see how the groups explicitly given are
embedded in the appropriate factors.

(A) Metacyclic groups. Let p be an odd prime and q a divisor of p 1.
For an integer n, denote by C the cyclic group of order n. Let r have order
q modulo p and set

G= C,, > Cq= (a,b" ap= bq= 1, bab- ar),

a subgroup of the 1-dimensional affine group over Z/p Z. If ’p is a primitive
pth root of unity, we can interpret Cq as a subgroup of Gal z(Z[’p]). Let S be
the fixed ring in Z[’,] under Cq, and let r be the norm of 1 ’p in S. For
e1 (1/p)Y’./=a and e2 1 e, ZG is the pullback

ZCq

A -%F,q
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where

qq

Every o Hom(G, (_+ 1)) gives rise to an automorphism 6: ZG ZG, in-
duced by g go(g). In (2.15) we prove that there are exact sequences

(o.8) 1 --> Uq Picz(ZG )

CI(S)Galz(S ) CI(ZCq)Hom(G, ( + 1}) - 1,

where Uq is an abelian group of order (p 1)q-1/(2, q);

(0.9) 1 Uq Picent(ZG) - CI(S) CI(ZCq) 1,

and

(0.10) 1 --) q --) Outz(ZG )

CI(S)qGalz(S ) Hom(G, (+1}) 1,

where CI(S)q-- {(7-) CI(S)" (’,.’)q 1} and q has order (p 1)q-1/q.
In both (0.8) and (0.10), Galz(S) should be interpreted as Out(G).

Remark. In the case where q 2, the sequence (0.9) reduces to

1 Cp_ 1)/2 ’-> Picent(ZG) ---> CI(S) ---> 1,

which was previously obtained by FrShlich, Reiner, and Ullom [3], [5]. They
also determined Out(ZG) in this case.

(B) Dihedral 2-groups. Let

2 2D (Sn, Sn 1, tnSntn S1),

and let ’, be a primitive 2"-th root of unity. Put S, Z[’, + .-1], the
maximal real subfield of Z[’,]. Then there are exact sequences

(0.11) 0 V---> Picz(ZD,)
CI(S,) Picent(ZD,_l)Out(D,)Hom(D., (+1}) ---> 1,
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where V is Klein’s 4-group,

(0.12) 0 V Picent(ZDn)-+ CI(Sn) Picent(ZD,_l) 1,

and

(0.13) 0 ---, V Outz(ZD,)
CI(S)2 Outc(ZD_)Out(Dn)Hom(D, (+1)) 1.

Again, this was done for n 2 by FrShlich [3].

(C) Quaternion 2-groups. Let

2 4 2n- 2H,=(o,,, o,; = =l,o,; = o, =o ),

and let S be as above. Then

(0.14)
Picent(ZHn) -- Picent(ZD,),
Picz(ZH,) Picent(ZH,)Out(H,)Hom(Hn, ( +_ 1)),,

and there is an exact sequence

(0.15) 0 --+ C2 Outc(ZH,,) CI(S)2 Outc(ZD_l) O,

where Outc(ZHo) is the kernel of Picent(ZHn) CI(ZH). Once more, this
was obtained by FrShlich [3] for n 2. For n < 3, Outz(Z/-/,, ) Out z(ZH,).

I. Proof of the Mayer-Vietoris Sequence

As in the introduction, let el, e2 be central idempotents with e + e2 1.
We have claimed in the introduction that

A Ael A

Ae2 A 2 A

is a pullback. This will follow, once we prove the following.

LEMMA 1.1. A A/((Ae O A) (Ae2 A)) is isomorphic to Ai/(A
A), for 1, 2.
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Proof. Multiplication by e gives an isomorphism
whence the statement.
We assume henceforth that

A -= Ai/(A N Ai),

Ker i/s characteristic in A i.

We consider LFPice, r(A), consisting of the isomorphism classes of locally free
invertible A-bimodules where the e and T act in the same way on each side.
Let T,. be the image of T in A, 1, 2, and let T be the image of T in A.
Note that if T Z(A), it is not generally the case that T Z(A), where
Z(-) denotes the center. We have natural maps

pr," LFPice, r ( A ) - LFPicT, (A.)

for 1,2, given by [M] [Mei]. We note that A is a finitely generated
R-torsion algebra. Hence, the map tp" A A factors through a semi-local-
ization , and hence, since we work with locally free invertible bimodules,
the elements in LFPic() can be interpreted as automorphisms. Since
Ker is characteristic, the same holds for the semi-localization, and hence we
obtain a well defined map

i" LFPicT,(Ai) Pic(X).

Let

LFPicr(A, A2)= {([Mll,[M2])" M LFPicr,(Ai)
and tp([M]) 2([M21)in LFPic(X)}.

We note that LFPicT(Ax, A 2) is.a subgroup of LFPiCTx(A) LFPiCT:(A 2)"
In fact, whenever q: G G, 1, 2, are group homomorphisms, the map
q: G1 G2 G defined by

may fail to be a group homomorphism, but 0-x(1) is a subgroup of G G2.

Indeed, if (g, g2) and (hx, h2) belong to this set, then O(gl) 2(g2) and
ox(h) q2(h2). Multiplying these equations together, we obtain O(ghl)
O2(g2h2), whence (gh, g2h2) O-x(1). Taking inverses of both sides of the
first equation gives (gi-) q2(gl), and -1(1) is a subgroup. In particu-
lar, LFPicr(A, A2) is a subgroup of Picr(A) Picr:(A:). We then have a
mapping

" LFPice, T (A) --* LFPicT ( A1, A2)
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defined by

[M] ([Me1] [Meal),

which is, in fact, a group homomorphism.

LEMM 1.2. Im LFPice, r(A1, A2).

Proof. Let ([M1], [M2]) e LFPicr(A1, A2). Since I([M1]) p/([M2]),
there is a A-bimodule isomorphism : Mx M=, where M is the A-bimodule
%(Mi).
We now consider

M ((ml, m2) e M x M2" Oql(ml) tp2(m2) ).

Since tpi and are bimodule homomorphisms, we conclude that M is a
bimodule that is free on either side, and hence represents an element in
LFPi%, r(A); see [12, 2] or [13]. Clearly, priM -- Mi.

This shows that is surjective. It remains to consider the kernel of . For
this, we follow the idea of Reiner and Ullom [13, [}5].

(1.3) For a ring B, let u(B) be the units in B and let uz(B) be the units in
the center of B.

Define

f" uz (A) -+ LFPicent(A)

as follows: for fi uz(A), let

i ((x1, x2)" x hi, (pl(Xl) (p:(x:)}.

Since fi is central, A is a A-bimodule. In fact, let (, k2) A, i.e.,
tPx’l %_’z; then we have

and

2(X2X2).

Hence, A is a left A-module, and one shows similarly that it is a right
A-module as well. By [12, [}2] or [13, 4.20], A is locally free, and is hence an
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invertible bimodule. Moreover, if z Z(A), then

z(xt, x) (x, Xa)Z for (x, xg.) An.
By [13, 4.20], xI, is a group homomorphism. We point out also that Anei Aei,
for 1, 2.

LEMMA 1.5. Ker (l(uz(Ax)), tp2(uz(A2))).

Proof Assume An -= A as bimodules. Since A n and A are contained in A,
there must exist a central element 3’ in A with An3, A, and so Anew3’ Ag.
In particular, 3’i e3, is a central unit of A, 1, 2. The equation An3, A
now shows that 1(3’1)-1a(3’.). Conversely, assume that
1]I)1(3’1)--11)2(3’2), for central units 3’i of A i. Then

a A(3’l"-I, 3’2
-1 ) {(x1, x2)" x Ai, ll(X1) 2(x2)} An

The lemma now follows.

THEOREM 1.6. Under the assumptions announced at the beginning of this
section, there is an exact sequence.

1 -- Uz(X)/(ePl(uz(A1)), (P2(uz(A2))) LFPiCe, T(A )

LFPicT(A1, A2) - 1.

Proof Let [M] LFPi%, T(A) lie in the kernel of . Then Mei is
isomorphic to Ai, and hence M must be central. We may thus assume that
M c A is a two sided A-ideal. Thus, Me A3’, for a central element 3’ of
Ai, wit__h I19i(3"i) - u(A). Hence, M q)l(Mel) 2(Me2) can_ be chosen to be
all of A. Consequently, 1(3’1) fi2(3’2) for some fi Uz(A ). Replacing M
with the isomorphic bimodule M(3’1-1, 3’2-1) gives

M {(hi, )ka)" )t Ai, X

Hence, Im xt, D Ker . Since it is clear that Cxt, 0, the proof is complete.

Remark 1.7 (1) Because of the uncanonical behavior of the center, there is
no analogous sequence for the central Picard group Picent.

(2) For locally free class groups, Reiner and Ullom [14, (5.6)] established
the exact sequence

1 u(X)/(cp(u(A)),(p:(u(A:))) - LFCI(A)
--* LFCI(A1) LFCI(A2) 1,
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if the Eichler condition is satisfied. In the absence of the Eichler condition,
they still get an exact sequence for class groups. However, if one wants to
describe the group of outer automorphisms of A, then for the natural map
: LFPicr(A) LFCI(A), we have Ker Outr(A) if and only if stably
free A-lattices are free. In particular, this is assured when Eichler’s condition
holds. The remedy for this is to consider, as did Swan in [25], LFI(A), the
pointed set of isomorphism classes of locally free left A-lattices. For pointed
sets, the notions "kernel" and "exact sequence" make sense. Whether or not
A satisfies the Eichler condition, the kernel of the natural map r: LFPicr(A)

LFx(A) is

(1.8) Ker r Outr(A).

Examination of the Reiner and Ullom proof of the sequence for class
groups reveals that they actually prove:

THEOREM. There is an exact sequence ofpointed sets

1 &(u(Ax)) \ u(X)/p_(u(Az)) LF(A)
LFx(A) X LF(A) 1,

where p(u(A)) \ u(A)/2(u(A2)) denotes the pointed set of doubled cosets of
u(A) with respect to the subgroups (u(A)) and 2(u(A 2)).

Now let us put

(1.9)

and

Out
ei T ( A ) Ker1LFPi%. r(A)

Outr(A1, A2) {(al, a2)" a Out(Ai), a a2 in Out(X)}.
Further, we set

5z(A, A2) ( Uz(- )" lX, u(A;) with

LEMMA 1.10. 5z(A1, A2) is a group.

Proof Let u--l(1)(P2(k2) and v l(]gl)2(/.t2) be two of its ele-
ments. As v lies in Z(), we have uv-= (pl(,l)l(jg-l)tp2(jg-l)2(2)
fiz(A1, A2). Hence, fiz(A1, A2) is a group.
We now put

Uz(A ,
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Then uz(At, A2) is the kernel of the well defined mapping,

(1.11)

\ u(X)/,(u(A:)),

that sends a coset in uz(A) to the corresponding double coset.

THEOREM 1.12.
columns"

We have a commutative diagram with exact rows and

1 uz(A1, A2) OUte,,r(A Outr(A1, A2)

1 ,uz(A)/g)(uz(A))g)(Uz(A)) -----LFPi%,,r(A) LFPicr(A, A) 1

1 qOl(U(hl) u(A)/q)2(u(h2) LFI(A LFI(A1) LFI(A2) 1

Moreover, if x is surjective, e.g., if A is commutative, then 0 is also surjective.

Proof
chasing.

This follows from the remarks above and some routine diagram

Remark 1.13. If A satisfies the Eichler condition, then in (1.12), LFI(--)
should be replaced by LFC(--), and l(u(A))\ u(A)/q(u(A2)) is a group
(cf., [13, [}5]).

2. Metacyclic groups of order pq

Let p be a fixed odd prime, and let q be a divisor of p 1. For an integer
n, we denote by Cn the cyclic group of order n. In this section, G is the
semidirect product of Cv and Cq, with Cq acting in a fixed-point-free manner
on Cp. Let a be a generator for Cv, and b be a generator for Cq. Denote by ’p
a primitive p-th root of unity, and view Cq as a subgroup of Galz(Z[’p]). Let
S be the fixed ring Zt’vlG and r the norm NztLl/s(1 );

Let ex (1/p)Y’.f=a i, and put e2 1 ex. Then from tl, it follows that
the group ring ZG is the pullback

(2.1)
zo ZCq

 ,Cq
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where

S
S ". S

S S S qq

is isomorphic to the twisted group ring S o Cq. See also [15], and note that (2.1)
follows easily by looking at the following commutative diagram with exact
rows, in which I(Cq)G is the ZG-module induced from the augmentation ideal
I(Cq) of Zfq:

O I(il)G iGe2 -------0

0 I(Cq)G A F;Cq

Since A is an order in a simple algebra and ZCq is commutative, we have

PiCz(ZG ) PiCe,z(ZG ).

We note that Ker q02 Ker pr I(Cq). G generates the radical of A at p,
since (b 1) A generates the radical of A at p. In particular, it is character-
istic in A. We have Ker q02 =p. ZCq, and hence this is also characteristic.
Thus, we can apply (0.5) to conclude that we have an exact sequence

(2.3) u(Z(A)) u(ZCq) u(F2Cq) Picz(ZG )

Picz(A ) Picz(ZCq).

LEMMA 2.4. Picz(A ) CI(S)()(,r), where is conjugation with

0 1

qq

and has order q as an automorphism, and generates Galz(S ).

Proof From [3, Theorems 2 and 6], [14, [}9] we have the exact sequences

(2.5) 0--, Picent(A) Picz(A ) Autz(S )
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and

(2.6) 0 ---, CI(S) Picent(A) ---, Picent(p) 0,

where p p (R)zA and p is the ring of p-adic integers. Now, Autz(S)
Galz(S) (z). Since ,rS is the unique prime ideal of S above p, we have
(rS) ,rS, whence the Oght-most mapping in (2.5) is a surjection, and (2.5)
splits. Moreover, Picent(A) is generated by conjugation with 0. Since ,rS is
principal, it follows that (2.6) splits, and the proof is complete.

In this connection, we point out that a detailed study of Picard groups of
hereditary orders is presented in [18].

LEMMA 2.7. Picz(ZCq) Cl(ZCq)Aut(Cq)Hom(Cq, ( +_ 1)),
Hom(Cq, ( + 1 )) induces automorphisms as described before (0.8).

where

Proof The sequence

0---, Picent(ZCq) ---, Picz(ZCq)---, Autz(ZCq)---, 0

is exact, since ZCq is commutative [3, Theorem 2], and it splits, since

Autz(ZCq) Aut(Cq)Hom(Cq, {+ 1})

by the result of Higman’s thesis [10]. But Picent(ZCq) CI(ZCq), whence the
lemma follows.

Remark 2.8. For an order A, one must distinguish carefully between the
class group CI(A) and the locally free class group LFCI(A), made up from
modules in the genus of A. A similar distinction must be observed between
Picent(A) and LFPicent(A), the latter being made up from invertible two-sided
A-ideals that are locally free on one side. However, these distinctions disap-
pear in the case of group tings, thanks to a theorem of Swan [23].

LEMMA 2.9. Picz(A, ZCq) CI(S)(,)CI(ZCq)Hom(G, ( + 1}).

Proof Recall that

Picz(A,ZCq) (([M1], [ME] )" [M1] Picz(A), [ME] Picz(ZCq)
and q(M1) -= q2 (ME) as bimodules).

We note that
q
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since Fp contains the q-th roots _f unity. Since the map (P2: A -’-> FpCq is just
reduction modulo 0A, we have A A/0A FpCq. The kernel of

" Picz(A ) PiCl(X )

is CL(S). (z). Indeed, since A is artinian, its locally free ideals are free,
whence CI(S) lies in the kernel. The subgroup (z) is in the kernel because
Gal z(S) acts trivially modulo rS.
For the same reasons, the kernel of

is
Consequently,

and

tpl" Picz(ZCq) PiClp(X)

Im2 2(<3))

Im qox (Aut( Cq)Hom(G, ( + 1 })).
We must now find the equalizer of Pl and tp2. Note that conjugation with o
on A permutes the q copies of F, in F,Cq cyclically. Thus, we can view o as
the q-cycle (1,..., q), where represents the i-th copy of F.

CLAIM.. The mapping on FpCq induced by conjugation with o is not induced
by a group automorphism of Cq.

Proof. 0 acts as a q-cycle on I-[q_lFp and so fixes no component. On the
other hand, every group automorphism has the trivial module in its fixed-point
set. This proves the claim.

Let q be even. Then a a, b -b induces an automorphism of ZG.
Let q be the map it induces on FpCq. In the regular representation of Cq on

FpCq I-I/q..1Fp, the element b is represented by (fql,..., fqq), where fq is an
element of order q in Fx. Hence,

fq((f))--(--f).
But we have f -f if and only if fqi-i= 1 fqq/2, i.e., if and only if
j- 1/2q mod q. It follows that q coincides with the map induced on FpCq
by conjugation with bOq/2 on A. But, it is equally clear that q is induced by
the nontrivial element of Hom(Cq, ( + 1)) or by that of Hom(G, ( -t- 1)). Thus,
Hom(G, (-t-1)) and q/2 have the same image as automorphisms of FpCq,
whence (2.9) follows.
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Now we must find the images in FpCq of the units of ZCq and of S Z(A).

LEMMA 2.10. The image of opt: u(ZCq) A FvCq I-Iq_tF, is +Cq. The
image of the generator b of Cq in I-I qi-F, is (f) <i q, where fq F has order
q. Hence, the image of q)x is generated by +(f)xiq.

Proof This is immediate from the remarks above, since the only units of
ZCq are the bi, 1 < < q, by [10].

Remark 2.11. It should be noted that Im always has order 2q.

LEMMA 2.12. The image of (P2: uz(A) A I-I/qlF,
AVq of the image Vq of u(S) in SlurS F,.

is a diagonal copy

Proof. This is clear, since 2 is just reduction modulo

qxq

Remarks 2.13. (1) Vq is a subgroup of Fx of order at least (p 1)/q.
For, since p is prime, the elements

1- 1 + ’e + +’fi-t 2<i<p,"ri= l p

are units in Z[’p]. Then [i] is the image of z; in Fp, and if [i0] generates Fex the
norm of ’io in S is a unit whose image is [i0] q, so IVql >- (p 1)/q.

(2) In general, IVql > (p- 1)/q. For instance, IV21-p- 1 since the
elements oj (’-i .)/(.-1 .e) are units in S, for 2 < < p, and the
image of o is [i].

(3) We note that [-1] is always in Vq.
(4) Galovich, Reiner and Ullom [6] have shown that in fact, IVql--

(p 1)(2, q)/q. For a regular prime p, i.e., one that does not divide the class
number of Z[’,], Galovich [7, {}2] has described Vq in some detail.

We are now in a position to prove the main result for Picz(ZG ). We
introduce some more notation. Let Uq I-Iqi_F</(AVq ((f))). Then Uq is
just

u(X)/(Imq)2(u(S)))" (Im q)l(U (ZCq))).



390 W.H. GUSTAFSON AND K.W. ROGGENKAMP

In fact, since [-1] Vq and AVq N ((f)) 1, we have, in light of (2.13, 4):

LEMMA 2.14.

(p--l) q (p--l) q-1

IUql-- Igql" q (2, q)

THEOREM 2.15. We have the exact sequence

1 - Uq Picz(ZG ) (CI(S)(z) CI(ZCq))Hom(G, (+1}) 1.

The proof is just an application of (0.5), together with (2.4), (2.7), (2.9),
(2A1), and (2.12).

Remarks 2.16. (1) Since there is an exact sequence

1 Picent(ZG) Picz(ZG ) - Autz(Z(ZG)),

we conclude that there is an exact sequence

0 Uq - Picent(ZG) CI(S) CI(ZCq) 0.

Note that the elements of Uq give rise to central bimodules, by means of
(0.4).

(2) For the dihedral groups of order 2p, we get the exact sequence

0 qp_ 1)/2 Picent(ZG) CI(S) 0,

as given in [14, p. 38].
(3) Thanks to (0.4) and (0.5), the exact sequence allows the explicit

description of the bimodules forming Picz(ZG ).

We now turn to the description of the group of outer automorphisms of ZG.
Since ZG satisfies Eichler’s condition, we must compute the kernel of

Picz(ZG ) CI(ZG),

cf., (0.9). The fibre product sequence, (0.6) and (0.7) give rise to the following
commutative diagram with exact rows"

0 Uqo’Pic(ZG)
0 ,Uq-----, CI(ZG)

CI(S)( ) cI(ZCo) Hom(G, ( +/- )) ---. 0

---o CI(A) CI(ZCq) 0,



A MAYER-VIETORIS SEQUENCE FOR PICARD GROUPS 391

where q is cyclic of order q/(q, 2) by [6], [14, 7.7]. Note that is commuta-
tive, whence a}’ is surjective, and the sequence of kernels is exact. We want to
find the kernel of . Recall that

Cl(S)q-- ((..) CI(S)" (.’)q 1.).

THEOREM 2.17. We have exact sequences

0 - Kerr’ Outz(ZG ) --, CI(S)q <,1"> Hom(G, { +1}) 0

and

0 --+ KerS’ Out(ZG) CI(S)q --+ 0,

where Outc(ZG) is the group of automorphisms of ZG fixing the center
elementwise, modulo inner automorphisms.

Remarks 2.18. (1) Uq is just Uq modulo the image of the units in A,
where we recall that Uq was defined by the units in the center of A. Hence,

I%1 (p- 1) q-1
[Ker t’[ q/(q, 2) q

by (2.14).
(2) For q 2, the second exact sequence is that of [5, (4.3)].

Proof We first compute the kernel of ". Since (> and Hom(G, (+ 1})
come from automorphisms, they surely lie in the kernel of ". As Cq is
abelian, ": CI(ZCq) CI(ZCq) is an isomorphism. By [21], we can identify
CI(A) with CI(S), and with this done, it is shown in [18] that Ker" CI(S)q.
Since -) and Hom(G, (+ 1 }) do not come from central automorphisms, the
theorem follows.

3. The dihedral 2-groups

Let

2 2"(3.1) D,- s,,tls, l, ts,t= s21
2be the dihedral group of order 2"+1, and let c, be the central involution s,
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Easy computations show the following:

LEMM 3.2. (1) For n > 1, the conjugacy class sums in ZD are 1, c, and
for 1 < < 2- 1, the class sums

+sK’= s,,

2+ 4+ +SKt 1 + s. s.
K.ts.=K’sn

1 <i<2n-t- 1,

2"--2)2+ .....]_Sn=t(1 +%) l+s.

Hence, there are 2n-t + 3 classes.
(2) Under the natural projection pr.: ZD. ZDn_, we have

1i,
c. 1,

K K?-1 for :k 2n-2,

K.-2 2%_1,

Ktn 2Kt-,
K" 2K"-tSn tSn 1"

Note that each K[’- & hit twice.
(3) Every automorphism ofD. stabilizing the conjugacy classes is inner, and

Out(D.) -= Cv-" C2.

For n > 1, we let ’, be a primitive 2"-th root of unity. Set

n [’n +’-x forn>2,
2 for n 2,

and S. Z[,]. Observe that S2
express ZD. as a fibre product.

Z. In order to compute Picz(ZD.), we

LEMMA 3.3. The group ring ZD. is a pullback

pr.
ZD. ----* ZD._

An -1,
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where

OJnS S -ae- OnS4 S a

Proof Let e1=(1 +c.)/2 and e2=(1-c.)/2. Then e and e_ are
central orthogonal idempotents with el + e2 1, and we have a commutative
diagram with exact rows:

e

0 -----I(c.)ZD A F2Dn_ ----.0.

Hence, we get the fibre product diagram. That A has the asserted structure is
shown in [16].
We note in addition that e. acts as -1 on A., so that

(3.4) q2: An F2Dn-1

is reduction modulo 2. It follows that here also, Ker 992 is characteristic in A n,

and Ker ql is characteristic in ZDn_ 1. Hence, we can apply our Mayer-
Vietoris sequence.
We first compute Picz(A,). Let , denote conjugation by

on An. This is a central automorphism of order 2 of An.

LM.MA 3.5. Picz(An) CI(Sn)<,,)Galz(S,, ).

Proof Since tonS is the unique maximal ideal of Sn lying over 2, it is
preserved by every Galois automorphism. As in 1, in the exact sequence

0 --* Piccnt(A.) Picz(A.) Autz(S.)

the right-hand mapping is surjective and splits; see [19]. Moreover, if .



394 W.H. GUSTAFSON AND K.W. ROGGENKAMP

denotes the 2-adic completion of A, the exact sequence

0 CI(S) Picent(A.) Picent(..) 0

is split, again by [18]. Since Picent(An) is generated by n, the result follows
(See also [16].)

LEMMA 3.6. The map Picent(ZD) Picent(ZD_l) is surjective.

Proof. We use Frtihlich’s localization sequence

0 CI(Z(ZD,)) Picent(ZD) Picent(2D,, ) 0.

Since no outer automorphisms of Dn stabilize the conjugacy classes (cf., (3.2,
3)), the results in [19] and [2, Theorem 3.3] imply that CI(Z(ZDn)) =-
Picent(ZDn). Hence, it remains to show that pr,: CI(Z(ZD,)) CI(Z(ZD_I))
is surjective. By (3.2), pr,(Z(ZD,)) is a subring of finite index in Z(ZD_).
We first note that

CI(Z(ZD)) Cl(Impr.(Z(ZDn)))

is surjective. Indeed, we have a fibre product diagram of the form

Z(ZD.) Im pr.(Z(ZD.))

from (0.1). Then the Meyer-Vietoris sequence for class groups (0.7) shows that

CI(Z(ZD)) --* Cl(Im pr.(Z(ZDn)))

is surjective, since Cl(f)= 0. (We remark that the Mayer-Vietoris sequence
for class groups requires no special conditions on the Ker q0i.) On the other
hand, for any pair of orders A c A’ in the same algebra, CI(A) CI(A’) is
surjective (cf., [14, p. 13]). Hence, pr is surjective, and the lemma follows.
Now, we recall from [19]"

LEMMA 3.7. We have a split exact sequence

0 Picent(ZD,) Picz(ZD,) Out(D,) Hom(D,, { + 1}) 0.
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n

We also note:

LEMMA 3.8. (1) For n > 2, Autz(S,, ) (%), where % is determined by
25,,. We have 1.

(2) Out(D,,)= (’(n))= (’(n)) (t), where

,i’(n)" s Sn t,

t" s,, s,,, tsn.

Proof For part (1), note that by [9, p. 388], Autz(Z[’,,]) is isomorphic to
the unit group u(Z/2"Z). By [9, p. 40], u(Z/2,,Z) ( 1) (5) is isomor-
phic to Z/2Z z/2n-Zz. Since S,, is the fixed ring of ( 1), (1) now follows
from Galois theory.
For part (2), we adapt the discussion of [11, p. 169]. The involutions in D,,

are s,, which is central, and the elements tSn (0 < k < 2" 1), which are
not central. If tp is an automorphism of D,,, it must take s,, to an element of
order 2"; the only such elements are the s,r, where r is a unit of Z/2,,Z. The
element tp(t) must be a noncentral involution, hence equal to ts, for some k.
All such choices of r and k do, in fact, give automorphisms. Hence, if we
define t)r, k by %,k(s,,) s and %,k(t) ts, then Aut(D,) (%,), and
we have

r, k r’, k’ rr’, k + rk’

It follows that Aut(D,,) is isomorphic to the split extension of u(Z/2nz) by
the additive group Z/2nZ, i.e., to the holomorph of Z/2,,Z. It is easily

k is tl,2k,checked that conjugation by s,, while conjugation by is

_
,0. From

this and the structure of u(Z/2"Z), (2) easily follows.

2LEMMh 3.9. For n >_ 3, % is the identity modulo 2S.

Proof % induces an automorphism of order 2n-2 on D,, stabilizing the
-1 2n-1augmentation ideal I(s2," ) of the subring Z(s,, ) and hence inducing % on

A n. On D,,_ 1, % induces z,,-1, which has order 2n-3 on ZDn_ 1. Since z,, has
order 2,,-2 on ZD,,, it must have order 2,,-2 on An. Because of the fibre

2product diagram, z 1 on F2D,,_ 1. Then, the exact sequence

-A FD, 00 -o 2A
_

2shows that % is the identity modulo 2S,,, as claimed.
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LEMMA 3.10. For n > 2, Picz(A,, ZD,_I) is the pullback of the diagram

Picent(ZD._) (%_, ,) Hom(D., ( 5:1))

Cl(S ). ,)

where T(%) %_ and T(.) .
Proof We look at the map

Picz(A.) Pic(F2D._I)

2This map has kernel containing CI(A,)(% ), by (3.9). On the other hand,
on A, is--modulo conjugation with units--induced from the group automor-
phism -(n) of D,, and since group automorphisms of D, show up in F2D

2n-2we conclude that CI(A,). (% ) is precisely the kernel. We continue the
proof by showing

CLAIM. Modulo inner automorphisms of A,, t3, induces the map t.on FED 1-

Proof Since comes from a group automorphism of D,, it is enough to
show that induces a central automorphism of A n, which then must be
conjugation with to,, modulo inner automorphisms. We establish this by an
inertia group argument. Let X be an irreducible character of C (R)z A,. Then

z. for some character k of (sn). Hence, the inertia group of X is
(sn). But the only conjugacy classes K of Dn that are moved by lie outside
(sn). Hence, x(K) 0, and so is central. This proves the claim.

Hence, the image of q02 is (%_ 1, )- On the other hand,

Picz(ZD._l) Pic(F2D._I)

Picentz(ZD_){%_, )Hom(D, { + 1})

has kernel Picent(ZDn_l)Hom(D., { + 1)) and image (%-1, ). This completes
the proof.
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Remarks 3.11. (1) As a subset of Picz(ZDn), the pullback of

is just (%, t); i.e., the outer automorphism group of Dn. Thus, we have the
epimorphism

Picz(ZDn) Picent(ZDn) i Out(Dn)Hom(Dn ( + 1})

Pic(A., ZD._x) -= Cl(S.)Picent(ZD._x)Out(D)nom(D, ( + 1}).

(2) This also holds for D2, as is easily checked.

We must now determine the kernel of Picz(ZDn) Picz(A n, ZD’_I). That
is to say, we must find the images in F2D_ of the units of Z(A) S and of
Z(ZD._ 1).

LEMMA 3.12. For n > 1, the subgroup

2n-1

Gn= 1+ aiK’, aiFa

of the group of units of the center of F2Dn is generated by

(1 +K,I <i<2n-l- 1, iodd}.

Proof. We use induction on n.
For n 2, G2 (1 + aK2 }, and the statement is clear.
Now let n > 2. Then a=l 2v- 1. We consider the subgroup

We note that

+s-i)2 2+s-2(K;) (s,, s,,

s 2in FAD,,. Since ( ", t) is D,_ 1, we may use induction to conclude that since
(K-)2 0, /-/,, = G is generated by (1 + (K): is odd). Now, the index
[G"" H’] is 2n-. The units 1 + K’.+ 1, for 0 _< j _< 2n- 1 are independent
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modulo Hn, and each gives rise to a cyclic group of order 2. As Ki (K/n) 2,
the result follows.

LEMMA 3.13. The group u(Z(F2Dn)) of units in the center of F2D has order
22"-+ 3. There is an isomorphism

u(Z(F2Dn))/<Cn) a x C x Csn,
where

C (1 + K’) and Cts" (1 + Ktns.).

Proof (c.) is a normal subgroup of order 2, and

u(Z(F2D))/(c,) (1 + aiK’ + flK’ + "ygtns. oti, fl,’[ F2)
has order 22"-+1. Moreover,

2 + +Sn + Cn Sn Snl+K’=l+t l+s.

has square equal to the identity, and so does I + Kn The lemma now follows.tsn"

LEMMA 3.14. For n > 2 there are units in Sn that map onto the elements
1 + K’-1, for odd i.

Proof
since

For n > 2, we claim that 1 + ’, + .-1 is a unit. For,

2=2+-2+ 2=tOn 1+2,0an

we have

2 1=%_ +1(1+%)(0n-l) =%-

For n 2, %_ 0, and hence our claim follows by induction. Now, S, is a
cyclic Galois extension of Z with Galois group of order 2"-2 generated by %.
Hence, for each j with 0 < j < 2n-2 1, there exists k(j) such that

n2j+l + -2j-1 2.k(j) + (l)rkn(j).

The lemma now follows.

n-1Remark 3.15. Note that Gn_ has generators 1 + K2j+I for 0 <j <
2 22"-3 1, and we have constructed the units 1 + %., for 1 < k < On
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2the other hand, we need only 2n-3 elements. The explanation is that %
mod 2, by (3.9).

LEMMA 3.16. Let u(Z(An)) and u(Z(ZDn_l)) denote the images of the
central unit groups u(Z(An)) and u(Z(ZDn_x)) in u(Z(F2Dn_I)). Then for
n>2,

u(Z(21)n_l))/([l’(’Z("n) ) u("Z(ZDn_l))) - C X Cts_.
Proof. By (3.14), Gn X (cn_l) comes from central units in A and ZDn_.

The image of Sn in F2D is just F2[n], so no element in C Cts._ is hit by a
unit in S. Hence, it suffices to show that noting in C Ct_ is hit by a unit
in ZD,_ .

CLAIM. For n > 1, if

X ot + C + E’YiK "4- K -4- eKtn.
is a central unit, then e O.

Proof. We use induction on n.
For n 2, the image of x in ZD must be unit. However,

a + fl + 2"tg + 21K + 2eKts..
Since ZD is commutative and has no units of infinite order, the only units are
the + g, g D. Hence, i e 0.
For n > 2, consider again the image ff of x in ZDn_I; it has the form

n-1x a’ + [’c + ’[ K + 2K + 2eKts"n-1 -1"

By induction, 8 e 0, which proves both the claim and the lemma.
Combining all this, we get a complete inductive description of Picz(ZDn).

THEOREM 3.17. For n > 2 there are exact sequences

0 C Ct._ Picz(ZDn)
---, (CI(Sn) Picent(ZDn_l) ) Out(Dn) Hom(Dn, { +1))

and

0 C x Ct,_ Picent(ZDn) -o CI(Sn) x Picent(ZDn_).
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The case where n 2 needs separate treatment, but that has been done for
us by FrShlich [3, Theorem 18]:

THEOREM 3.18. Picent(ZD2) and Outc(ZD2) are each of order 2.

Remark 3.19. The unit group of ZD is +D1, and hence is elementary
abelian of order 8. Its image in u(F2D1) has order 4 and index 2. Since u(Z)
has trivial image in u(F2D1), Picent(ZD1) is generated by 1 + s + in F2D1.

We now turn to the description of the automorphism group of ZD,. From
[19] we have the split exact sequence

(3.20) 0 Outc(ZD,)
---) Outz(ZD,) Out(D,)" Hom(D,, ( + 1)) ---) 0.

Hence, it is enough to describe Outc(ZD) Ker(Picent(ZD) --, CI(ZD)).
It was shown by FrShlich, Keating and Wilson [4] that

(3.21) CI(ZD.) -= CI(S.) CI(ZD_I).

Hence, we have the commutative diagram with exact rows

(3.22)
1 ----+ C, X C,,.

0

Picent(ZD) -----, CI(S) Picent(ZD_) 1

CI(ZD,,) ----* CI(A,,) CI(ZD,,_ 1) O,

whence an exact sequence

1 ---) Ct X Cts. --* Outc(ZD,) --* Kerr’ Ker x,_ --, 1

of kernels.

LEMMA 3.23. Ker :’= Cl(Sn) 2 ((o’) CI(S): ,.2 is principal}.

Proof Since the Schur index of QA, is trivial, one has CI(A,) CI(F)
CI(S,), for any maximal order I’ A,, by [4]. The result now follows as in
[18].
We thus have:

THEOREM 3.24. There are exact sequences

0 C, X Cts Outc(ZD,) --, CI(S,) Outc(ZO,_) 0
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and

0 --) C Cts" Out(ZDn)

(CI(S) Outc(ZD,_l)) Out(D,). Hom(D,, (+1)) 0.

4. The quatemion 2-groups

Let

4.1) H. o..r" o,; 1. o,; =z .zo.z =o /

be the generalized quartemion group of order 2"+1, and put ,"
the central involution. Easy computations show:

LEMM 4.2. (1) For n > 1, the conjugacy class sums of ZH" are

(2) There is a natural homomorphism H" D’_ 1, given by o" s’_ 1, ,r -’9 t.
Its kernel is ’’), and it maps the class sums as follows:

for 4= 2"-2

(3) Every automorphism of H" stabilizing the conjugacy classes is inner, and
we have

Out(H) Cv-:" C2.
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LEMMA 4.3. We have a fibre product diagram

ZH. ZD._ 

1-’n F2Dn_ 1,

where (cf., [25]) F Z(’n, j) Z[’,] Z[’]j, with j2= 1 and ja j,
for a Z[’].

We note that as in the previous situations, Ker tpl 2. ZD,_I and Ker 2
2. Fn are characteristic in ZD,_I and F,, respectively. Hence, the Mayer-

Vietoris sequence can be applied.

THEOREM 4.4. Picent(ZH,) -= Picent(ZD,), for n > 1.

Proof For a prime p and any p-group G, we have the exact sequence

0 ---> CI(Z(ZG)) ---> Picent(ZG) -o Outc(G ) 1,

where Outc(G) Autc(G)/Inn(G), and Autc(G) is the group of automor-
phisms of G that stabilize the conjugacy classes [19]. Because of (3.2) and
(4.2),

Picent(ZH) CI(Z(ZH))

and

Picent(ZD,) CI(Z(ZD,)).

The result will follow if we prove:

CLAIM 4.5. Z(ZD,) --- Z(ZHn).Proof. It follows from (3.2) and (4.2) that the maps

1" ZDn "’> ZDn-1, 1" Znn -"> ZDn-1,

satisfy
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Moreover, the maps

satisfy

For, S is the center of A and of Fn, and it is generated by

bOl fD2 ( Sn q- S ) l2 ( On -}" Off-l).

It follows that the centers of znn and ZD are both pullbacks of

Imq)xlZ(ZD.) Im

and hence are naturally isomorphic. This proves both claim and lemma.

THEOREM 4.6. For n > 2, there is an exact sequence

1 C2 Outc(ZHn) Outc(Fn) Outc(ZDn_l) 1.

Moreover, Outc(ZH2)= 1.

Proof. From [24], we get the exact sequence of pointed sets

(4.7) 1 C D(ZHn) - LFI(ZHn) - CI(ZDn_I) LF(Fn) 1.

Using (1.12) and the description of Picent(ZHn), we get the following com-
mutative diagram with exact rows and columns"

1 C2
, LF(ZHn) CI(ZDn_) LF(Fn) ---+1

Picen(ZHn) Picent(Z/)n_l) CI(Sn) -----1

-----* OutcCZnn) ------OutcCZDn_l) X Clr+CSn) 1.
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Outc(ZDn_l) is described in [}3. We have put

Clr.(Sn) ((&’) CI(S)" ’F is a principal ideal).

We do not know whether Outc(I’n) -= CI(Sn) 2. It remains to determine the
image of ’. It was shown by Swan [25] that the projective module generating
C2 in (4.7) can be chosen as

Zn 3ZHn + I(ZHn),

where I(ZHn) is the augmentation ideal. Since Xn is surely an invertible
bimodule, it follows that ’ is surjective. Hence, the desired result follows
from (1.11), except for the case n 2, where C, C,o, is replaced by a cyclic
group of order 2, which gives Fr/Shlich’s result that Outc(ZH2)= 1. This
completes the proof.

THEOREM 4.8. Picz(ZH,) --- Picent(ZH,)Out(H,)Hom(H,, ( + 1 )).

Proof Let M be an invertible bimodule. Localizing at 2, we obtain from
M an automorphism a of Z2H. By [19], a modulo conjugation by units of
2Hn is of the form a Or, where 0 Out(H,) and v Hom(Hn, ( + 1}). In
particular, a is in fact a global automorphism and -xM is a central bimodule.

This also proves:

COROLLARY 4.9. Out(ZHn) Outc(ZHn). Out(H.). Hom(Hn, (+_ 1}).

Concludin.....g remarks 4.10. (1) For H,, n > 4, there remains the question of
whether Outc(ZHn) Out(ZHn). The answer is yes if and only if whenever- is an ideal of S, such that

 rzn , Zn. _= ZH.
as left ZHn-modules, ’ZH is a principal ideal. There can never be such an
isomorphism as bimodules. There is some evidence in [22] to suggest that

Outc(ZHn) Outc(ZHn).

We have been unable to find an example of a Z-order A and an invertible
bimodule M with a left A-module isomorphism M A -= A A with M not
left A-free.

(2) Let Kn denote the field of fractions of Sn. K, is totally real, and for
n > 2, it has an even number of embeddings into the real field. The central
Kn-division algebra An KnI’n has local invariant 1/2 at each of these
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embeddings, since -1 < 0 is fixed by all of them. Now, An clearly splits at all
finite primes of Sn except possibly at wnSn, which is the only prime of Sn
over the rational prime 2. But then Hasse’s description [8] of the Brauer group
of K implies that A must split at as well. Hence, a nontrivial division
algebra split at all finite primes "occurs in nature". This also shows an
example of a group algebra with trivial local Schur indices, but nontrivial
global ones, and reminds us not to neglect the infinite primes when using the
Hasse principal for quadratic forms.
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