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RNP AND CPCP IN LEBESGUE-BOCHNER
FUNCTION SPACES

ZuiBao Hu aND Bor-LuH LiN

In this paper we study the extremal structure of the unit ball of a Lebesgue
Bochner function space. Throughout, X will denote a Banach space, By the
unit ball, S, the unit sphere, X* the dual space of X, (Q,3, u) a positive
measure space, and 1 <p, g <o with1/p+1/q = 1.

Let K be a subset of X. A point x in K is a point of sequential continuity
of K if for every sequence (x,) in K, weak-lim,, x,, = x implies lim,,||x, — x||
= 0. The point of sequential continuity is a generalization of the point of
continuity. A space X has the Kadec-Klee property if every point x in Sy is
a point of sequential continuity of B,.

It is well-known that if (2, 3, u) is not purely atomic, then L?(u, X) with
the Kadec-Klee property must be strictly convex. This result, due to M. Smith
and B. Turett [ST)], is one of the most surprising results in the theory of
Lebesgue-Bochner function spaces. Our first main result (Theorem 2.2)
asserts that if (0, 3, n) is atom-free, then every point of sequential continuity
of B, ,(u, X) must be an extreme point of B; », x,. This gives a local version
of the result of Smith and Turett.

Theorem 2.2 has several interesting consequences; for example, it implies
that if (Q, 3, u) is not purely atomic then:

(i) The Radon-Nikodym Property (RNP) and the Convex Point of Conti-
nuity Property (CPCP) are equivalent for LP(u, X) and L?(u, X)*.

(ii) The super-RNP and the super-CPCP are equivalent for L?(u, X) and
LP(u, X)*.

Recall that the RNP implies the PCP (Point of Continuity Property) which,
in turn, implies the CPCP, and that RNP, PCP, and CPCP are distinct [BR],
[GMS1]. It follows that if X has the PCP but fails the RNP, and if (Q, 2, )
is not purely atomic, then L?(u, X) does not have the CPCP. Consequently,
neither the PCP nor the CPCP can be “lifted” from X to L?(u, X). We
would like to mention (1) it is still an open problem whether the super-RNP
and the super-CPCP are equivalent in general, (2) the RNP and the CPCP
are equivalent for Banach spaces with the Krein-Milman Property [Sc], and
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(3) the RNP and the PCP are equivalent for Banach lattices not containing
isomorphic copies of ¢, [GM].

Let f be a norm one element in L?(u, X). The condition that for almost
all ¢ in the support of f such that f(¢)/|lf(¢)ll is an extreme point of By is
strictly stronger than the condition that f is an extreme point of the unit ball
of L?(u, X) [G]. We do not know whether the conclusion of Theorem 2.2
can be strengthened so that f(¢)/I| f(¢)ll is an extreme point of By for almost
all ¢ in supp f. It is shown, however, that if (2, 3, ) is atom-free and that f
is a o(LP(u, X), L4u, X*))-point of sequential continuity of By, x,, then
f@) /Il f()ll is a strongly extreme point of B, for almost all ¢ in supp f, thus
f is in fact a strongly extreme point of B;», x, in this case.

Another generalization of the point of continuity is the point of small
combination of slices (SCS-points, for short). It is known [GGMS] that X is
strongly regular if and only if every non-empty bounded closed convex set K
in X is contained in the norm-closure of SCS(K). Schachermayer [Sc] proved
that a Banach space has the RNP if and only if it is strongly regular and it
has the Krein-Milman Property. We will show that the “point-version” of this
result is also true; i.e., if K is a closed convex set in X and x € K, then x is
a denting point of K if and only if x is both a SCS-point and an extreme
point of K. An example is given to show that we can not replace the point of
sequential continuity by the SCS-point in Theorem 2.2.

The main tool used in the proof of Theorem 2.2 is developed in Section I,
where we study the weak-convergence of sequences of vector-valued
Rademacher functions. The major part of Section II is devoted to the proof
of Theorem 2.2 and its consequences.

Section I

The usual Rademacher functions are associated with the dyadic partitions
of the unit interval. To define our “Rademacher functions” we use countable
partitions of () and a special index set.

Let T be the set consisting of all the finite sequences of positive integers
with the natural partial order; i.., (iy,...,i,) < (j,...,J,) if and only if
m <nand i, =j,, k=1,...,m, and with the empty set ¢ as the smallest
element in T. For a € T, let |a| be the cardinality of P, where P, =
{B:BeT,B<alandletT,={a:a €T, lal=nLn=201fa=0_(,...,i,)
and i is a natural number, then we also use ai to denote (iy,..., i, i).

We call a “subset” {E_}, . 7 of 3 a Rademacher tree of measurable sets if
it satisfies the following conditions:

Forall k > 0 and a € T}, {E_,}, ., is a partition of E, and u(E_,,_,) =
w(E,,,), and uw(E,) < o.

We say that a sequence {f,} of functions from Q to X is Rademacher if
there are a Rademacher tree {E, },.; in 2 and {x},c7 in X, @ € T such
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that for k > 0,

fe= E X Z (_l)nXE,,,,-

a€T, nx1

Each f, is called a Rademacher function, and {E},., is called a
Rademacher tree associated to {f,}, and {f,} is said to be determined by
{E,,x )}, e1- We use 3(T) to denote the sub-o-algebra of 3 generated by the
tree {E,}, < - It is obvious that each f, is 3(T)-measurable.

Prorosition 1.1. Every bounded Rademacher sequence in LP(u, X) is
null with respect to the o(L?(u, X), L%, X*)) topology. In particular, if X
is an Asplund space, then every bounded Rademacher sequence in LP(u, X) is
weakly null.

Proof. Suppose {f,} is a bounded Rademacher sequence in L?(u, X).
Let {E_}, . r be a Rademacher tree associated to {f,}. For x* in X*,r € T,
and k > m, we have

[ (#*xe, £u(1)) du(2) = 0.
Since span{x*xg: x* € X and 7 € T} is dense in L¥(u, 3(T), X*),

o(L?(w, X), L(s, 5(T), X*)) = lim £, = 0.

Let P be the conditional expectation projection from L%(u, X*) onto
L%, 3(T), X*) (see e.g. [Bi]), and suppose g € L%(u, X*). Since f, is
3(T)-measurable,

J (&) £u(6)) dne) = [ (Pe(e), filt)) du(®).

Hence {f,} is o(L?(u, X), L%, X*))-null. Finally if X is an Asplund
space, then L%(u, X*) is the dual of L?(u, X) [DU], so {f,} is weakly null.
QED

In general, it is not true that every bounded Rademacher sequence in
L?(u, X) is weakly null as shown by Example 1.2. In Theorem 1.3, we give a
sufficient condition for a Rademacher sequence in L?(u, X) to be weakly
null.

Example 1.2. Let X be the space /! with the usual norm, and u the
Lebesgue measure on [0, 1). If {r,} is the usual Rademacher sequence on
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[0,1), and {e,} is the canonical basis for /'. Define the X-valued sequence
{fe} by fi(¢) = ri()e, ., for ¢t in[0,1) and k > 0. Then {f,} is a bounded
Rademacher sequence in L?(u, X). It is easy to check that co{f,} is a subset
of the unit sphere. So the weak closure of cof f,} still lies in the unit sphere.
Therefore {f,} is not weakly null.

THEOREM 1.3. Suppose {f,} is an X-valued Rademacher sequence deter-
mined by {E, x )}, c 7. If {x,} is bounded and there is ¢, > 0 such that

li/lcn e, =0 and lxg—x,ll<e fork>0,a€T,,andp 2 a,
then {f,} is weakly null in L?(u, X), 1 <p < .

Proof. Let Q, be the natural projection from U, (T},; to T, i.e., for
each a € T, ;, Q;(a) is the unique element in T} such that Q,(a) < a.

Claim. Forallte€ Q,k>1andi>0,

feel) = T x0T (-1 xEM(t)"<ekxE¢(t).

a&€T, k+i

We only need to prove this for ¢ € E,. Note that {E,,: @ € T} ,, and
n > 1} is a partition of E,, soif ¢t € E,, then t € E for some y € T;,; and
s > 1. Thus f, () = (- 1)‘x and

> ka(a) Z (=1 "xe, (1) = (=1)’8(tg,())-

a€Tyy,

So we have

fesr(®) = X ka(a) Z (-1 XE,,,,.(t)“ ="(_1)Sxy - (—1)Ska(‘Y)||

a€ET, k+i
= Xy~ ka(v)" < &
= e xe (1)

Assume that {f,} does not converge weakly to 0. Then there exists
F € LP(u, X)* with ||F|| = 1, a subsequence {f, } of {f,} and & > 0, such
that F(f,)> 8 for k> 1. It follows that for every h € co{f, : k = 1},
Al = F(h) > 8.

For k>1, let hy=X,cr,X,.{(—1D"xg,. Then {h;} is a bounded
Rademacher sequence in LP(u). By Proposmon 1.1, w-lim, A, =0, so
w-lim , = 0. Choose M > u(E)"/? such that |lx | <M for all a € T.
Then choose k, > 1 with ¢, o < 8/3M. Since {h,, k} is weakly null,there exist
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A;20,1<i<m,with £ A; = 1 such that

m

é
E)tihnkoH < IM"
i=1
Then
m
Y Aifngui| > 0
i=1
On the other hand,
m m n
Zhifn,,oﬂ- < Z)‘i(fn,,o,,,- - X X 0n (@) Y (-1 XE,,,,)
i=1 i=1 @€l , nx1
o n
+H XA X X Ony() (-1 XE,,
i=1 a€l, n>1
m m
< XA EnkoXE¢|l +| X XoXE,, > Aihn,‘oﬁ
i=1 i=1

arETm‘0

1
T4

m
1
)‘isnkol-"(E) ” 4+ E XoXE,, Z Aihnk0+i
i=1

i aETnko
i m
< e, w(E)"7 + ( max ux,,u) Y Ak,
’ @&, i=1 °
o é
< 3 + M(3_M) < é,

which is impossible. Therefore {f,} does converge weakly to 0. QED

Next we consider a special construction of Rademacher tree of measurable
sets.

LemMma 1.4 [D, p. 154].  Suppose (2, 3, w) is atom-free. Then for any E in
3, with uw(E) < =, there exists a partition {E,, E,} of E such that u(E;) =
p(E,).

Recall that an atom in 3 is a measurable set E in 3 such that for any
measurable subset F of E, either u(F) = 0 or w(F) = u(E). We say that
(Q,3, u) is atom-free if 3 does not contain any atoms of positive finite
measure.
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LemMma 1.5. Suppose that (Q, 3, u) is finite and that f; is a separably
valued measurable function from Q to Banach space X; for 1 <i < k. Then
for any € > 0, there is a partition {E,} of Q such that diam f(E,) < e,
1<i<k, n>1 If, in addition, (Q,3, u) is atom-free, then we may also
require that u(E,,_,) = u(E,,) > 0.

Proof. The first conclusion is obvious. To prove the second one, first we
choose a partition {F,} of Q such that u(F,) >0 and diam f(F,) <e,
1<i<k,n>1, then by Lemma 1.4, we choose for each n > 1 a partition
{E,,_1 E,,} of F, such that u(E,,_,) = u(E,,). Then {E,} is the partition
of Q) we wanted. QED

Using Lemma 1.5, it is easy to prove the following result.

ProposiTiON 1.6.  Suppose that (Q, 3, ) is atom-free and f; is a separably
valued measurable function from Q to Banach space X; for 1 <i < m. Then
forany ¢, > 0,k > 0, and E in 3, with 0 < u(E) < o, there is a Rademacher
tree of measurable sets {E,}, < in Q such that

E¢ = E, I’L(Ea) > 0, diam _f‘(Ea) < 7%

forl<i<m,k>0,and a € T,.

Section II

Recall that X is said to have the Schur property if every weakly convergent
sequence in X is norm convergent. It is obvious that X has the Schur
property if and only if 0 is a point of sequential continuity of By. If K is a
subset of X, we use psc K (resp. ext K) to denote the set of points of
sequential continuity (resp. extreme points) of K.

LemMA 2.1. Suppose that K is a bounded closed convex set in X and that
x € psc K. If x = 3(y + z) for some y and z in K, then both y and z are points
of sequential continuity of K. Thus if X fails the Schur property and x is a point
of sequential continuity of By, then ||x| = 1.

Proof. We only need to show that y € psc K. So let (y,) be a sequence in
K which converges weakly to y. Then w-lim,, 3(y, + z) = x and 3(y, + z) €
K, thus lim, 3(y, + z) =x = 3(y + z). It follows that lim, y, = y. Hence
y € psc K. QED
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THEOREM 2.2. Suppose (Q, 2, u) is atom-free. Then every point of sequen-
tial continuity of By s, x, is an extreme point of By, xy

Proof. Let f & psc By, x Since LP(u, X) contains a copy of L?(u)
which fails the Schur property, by Lemma 2.1, ||f]l=1. Assume f &
ext By », x) There is g € L”(,u,X) with [lgll > 0 and ||f + gll = 1. Since
£l = 12 llf + glland f = 3[(f + g) + (f — g)], and since LP(u) is strictly
convex, we conclude that || f(t) + g(Oll = I f(®)l for almost all ¢ € Q. With-
out loss of generality we may assume that ||f(¢) + g(¢)ll = || f(¢)ll for all
t € Q and that both f(Q) and g({)) are separable.

Since ||g]l > 0, there is M >0 and E in 3 such that w(E) > 0 and
1/M < |lg()ll < M for all ¢ in E. Then u(E) < . By Proposition 1.6, there
exists a Rademacher tree of measurable sets {E, )}, o, in Q such that for
k>0, and a € T,, we have

E,=E, w(E,) >0, diamf(E,) <27% and diam g(E,) <27~
For each @ € T, pick an element ¢, € E, and define, for £ > 0,

Y oe(t,) X (—1)nXEa,,'

a€T, n=1
By Theorem 1.3, {g,} converges weakly to 0.
Claim. lim.|lf + g.ll = 1.
If t € Q\E, then (f + g, Xt) = f(2), so [[(f £ g )OIl =l fDIl. If ¢t € E,

then for k > 1, there is @ € T and n > 1 such that t € E,,. Thus g,(¢) =
(—Drg(z,). Since

diam f(E,) <27%, t€E,, t,€E,, and [f(t,) £e(t)]|=]f(t)],

we have

ICf £ =1£(2) £ (-1)"g(2)]
<l £(0) = F) I+ £(2) £ (-1 "8(2) |
=l£(e) = FC) I+l £
<IF) N+ 2 £(e) = Fe) I <N F() N+ 275+,

Therefore ||f + gl < I fIl + 27%+1w(E)/?. 1t follows that lim, || f + g.ll =
IfIl =
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Since lim, || f + g.ll = 1 and weak-lim,(f + g,) = f, we have
lim(f +84) = £,

i.e., lim,|lg.ll = 0. On the other hand, since |lg(t)ll > 1/M for t € E, we
have llg.ll = 1/M)u(E)*/? > 0, which is impossible. Therefore f e
ext By s, xy QED

We say that (Q, 3, u) is not purely atomic if there is E in 3 such that
0 < uw(E) < =, and E contains no atoms, that is, (E, 3z, ug) is atom-free,
where u be the restriction of u to 3z = {F: F € 3 and F C E}.

CoroLLARY 2.3 [ST]. Suppose that (Q,3,u) is not purely atomic. If
LP(u, X) has the Kadec-Klee property, then X is strictly convex.

Proof. Since (Q, 3, u) is not purely atomic, there is E in 3 such that
0 < uw(E) < and (E, 35, ug) is atom-free. Since LP(ug, X) is isometri-
cally isomorphic to a subspace of L?(u, X), the space L?(ug, X) has the
Kadec-Klee property. By Theorem 2.2, every unit vector in L?(ug, X) is an
extreme point of the unit ball, thus L?(u g, X) is strictly convex. Therefore X
is also strictly convex. QED

If K c X, the slice of K determined by the functional x* in X* and § > 0
is the subset of K given by

S(x*,K,8) = {x € K: x*(x) >supx*(K) — 8}.

Let x € K. Then x is called a denting point of K if the family of all slices of
K containing x is a neighborhood base of x with respect to the relative norm
topology on K. And x is said to be a point of continuity of K if the relative
weak and norm topologies on K coincide at x. If K c X*, K # §§, then
weak* slices, weak® denting points, and weak® points of continuity of K are
defined similarly. We use dent K (resp. pc K, w*dent, w*-pc K) to denote
the set of denting points (resp. points of continuity, weak® denting points,
weak* points of continuity) of K.

By definition, a denting point is a point of continuity, and a point of
continuity is a point of sequential continuity. It is known that x € dent K if
and only if x € pc K and x € ext K [LLT]. Thus by Theorem 2.2, the
following assertion follows.

CoROLLARY 2.4. Suppose that (Q, 2, u) is atom-free and f in L?(u, X).
Then f is a point of continuity of By (w, X) if and only if f is a denting point of
BLP(IJ'a X)
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A Banach space X has the RNP if every non-empty bounded closed set K
in X has a denting point. X has the CPCP (resp. PCP) if for every
non-empty bounded closed convex (resp. bounded closed) set K in X,
pc K # ¢. It is obvious that the RNP implies the PCP, and the PCP implies
the CPCP, but these three properties are distinct. The dual version of PCP,
in which one considers weak* point of continuity, is the same as the
corresponding dual version of RNP, which in turn is the same as RNP itself
[St]. However, the dual version of CPCP, denoted by C*PCP, is distinct from
RNP [GMS2]. It is clear that C*PCP implies CPCP, though the converse is
not true [DGHZ].

CoroLLARY 2.5. Suppose (Q, 3, n) is not purely atomic. Then the RNP
and the CPCP are equivalent in both L?(u, X) and L?(u, X)*.

Proof. Suppose that L?(u, X) has the CPCP. Let | | be an equivalent
norm on X. Choose E in 3 such that 0 < u(E) < » and (E, 3, ug) is
atom-free. Since L?(u, X) has the CPCP, the space L?(ug,(X,| |)) which
is isomorphic to a subspace of LP(u, X) also has the CPCP. Hence there
exists f inpc By s, (x,| |y Then f must be a denting point of By s, (x,| |y
following Corollary 2.4. By a result in [LL], it follows that f(¢)/|f(¢)| €
dent By, |, for almost all ¢ € supp f. Thus dent By | |, is not empty. There-
fore X has the RNP (see e.g. p. 30 [Bi]), and hence L?(u, X) has the RNP
[DU]. The converse is obvious.

Now suppose that L?(u, X)* has the CPCP. The space L%(u, X*), being a
subspace of L”(u,X)*, also has the CPCP. As a consequence of the
previous paragraph, the space L%(u, X*) has the RNP. Thus X* has the
RNP, which implies that L?(u, X)* has the RNP [DU]. The converse is also
obvious. QED

Recall that a normed space Y is said to be finitely representable in a
normed space E, if for each ¢ > 0 and finite dimensional subspace F of Y,
there is a 1-1 linear operator

T:F—> T(F) CEwith |ITIIT Y <1+e.

If (P) is a property defined for Banach spaces, X is said to have the property
“Super (P)” if every Banach space finitely representable in X has the
property (P). It is known that X is super-reflexive if and only if it is
super-Radon-Nikodym. It is an open problem whether super-RNP and
super-PCP are equivalent.

PROPOSITION 2.6. Suppose X ®, X is finitely representable in X for some p.
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Then X has the super-RNP if and only if X has the super-CPCP.

Proof. Suppose X has the super-CPCP. Let Y be a Banach space finitely
representable in X. Then [?(Y,), where Y, =Y, n > 1, is finitely repre-
sentable in /?(X,), where X, = X. Let u be the Lebesgue measure on [0, 1).
Then u is atom-free.

Claim. LP(u,Y) is finitely representable in X.

Let E be the linear span of simple functions in L?(u,Y). Since E is dense
in L”(u,Y), the space L”(u,Y) is finitely representable in E. It is obvious
that E is finitely representable in /7(Y,), in fact, every finite dimensional
subspace G of E is isometric to a subspace of /?(Y,). Thus L?(u,Y) is
finitely representable in [7(X,). Since X &, X is finitely representable in X,
it follows that /7(X,) is also finitely representable in X. Thus L?(u,Y) is
finitely representable in X.

Since X has the super-CPCP, the space L?(u,Y) has the CPCP. By
Corollary 2.5, L?(u,Y) has the RNP. Thus Y has the RNP. Therefore X
has the super-RNP. The converse is obvious. QED

CoROLLARY 2.7. Suppose that (), 3, u) is a measure space which is not
purely atomic or which contains infinitely many atoms of finite positive measure.
Then in both LP(u,X) and L?(u, X)*, super-RNP and super-CPCP are
equivalent.

Proof. In each case, L?(u, X) &, L?(u, X) is finitely representable in
L?(w, X). Thus LP(u, X) has the super-RNP if and only if it has the
super-CPCP.

Now suppose that L?(u, X)* has the super-CPCP, then L%(u, X*), being
a subspace of L?(u, X)*, also has the super-CPCP. Thus L7(u, X*) has the
super-RNP, and in particular X* has the RNP. Therefore L?(u, X)* =
Li%(u, X*) [DU], and so L?(u, X)* has the super-RNP. The converse is
obvious. QED

Suppose K is a subset of X and x € K. For a given £ > 0, we say that x is
an e-strongly extreme point in K if there is a 6 > 0 such that for any y in X,
the conditions d(x +y,K) <& and d(x —y,K) <& imply that ||yl <e,
where d(x, K) is the distance between x and K. Then x is called a strongly
extreme point of K if x is an e-strongly extreme point in K for all ¢ > 0. We
use str-ext K to denote the set of the strongly extreme points of K. By
definition, strongly extreme points are extreme points, but the converse is not
true [M]. It is obvious that if K is convex and d(x + y, K) < & then for any
0 <A <1, we have d(x + Ay, K) < 8. Thus if K is convex and x is not
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e-strongly extreme in K, then for any 6 > 0, there exists y in X such that
d(x +y,K) < and |yl = &.

THEOREM 2.8. Suppose that (Q, 3, u) is atom-free and f is a
o(LP(w, X), L%, X*))-point of sequential continuity of B, (u, X), i.e.,

lim f = f if o(L?(4, X), L, X*)) = lim fy, = f

and {f,} is in B, (u, X). Then ||fll =1 and f(¢)/lf(t)|l € str-ext By for
almost all t in supp f. Thus f is a strongly extreme point of B, (., X).

Proof. By Theorem 2.2, the norm || f|| = 1. Without loss of generality, we
may assume that f(Q) is separable. Define

_ . S
D {t.t6suppfand ||f(t)|| & str extBX}

and define, for each m > 1, the set

_ /.. f(e) .
D, {t. teD,|f(t)| > 1/m, and 7O is not

1/m-strongly extreme in B X} .

Then D is the union of D,,. Assume that it is not true that f(¢)/Ilf(¢)|l €
str-ext By for almost all ¢ in supp f, that is, u*(D) > 0, where u* is the
outer measure associated to u. Then there is m such that u*(D,) > 0.
Choose a measurable set E C supp f with u(E) = u*(D,,) and D,, C E. It is
obvious that u(E) < «. By Proposition 1.6, there is a Rademacher tree of
measurable sets {E_}, . in Q such that for 1 <i <m, k>0, and a € T},
we have

E,=E, w(E,) >0, and diam f(E,) <27~

It is obvious that for each @ € T, u*(A N E,) = u(E,). For each a € T,
pick an element ¢, € 4 N E, and choose x, € X such that

t
x|l = 1/m and “l—lﬁ—)— tx, 51+2—}a-|.

f)ll
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For each k > 0, define

&= L If(t)lxe X (-1 "xe,,

aETk nz1

Claim. For k > 1, llgll < 3 fIl + 27%*2u(E)'/? and lim, || f + gl = || fIl
=1.

If t € Q\E, then (f + g,)(#) = f(1), so I[(f £ g )OI = llfIl. If ¢t € E,
then for k > 1, there is @ € T and n > 1 such that ¢t € E_,,. Thus g,(¢) =
(- D"If(t )l x, and so we have

ICf £ 2O <1 £(2) = F(E) |+ £(22) £ (1) [F(2)lIx,]

~17) = Fe I+ | sy

<1 = Fel + (14 3 1S

+(-1)"x,

< (14 5@l + (24 55170 = 7))
< (1 + 2R (0 + 27

Therefore || f + g/l < (1 + 270 fIl + 27*+2u(E)!/P. 1t follows that

lgell < 3IfIl + 27%*2u(E)'” and lillcnllf gl =Ilfll=1.

Since {g,} is a bounded Rademacher sequence in L?(u, X), by Proposi-
tion 1.1, it is o(LP(u, X), LY, X*))-null. Thus

o(LP(u, X), L%(p, X*)) — limf+ g, =f and Hmllf + gl =lIfll=1.

Since f is a o(L?(u, X), L% u, X*))-point of sequential continuity of
B, u, X), we conclude that lim, f + g, = f. Thus lim,[|g,/l = 0. On the
other hand, since ||g,(¢)ll = 1/m? for ¢t € E, the norm

ligll = (1/m?*)u(E)'” > 0,
which is a impossible. Therefore
F()/NF(E)Il € str-ext By

for almost all ¢ in supp f. Hence f is a strongly extreme point of B; (s, X)
[Sm2]. QED
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In addition to its sequential generalization, the point of continuity has a
“slice generalization”, namely, the point of small combination of slices
(SCS-point). Let K be a convex set of X, the point x € K is called a
SCS-point of K [GGMS] if for each ¢ > 0, there exist slices S; of K and
A >0,i=1,...,n with X7 _;A; =1 such that diamX}_,A;S; <e and x €
L7 1A;S;. Let SCS(K) denote the set of all SCS-points of K. If K isin X*, a
w*-SCS-point of K is defined similarly except the slices S; of K are weak™*
slices. It is clear that pc K € SCS(K) (resp. w*-pc K ¢ w*-SCS(K)) for all
convex sets K in X (resp. X*).

It is known [GGMS], [R1] that X (resp. dual space X*) is strongly (resp.
w*-strongly) regular if and only if every non-empty bounded closed convex
set K in X (resp. X*) is contained in the norm-closure (resp. weak* closure)
of SCS(K) (resp. w*-SCS(K)). Schachermayer [Sc] proved that a Banach
space has the RNP if and only if it is strongly regular and it has the
Krein-Milman Property. The “point-version” of this result is also true and it
extends the result in [LLT].

PrOPOSITION 2.9. Let K be a closed convex set in X* and let K* be the
weak™® closure of K. Then:

(1) w*-pc K = w*-pc K*. _
(2) w*-SCS(K) = w*-SCS(K*).
(3) w*-dent K* = w*-dent K = (w*-pc K) N ext K =w*-SCS(K) Next K.

Proof. (1) Let x* € w*-pc K*. Since the weak* and norm topologies on
K* coincide at x*, we have x* € K = K. Thus x* € w*-pc K.

Conversely, if x* € w*-pc K, then for each ¢ > 0, there are x;,...,x, in
X and 6 > 0 such that diam V' < ¢, where

V={y*:y*eK,(y*x)>(x*x)-8,i=1,...,n}.

U={y*:y* e K*, (y*,x) > (x*,x) = 8,i=1,...,n}.

Then U is a w*-neighborhood of x* in _I? * and V is weak™ dense in U. Thus
diam U = diam V < &. So x* € w*-pc K*. _

(2) Let x* € w*-SCS(K*). It is obvious that every weak* slice of K*
contains a point of K. Hence, by the definition of w*-SCS-points, x* € K =
K. Therefore x* € w*-SCS(K).

Conversely, if x* € w*-SCS(K), then for each & > 0, there exist w*-slices
S;of Kand A; > 0,i = 1,...,n with £}_;A; = 1such that diam X7_;A;S; <e.
We assume S; = S(x;, K, ;) for some x, in X and §; > 0. Since
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L7 A S(x;, K*,8) is a subset of the weak* closure of L7_;A;S;, we have
diam I7_;A;8(x;, K*, §;) < e. Hence x* € w*-SCS K*.

(3) It is obvious that
w*-dent K* C w*-dent K  (w*-pc K) N ext K ¢ w*-SCS(K) N ext K.
To complete the proof we only need to show
(W*-SCS K) N ext K c w*-dent K*.

So let x* € w*-SCS(K) N ext K. For each ¢ > 0, there exist weak* slices S,
of Kand A;>0,i=1,...,n with £7_;A;, = 1 such that diam ¥ ,A;S; <e
and x* € L} |A;S,. Since x* € ext K, x* must belong to N7_;S;. Thus
N7%.;S; is a weak* neighborhood of x*. Note that diam N7_S; <
diam X7_A;S; <, so x* € w*-pc K.

Next we show that x* € ext K*. Assume x* = (y* +2z*)/2 for some
y*, z* in K*. Since x* € w*-pc K = w*-pc K*, it follows that y*, z* € w*-
pc K* (see the proof of Lemma 2.1). By (1), y*, z* € K. Thus x* = y* = z*
because x* € ext K. So x* € ext K*. Since x* is a weak* point of continu-
ity and an extreme point of the weak® compact convex set K* N By«(x, 1),
the weak™ slices of K* N By«(x,1) containing x* is a norm neighborhood
base at x*. Therefore x* € w*-dent K* N By«(x,1). Hence x* € w*-
dent K* [B]. QED

CoRrOLLARY 2.10. Let K be a closed convex set in X and let K* be the
weak™ closure of K in X**. Then:

(1) pc K = w*-pc K*.

(2) w*-dent K* = dent K = pc K N ext K = SCS(K) N ext K.

Proof. This follows immediately from Proposition 2.9 and the facts that
w*-dent K = dent K, w*-pc K = pc K, and w*-SCS(K) = SCS(KX), QED

Note that for any f € L%(u, X*) and g € L?(u, X), the action of f on g
is defined by

(f:8) = [ (f(1), (1)) du(r) [DU].

It is obvious that the space L%(u, X*) is a subspace of L?(u, X)*, and that
L%p, X*) norms LP(u, X). So if K= Bjg, x+, then K* =B, xx.
Hence the following result is a corollary of Proposition 2.9.



RNP AND CPCP IN LEBESGUE-BOCHNER SPACES 343

CoroLLARY 2.11. The following assertions are true:

(1) w*-pc By, x*) = W*-PC By s, xy*-

(2) w*-SCS Byq(,, x*) = W*-SCS By s, xy*-

(3) w*-dent By s, xy» = W*-dent Byq(, xx, = W*-SCS(Byq(, x*) N
ext BL"(p., X*y

If (Q,3,u) is atom-free, then every weak* point of continuity f of
BLq(p x*, is an extreme point of By, xx. (Corollary 2.4), by Corollary 2.11,
it is a weak* denting point of B, x+, Thus we have the following result.

CoROLLARY 2.12. Suppose that (Q, 3, u) is atom-free and fin L?(u, X)*.
Then f is a weak™ point of continuity of By s, xy if and only if f is a weak™
denting point of By »(, xy-

The next example shows that we can not replace the point of sequential
continuity by SCS-point in Theorem 2.2.

Example 2.13. Let Y be a Banach space such that it contains no copies of
I' but its dual Y* does not have the RNP [GMS2]. Let X = Y* and let
K = By s, xy By taking equivalent norms, we may assume that w*-dent
By« = ¢ [Bi]. Let u be the Lebesque measure on [0, 1). Since Y contains no
copy of I!, the space L9(u, X) also contains no copy of ! [P]. By a result of
J. Bourgain [Ba], L%(u,Y)* is weak* strongly regular. Thus K is contained
in the weak* closure of w*-SCS(K). So the weak* closure of the w*-SCS-
points is By, yy. Were a w*-SCS point f an extreme point, that point f
would be a weak™ denting point of By »(u,y*y by Corollary 2.11. But then by a
result in [HL], for almost all ¢ in the support of f, f(¢)/Ilf(¢)ll would be a
weak* denting point of By, which contradicts the fact that w*-dent By« = ¢.
Therefore none of these w*-SCS-points is an extreme point of K. By
definition, w*-SCS(K) c SCS(K), so in Theorem 2.2 we can not replace the
point of sequential continuity by the SCS-point.

If (Q,3,u) is purely atomic and finite, then there exists an at most
countable partition 7 of () such that every element in 7 is an atom of
positive measure. For each E in m, let X, be the space X. Define mapping
T from LP(u, X) to I(Xg)g e bY

T(f)(E) = w(E)"” [ £(1) du(®).

Thus T(fXE) = u(E)Y/?f(¢) for almost all ¢ in E. It is obvious that T is an
isometric embedding. Partly because of this, in the rest of this section we will
consider the space /?(X;), instead of L?(u, X) with (Q, 3, u) being purely
atomic.
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ProrosiTion 2.14. Let {X,)};., be a family of Banach spaces and let
f=(f(@)); < be a unit vector in I°(X,). Then f € psc Bys(x, (resp. pc Bysx,;
ext By xy; or dent By ) if and only if f(i) /Il f(Il € psc BX (resp. pc By ;
ext BX, or dent By) forz € supp f.

Moreover, the weak* version of this statement is also true.

Proof. Suppose f € psc Byp(x,. Fix i € I with f(i) # 0. We use By(x,r)
to denote the ball in X with center x and radius r. Let {x,} be a sequence in
Bx(0, | f(DID such that w-lim,, x, = f(i). For each n define

f(]) ifj#i
ifj=i’

fui) =

Then f, € Bjpx, and weak-lim, f, = f. Hence lim, I|f, — fll = 0 and so
lim,, ||lx, — f(z)ﬁ 0. Therefore f(z) € psc By (0, || f(DID which is equivalent
to f(z)/l| f@Il € psc By,

Conversely, suppose f, € By, Wwith weak-lim, f, = f. Then weak-
lim, £,(i) = f(i), i €I and w-lim, 3(f, + f) = f. Since [Ifll=1 we must
have lim,, [IZULF N+ IFCIDI = 1 in IP(I). By the uniform convexity of
1P(D), lim,, 1 £,(ON = ILfCI = 0. So for each i € I, lim,, || £, (DIl = || fG)Il.
Using the fact that f(i) € psc By(0, | f()I]), we can conclude that lim,, || f,(i)
— f()ll = 0. Hence lim,, || f, — fIl = 0, and so f € psc Byrx,)-

The proofs for pc, w*-psc and w*-pc points are similar while that for
extreme points can be found in [Sm1]. The conclusion for denting (resp.
w*-denting) points follows from Proposition 2.9. QED

As a corollary of Proposition 2.14, if (0, 3, u) is purely atomic and f is a
unit vector in LP”(w, X), then f & psc Bys, x, (resp. pc Bpy, xy
dent By 5, X)) if and only if f(¢)/Ilf(¢)ll € psc By (resp pc By; dent By) for
almost all ¢ in supp f.

For the proof of our next result, we need the following facts: X has the
CPCP (resp. PCP) if and only if given & > 0 and any non-empty bounded
convex (resp. bounded) set K in X, there is a relatively weakly open set V' in
K with diameter less than &; X* has the C*PCP if and only if given ¢ > 0
and any non-empty bounded convex set K in X*, there is a relatively weak™*
open set V' in K with diameter less than & (see [R2]).

THeEOREM 2.15. Let {X,, i € I} be a family of Banach spaces. Then:

(1) 17(X;) has the CPCP (resp. PCP) if and only if each X; has the CPCP
(resp. PCP).

(2) 17(X,)* which can be identified as 1(X}*) has the C*PCP if and only if
each X* has the C*PCP.



RNP AND CPCP IN LEBESGUE-BOCHNER SPACES 345

Proof. Assume that each X, has the CPCP and I = {1,2}. Since the
CPCP is an isomorphic invariant, it suffices to show that the space

X = {(xl’x2)3 X, €X,0=12[(x, %) = max(||x, |, ||x2||)}

has the CPCP.

Let A be a non-empty bounded convex set in X and let P;: X — X,
i = 1,2, be the natural projection. Let 4, = P,(A). Since X, has the CPCP,
there exist x, @; >0, j = 1,...,n such that diam N}_,S(x}, 4;,a;) <e.
Let

Pl‘l(jr:]IS(x;",Al,aj))].

Then A, is a non-empty bounded convex set in X,. Since X, has the CPCP
there are y¥, b, > 0, k = 1,...,m such that diam N}_,S(y¥, 4,,b,) <e.
Put

V= {(xl’ Xp): (%1, %) €A, xf(x;) > sup xf(A4;) — a;, yi(x,)
>sup yi(Ay) — by, j=1,...,n,k= 1,...,m}.

Then V is a weakly open set in 4 with diameter less than e. Therefore X
has the CPCP.

To prove the general case, let E = [?(X;) and let 4 be a non-empty
bounded closed convex set in E. Without loss of generality, assume that
sup{llx|, x € 4} = 1. Given ¢ >0, we can choose 0 <¢e; <1—[1-—
(e/3)P1/? and x = (x;);<c; in A with ||[x||” > 1 — ¢,. Then there exists
ir€I, k=1,...,n, such that Z;’=1|Ixik||” >1-—e¢,. Foreach k =1,...,n,
choose x} in X such that ||x}[I¥=Ilx;[I” and (x},x;) =llx,|I”. Let
x* = (x¥);c; where xf =0forall i #i,, k=1,...,n. Then x* € [9(X}),
lx*l < 1 and (x*, x) = Ef_llx, I > 1 — ¢,

Let E, =l”(X,~1,...,X,.n), E,=1"(X;:i€l,i+#i,k=1,...,n) and let
P: E — E, be the natural projection. Without loss of generality, we may
regard E, and E, as subspaces of E. Let § = sup x*(A4) — 1 + &,. Then for
any y = (y,);<; in S(x*, 4, 6) we have

1Pyl = (x*, Py) = (x*,y) > 1=, > [1 = (¢/3)"] .

Hence

ly = Pyll = (lIyll* = I1PylI?)'7* < e/3.

By the first part of the proof, E, has the CPCP. So there is a weakly open set
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V, in E; with
diam{V; N P[S(x*, 4, 8)]} <e/3.

Let V= (V;, ® E,) N S(x*, 4,8). Then V is non-empty and weakly open in
A and for any y and z in V, we have

ly —zll < lly — Pyll + lIPy — Pzll + [IPz — z|| < e.

Hence the diameter of V is less than or equal to £ and so E has the CPCP.
The proofs of the remaining assertions are similar. QED

Remark 2.16. The PCP is a three-space property; i.e., if Y is a subspace
of X such that both Y and X/Y have the PCP, then X also has the PCP
[R2], and this fact implies that /”(X;),., has the PCP if I is finite and X;
has the PCP for every i € I. However it is unknown whether CPCP or
C*PCP is a three-space property.
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