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LUSTERNIK-SCHNIRELMANN COCATEGORY

MARK HOVEY

1. Introduction

In the last ten years there has been a revival of interest in the (Lusternik-
Schnirelmann) category of a topological space X. Recall the classical defini-
tion: a space X has category < n if and only if it can be covered by n + 1
open sets, each of which is contractible in X. This revival came from rational
homotopy theory. Finite category seems to be the right finiteness restriction
on a rational space.

Cocategory is much less well understood than category. In fact it is not
clear that we have the right definition of it yet. The first attempt to define
cocategory was made by Ganea in 1960 [4] and [5]. His invariant, which we
will call inductive cocategory, satisfied many of the properties for which one
would hope. The most fundamental of these are the following:

1. The spaces of cocategory one are the H-spaces.
2. In a space of cocategory n, Whitehead products in the homotopy of

length greater than n vanish.
3. In a fibration, the cocategory of the fiber can be no bigger than the

cocategory of the total space plus one.

However, inductive cocategory has a rather inscrutable definition. Not
many papers were written about it. Then in his Oxford thesis, Hopkins
pointed out that .there is more than one natural choice for a definition of
cocategory. He introduced symmetric cocategory, which he proves satisfies
the first two properties above. He also shows that symmetric cocategory is at
least as big as inductive cocategory, but he is unable to determine if they are
equal (see [8]).
At about the same time Sba’i investigated rational cocategory. There is an

obvious choice for a rational definition of cocategory, using the Quillen
model and dualizing a definition of F61ix and Halperin in [2]. Sba’i was trying
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to show that inductive cocategory localized to give rational cocategory. He
was only able to show that inductive cocategory was less than or equal to
rational cocategory.

In this paper, we introduce a new definition which we will call simply
cocategory. Cocategory has some advantages over the previous two defini-
tions. It dualizes Whitehead’s definition of category, so it is defined by a map
making a suitable diagram commute. This means it fits into the general
framework for numerical invariants devised by Peterson in [10]. No previous
definition of cocategory has ever done that. Also, it is perfectly obvious that
the spaces of cocategory one are the H-spaces. With the other definitions,
too much thought is involved for such a basic property.

Cocategory satisfies the first two properties above. As with symmetric
cocategory, we do not know at this point if it satisfies the fibration property.
In particular, we don’t know how many of the three invariants cocategory,
inductive cocategory, and symmetric cocategory are distinct. However, we do
know that rational cocategory does not satisfy the fibration property and so is
not the rationalization of inductive cocategory. This disproves a conjecture of
Sba’i. The relations that we know of between the definitions are as follows.
Inductive cocategory is less than or equal to symmetric cocategory and (for a
rational space) rational cocategory, and is not always equal to rational
cocategory. Cocategory is also less than or equal to rational cocategory (again
for a rational space).
The fact that rational cocategory does not satisfy the fibration property

could be a serious drawback. After all, one certainly wants n-stage rational
Postnikov towers to have rational cocategory less than or equal to n. We can
not at this point prove a suitable weakening of the fibration property, but we
feel we know what the right weakening should be.
The methods of proof in this paper include the results on homotopy

inverse limits of Bousfield and Kan in [1], and the machinery of rational
homotopy theory. A good reference for the latter is [14]. The paper is
organized as follows. In the first section we develop the thin product, a
functor dual to the fat wedge needed to define cocategory. We also define
cocategory. The second section contains an analysis of the homotopy of the
thin product which enables us to prove the Whitehead product property
above. In the third section we show that, for rational spaces, cocategory is
less than or equal to rational cocategory. Finally, the fourth section contains
an example to show that rational cocategory does not satisfy the fibration
property, thereby showing that rational cocategory is not the same as induc-
tive cocategory for rational spaces. This disproves a conjecture of Sba’i. We
also make some conjectures which would clarify the situation.
The research in this paper formed part of the author’s Ph.D. thesis. I

would like to thank my thesis advisor, David Anick, for many helpful
discussions.
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2. Cocategory

In this section we define a new functor, the thin product, and use it to
define cocategory. Throughout this section we will be using the results of [1],
especially Chapter 10, and we refer the reader there for definitions. In
particular, we will assume familiarity with homotopy inverse limits and
homotopy direct limits.
We would like to dualize the Whitehead definition of category mentioned

in the preceding section. To do this we realize the fat wedge as a homotopy
direct limit.
Throughout this paper we will use " for the category of pointed topologi-

cal spaces and pointed continuous maps, and X will denote such a space. If
C is a small category -c will denote the diagram category. Recall that the
fat wedge of X1,..., X is the subspace of the product consisting of points at
least one of whose coordinates is the basepoint. Whitehead showed that, for
reasonable X, the category of X is the least n so that the diagonal map
factors up to homotopy through the fat wedge, minus one.

Let ." denote the category of proper subsets of {1,..., n} and inclusions.
Define a functor F:TM o-n by

F(X1,... Xn) (A) H xi,
i.A

and by defining F(X1,..., X,)(A
_
B) to be the natural inclusion.

F( XI X2 X3)

x x

It is then easy to see that lim F T(X1,..., Xn), the fat wedge. To see

that holim F is also the fat wedge requires a little more work and so we put

it off for the moment. (for the definition of holim see [1].)

Now it is easy to see how to dualize the fat wedge. Let -’" (.,)op be
the category of proper subsets of 1,..., n ordered by superset. Define a
functor G: -" ,_-’" by

G(XI,... Xn)(A) V Xi
iA

and by letting G(X1,... X,)(A
_
B) be the map which is the identity on
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V iBXi and sends V i(A_B)Xi to ,.

(

v v v

* x2

Notice that lim G V Xi unlike the previous case. We abbreviate

G(X,..., X) by G(X).

DEFINITION 1. The thin product of X1,..., Xn, denoted by
Pn(X1,..., Xn), is the basepoint component of holim G(XI,..., Xn). We
will abbreviate P(X,..., X) by P(X).

As it is the composition of two functors, P is a functor. If Y is a space let
Y denote the constant diagram. We have a natural map V iXi
G(X1,..., X,,) defined by simply mapping extra coordinates to .. Taking
homotopy limits defines a natural map z" V iXi P"(X1,..., X,,). Actually
holim Y hom(’, Y) [1, pg. 300], but ( has an initial object so as a

space it is contractible and holim is naturally homotopy equivalent to Y.

It is of course possible to define thinner products by taking homotopy
inverse limits over subdiagrams of G. Now that we have the thin product we
define cocategory in the expected way.

DEFINITION 2. The cocategory of X, cocat X, is defined to be the least n
for which there is a map g making the following diagram commute:

xVn. "r ,pn+l(x)

X

If there is no such n we define cocat X .
We then have the following basic lemma.

LEMMA 1. (1) IfX is a homotopy retract of Y, then cocat X _< cocat Y, so
cocategory is a homotopy invariant.

(2) cocat X 0 if and only ifX is contractible.
(3) cocat X _< 1 if and only ifX is an H-space.
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Proof. (1) This follows from the naturality of the thin product.
(2) This follows from pI(x) holim ,.
(3) p2(X) holim (X ) X X. So cocat X 1 if and only

if X is not contractible and the fold map extends to the product---that is, if
and only if X is a non-trivial H-space. D

We also have the lemma below, which guarantees that if the fold map does
factor through the n-fold thin product, cocat X < n.

LEMMA 2. Suppose cocat X n. Then for all N >_ n there is a factorization

N+I (x)

X

Proof. It suffices to show that there is a map f" pm+ I(X)
__

prn(x) for
all m making the following diagram commute:

xVrn+l r pm+ l(x)

X V m "r pm(x)

Now maps into a homotopy inverse limit are determined by a universal
property, as follows. For A an object of ,am, we form the over category
"m/A whose objects are morphisms B A and whose morphisms are
commuting triangles. We also use the notation m/A for the classifying
space of the over category, and we let ’rn/- denote the induced diagram of
spaces. Given any space Y, we can form the diagram Y x rn/- made up of
the spaces Y -g’rn/A. The universal property of holim says that

[Y, Prn(X)] [Y "ff’rnl-, G(X)].

In particular there are structure maps for all A objects of -barn.

pm(x) X "om/A "+ V Xi

where X X for all i.
Define u" .m __.) .om+l by u(A) A t {m + 1}. Then u induces

U" "m/A "+ .m+ 1/U(A).
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We define fn to be the composition

em+ 1(X) X "g’m/z

X -tm+ l/u(A)

(id, u) pm + ( X)
hVx, Vx,.

A A

Here the middle arrow is the structure map of Pm+a(X). hA is the identity
on V g(A_tm})Xi and if m A, it folds Xm and Xm+ together.
One can then verify that the fA commute with the maps of G(X) so define

a map f:pm+l(x) Pro(X). Another diagram chase shows that f is the
map we wanted.

3. Cocategory and Whitehead products

In this section we will calculate 7r.P"(X1,..., X,) and use this to show
that in a space of cocategory < n Whitehead products of length > n vanish.
We will also show that holim F(X1,..., X,,) T"(Xx,..., Xn) as promised

in the previous section. Our basic tool is a spectral sequence due to Bousfield
and Kan; see [1].

PROPOSITION 1 (Bousfield-Kan).
then"

(1)

(2)

If I is a small category and D o"I

There is a spectral sequence {Er ’t} with E’t lim "rftD for 0 < s < t

and 0 otherwise which is closely related to r, holim D

There is a spectral sequence {ESr ’t} with E’t lira H-D :for s >_ 0

and 0 otherwise which is closely related to H* holim D

Here "closely related" is a technical term which means that in good cases,
in particular when the spectral sequence collapses, the Eg’s+j are the
quotients in a composition series for rj holim D. The differentials d in the

first spectral sequences above map Er’ to Es+ r, + r--

In order to use this spectral sequence we will need to calculate the E2

term. This can be done using a result of Roos.

LEMMA 3 (Roos). Let I be a partially ordered set, A a contravariant
diagram of abelian groups over I with structure mapsp At

-) A. for a < [3
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in I. Suppose A is flasque--that is, for all I the natural map

lim.(A.a _</3) --) lim.(A.a </3)

is surjective. Then lim A 0 for s > O.

Roos gives only an outline of the proof in [11]. Also his hypotheses are too
strong. Thus, we will fill in some of the details.

Proof The plan is to construct a natural cochain complex I-IA whose
cohomology groups are the lim *A.

Let J(k) be the set of k + l-chains a0 < < ak in I. For C J(k) let
Ac Ao" Define I-IkA I-Ic j(k)Ac. Define dk" I-IkA --* I-I + 1A by

( dk) D P’o PrD-ao PrD-.,"

Then I-IA (1-IkA, dk) is a cochain complex. Note that HI-IA lim A.

We will show below that for flasque A, HI-IA 0 for s > 0.
On the other hand, any A will embed in a flasque diagram. Indeed, let

with the evident projections as structure maps. It is easy to see that S is
flasque, and there is an embedding of A into S defined by

where p is the identity. This, together with the vanishing of the positive
degree cohomology of HA if A is flasque, implies that HsI-IA lim A
for general A. The proof is a standard homological algebra comparison
argument.
Now we prove that HI-IA 0 for flasque A and s > 0. Suppose

(y0) ker d. We want to define (x) FIA such that d(x,,) (y0).
Define x, 0 on minimal elements of I. Suppose we have defined x,, for
a </3 such that "pox x0 Yo for a0 < al </3. Let z, x + y for
a </3. Then one checks that (z) lira (A, a </3). By flasqueness there

is an xt with pxt z for a </3. This extends the definition of (x) so by
induction H I-IA 0. We can now finish the proof using induction on s and
a similar argument, rq
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Bousfield and Kan define lim .1 for a diagram of not necessarily abelian

groups. The resulting object is not a group, only a set. The above lemma can
be extended to this case.
We can now calculate the E2 term of our spectral sequences.

THEOREM 1. (1) Ifj > 1, the diagram 7rjG(X1,... Xn) is flasque. Hence
the spectral sequence collapses and

7r.P"(X1,..., X) lim 7r.G(X1,..., X)

forj > O.
(2) The diagram HJF(X1,..., Xn) is flasque. Hence the spectral sequence

collapses and

Hi( holim F(X1,... Xn) ) lim HJF( X1, Xn)

Proof (1) Fix j > 1. Suppose B A
_

{1,..., n}. Then we have maps

i" V Xi V Xi and rif" V xi - V xi.
iB iA iA iB

We will use the same notation for the induced maps on homotopy. These
maps satisfy r2 Bc’a icon crff c. Define GA recursively by

GA (f Tr V Xi’f q iGB).
A BcA

Then by definition Enc_Ai’Gn "rryV iAXi This sum is actually direct.
Indeed, suppose I2 c_AiABfB O. Choose a maximal C with fc O. Then

r;  cfc c.A Z
BC BC

But this is a contradiction since B N C C by maximality.
It is now easy to see that

lim (’rrG( X1, X,.,), B cA) = ) GB
BcA

and

lim (rjG( X1, Xn), B
_
A) ( G

B_A
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with the map being the obvious surjection. Thus zrjG(X1,..., Xn) is flasque.
So we have E’t 0 for t > 1, s > 0 and

E’t lim 7r,G( XI, Xn).

E2x’x= limlTr1G(X1,...,Xn) can be non-zero. However d2"E12’1-.>
E23’2 0 so the spectral sequence still collapses. This term is in the 0 stem
and so only affects the connectivity of the thin product. Its presence means
holim G(XI,..., Xn) is not connected in general, and is the reason we take

the thin product to be the basepoint component.
(2) We can repeat the same argument in this case, modifying the defini-

tions of inA and rff. rq

COROLLARY 1.

nected X1, X,.
holim F(X,. X) T"(X1,. X) for simply con-

Proof We have a map

holim F( X, Xn) --, lim F( X1, Xn) T"( X1, X,, )

The above theorem shows this map induces an isomorphism on cohomology.

We can now prove the following:

THEOREM 2. In a space X with cocat X <_ n all Whitehead products of
length > n vanish.

Proof Suppose x1,... Xn+l "W, X. We have n + 1 sections

si’S’-’) VX (Xi =X)

of the fold map. Let Yi Si*Xi" Then for any Whitehead product W(xi),
V.W(yi) W(xi). Consider the constant diagram VXi. The obvious map
between this and G(X1,..., Xn+ 1) induces a map between spectral se-
quences. Now the constant diagram is obviously flasque. So we get that the
composition

7I", VSi’--)71",r* en+l(Sl, Sn+l)ff- lim ,a(Sl, Sn+l)



LUSTERNIK-SCHNIRELMANN COCATEGORY 233

is the map which sends G{1 .,n+l} to 0 and fixes the other GA. In particular
it sends W(yi) to 0. Thus W(xi) v,w(yi) g,z,W(yi) o. E]

We also have the following much easier result about the cocategory of a
product.

PROPOSITION 2. cocat(X x X2) max(cocat X1, cocat X2).

Proof Let

n max(cocat X1, cocat X2).

Since X and X2 are retracts of X X2, cocat(X X2) >_ n. To show the
opposite inequality, we can assume n is finite. Then by I.emma 2, there are
maps gi making

X vn*l --Z-pn(xi)

X

homotopy commute.
Consider the diagram

( Xl XX2) V n+

I" X "r
V X1Vn+l X2Vn+l
Vxy

x
Xl XX2...

P"(X x x2)
Pn,rr2

Pnx X Pnx2

The left triangle commutes by inspection, the right triangle by assumption,
and the quadrilateral by the fact that z is a natural transformation. Thus the
whole diagram commutes and cocat(X X2) < n. [2

Although we do not need it in the sequel, we point out that cocategory
behaves well under localization. We only consider rational localization, but
the same proof works for localization at any set of primes.

PROPOSITION 3. Let X be a simply connected space and let Xo be its
rational localization. Then cocat X0 _< cocat X.

Proofi First we claim that (PX)o PXo. Indeed the map X--, X0

induces enx enxO. The space PXo is rational since its homotopy groups
are inverse limits of rational vector spaces, hence rational vector spaces. In
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fact the induced map on homotopy is just localization, so pns
0 is the

localization of pnx. Hence given a map g" P"X .--> X we can localize to get
go’pnSo "-> So. It is easy to see that if g extends the fold map so does go.

4. Rational cocategory

In this section we will explore the relation between the thin product
definition of cocategory, applied to a rational space X, and the rational
cocategory of X. We use the standard terminology and tools of rational
homotopy theory, a careful exposition of which may be found in [14] or [6].
Throughout this section, X will be a rational space; i.e. a simply connected

space whose homotopy and homology groups are Q vector spaces. We must
also assume that X is finite type, so the above vector spaces are finite
dimensional in each dimension. (L(V),d)(or just L(V))will denote a
Quillen minimal model of X, unique up to isomorphism. (L(V), d) is a free
differential graded Lie algebra (DGLA).
AW will be a Sullivan (minimal) model, which is a free commutative

graded differential algebra (CGDA). We will use L M for the coproduct of
two DGLAs and occasionally 11 iLl for an indexed coproduct. Sometimes we
will abuse notation and still use L. M even when the differential is not the
free product of the differentials of L and M. L> n will denote the differential
Lie ideal consisting of linear combinations of m-fold brackets for rn > n.

Let denote either the category of CGDAs or that of DGLAs. For
objects or maps of ’ there is a notion of minimal model. This is an especially
good element of the homotopy class of the given object or map. See [14] or
[6]. Given f:A B in with models b:MAA, ,:MBB, and
a M Mn, we say that A is a retract of B (via f) if there is a g Mn M,
with g f homotopic to the identity.

Let us recall one of the main results of [2]. Let AW denote the Sullivan
model of X. As above, let A>’W consist of m-fold products for rn > n.

THEOREM 3 (F61ix-Halperin). cat X <_ n if and only if the canonical projec-
tion 7r" (AW, d) - (AW/A> nw, d) has a homotopy retraction.

Motivated by this, Sba’i defines rational cocategory as follows, in [12].

DEFINITION 3 (Sba’i). The rational cocategory of X, cocat0 X, is the least
n so that the canonical projection L(V) - L(V)/L> (l/) has a homotopy
retraction.

We would like to prove an analog of Theorem 3 for cocategory. That is, we
would like to show that cocat X cocat0 X. Unfortunately, we are currently
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unable to do this. However, we can show:

THEOREM 4. Let X be a rational space. Then cocat X _< cocat o X.

To prove this theorem we will follow the proof of F61ix and Halperin in [2]
[pages 7-14] as far as we can.
The first step is to find a rational model for the thin product.

LEMMA 4. Let X1,... Xn+ be rational spaces with associated Quillen
(DGLA) models Li. Let L I I Li, the model of the wedge, V Xi Let

I= ker L LI Li
j i4j

Then L/I represents pn+ l(xl, Xn + 1)" Furthermore, the natural projection
L L/I represents z:V iXi --> P"+I(xI,..., Xn+l).

Proof. The Quillen model is obtained through a number of adjoint
functor pairs each of which is an equivalence of homotopy categories. It is
easy to see that any such must preserve homotopy inverse limits (which are
defined in DGLAs and CGDAs just as for topological spaces). Hence if
G(Xi)(A) LI ALi, then holim G(Xi) represents the thin product. Also,

the map f" ll(Li, di) - LI iA(Li, di) obtained by mapping (Li, di) for
A to 0 represents -. This map sends I to O. So we have the following

diagram.

,L_
L/I f holim G(Xi)

Now z, and therefore f, is surjective on homotopy by the results of Section
3. This requires simple connectivity as zr 1" is not surjective in general. Thus 3
is surjective on homotopy as well. We will show that it is injective on
homotopy and thus a quism.
Suppose there is a non-zero homotopy class a H, (L/I) with

(H, f)a 0. Choose a representing cycle x + I with x L having a mini-
mal number of 7rix 0. Let j be the first index with_Trjx 0. Since x + I is
a cycle, dr I. Thus drjx 7r dr 0. Since (H,f)a O, 7rx must be a
boundary in 11 i, jZi. This is because 7r factors through f--in fact, 7rj was
one of the maps used to define f. Suppose y lli,L has dy zrx. Let
/,j." LI iLi L be the inclusion. Let z x j’x. Then x z -x
dy, so z is a cycle representing a. Denote by ’A the projection L
LI it ALi and by the inclusion 11 it ALi LI it BLi B c A. Then 7rjz 0
and riz 7fix 7rirx 7fix ,,Tri,x. So if 7fix 0, riz 0 as well.
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This violates the minimality of x, so f is injective on homotopy and hence a
quism. D

Now we want to take the pushout of the diagram below.

L

L(V)

Here L L(V) for all i.
Just as in [2] we find that this pushout is

F,,(L(V)) L/I.LL, L(’) ,D L/I, L(’) ,D

Here is the suspension of V. Also, letting Q(D) denote the indecompos-
able part of D and V/denote the ith copy of V we have Q(D)(-ii) v vi+ 1.

Thus we get:

PROPOSITION 4. Let X be a rational space with Quillen model L(V). Then
cocat X <_ n if and only if the natural map L(V) In(L(V)) has a homotopy
retraction.

Following [2], we should analyse the homotopy type of Fn. The precise
analog of their Theorem 3.1 would be that F(L(V)) has the same homotopy
type as the product of L(V)/L>n(V)with some extra Eilenberg-MacLane
spaces. However, this analog is false. Using the Mayer-Vietoris sequence or
the Quillen model, one can calculate I’l(Sn). We find that I’I(S3) has the
homotopy type of S3 v S6, and that FI(S2) has the homotopy type of the
complex projective plane CP2. The corresponding L(V)/L>(V) have the
rational homotopy types of S3 and CP respectively. Note in particular that
the cocategory of F can be infinite, in stark contrast to the dual case.
The best we can do is the following:

LEMMA 5. The natural map

L(V) --) L(V)/L> "(V)

factors through Fn(L(V)).

Proof Recall that L denotes the (n + D-fold free product of L(V)with
itself, and I denotes the ideal consisting of linear combinations of brackets in
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which every factor occurs. The fold map V L L(V) sends I into L> n(v).
Thus we have a commutative diagram

L ,r
L/I

1
(’ g(’l/g> "(’l

Since Fn(L(V)) is the homotopy pushout of the left corner of this diagram,
we get the required map F(L(V)) - L(V)/L> "(V) factoring the projection
up to homotopy.

This lemma then implies Theorem 4.

5. A counterexample

In this section we will apply the previous work. We find a counterexample
to Sba’i’s conjecture that rational cocategory and inductive cocategory local-
ized at 0 are the same. We also make some conjectures that would help
clarify the situation if they are true.
We start by pointing out that the main result of F61ix and Thomas in [3]

carries over with no change to the DGLA situation. That is, we have:

PROPOSITION 5. A rational space X of rational cocategory 2 is a (gener-
alized) two-stage Postnikov tower.

The proof is the same, with the Ouillen model instead of the Sullivan
model and the free product instead of the tensor product.
Now, localize all spaces rationally. Recall that for odd n, K(Q, n)= Sn

and for even n, K(Q, n) fSn+ 1. Define f:S5 S5 fS11 by the coho-
mology class ab where a, b are the fundamental classes of the two copies of
S5. Let B be the fiber of this map. Then the homotopy of B is generated by
elements which we also call a and b in dimension 5 and the Whitehead
product c [a, b] in dimension 9. Hence by the fibration property, ind
cocat B 2.
B is what is called coformal: that is, its Ouillen model depends only on its

homotopy Lie algebra. Sba’i in [12] shows that the rational cocategory of a
coformal space is just the length of the longest nonzero. Whitehead product.
Thus cocat0 B 2.

Define a map f/S3 f/S3 S3 -- S5 S5 by (ay,/3y) where a,/3 and y
are the fundamental classes. Then this map factors through B and we get a
fibration

F IS3 f/S3 S3 B.
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The homotopy groups of F are generated by a,/3, 3,, [a, 3,],[/3, 3,], and an
element C in dimension 8. By the fibration property, ind cocat F 2. On the
other hand, it is easy to see that F is not a 2-stage Postnikov tower. Indeed,
if F X X2 is a fibration with X and X2 products of Eilenberg-
MacLane spaces, we can assume that a, /3, and 3, are all mapped into
nonzero elements of r. X1. Then [a, 3’] and [/3, 3’] must come from elements
of zr. X2. So the only choice involved is where to put C. Using the Serre
spectral sequence and the Sullivan model of F, it is easy to see that neither
one works. Therefore, cocat 0 F > 2.
We now define precisely what we mean by a generalized n-stage Postnikov

tower, which we need to make a conjecture.

DEFINITION 4. Let X be a space. Define the fiber length of X, f.1. X, as
follows:

1. f.1. X 0 if and only if X is contractible.
2. f.1. X _< n if and only if there is a Y with f.1. Y < n and a fibration
X Y- Z where Z is an H-space.

We will mostly be interested in this definition over the rationals, where the
fiber length is just the shortest length of a generalized Postnikov tower for X.
Note that ind cocat X < f.l. X, and the example above shows that the
inequality can be strict. However I make the following conjecture.

CONJECTURE 1. For rational X, cocat 0 X f.1. X.

Were this conjecture true, it would give us the following analog to the
fibration property of inductive cocategory, which holds in the above example.

CONJECTURE 2.
cocat0 B.

In a fibration F E B, cocat0F<cocat0E +
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