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1. Introduction
We consider the second order linear parabolic differential equation con-

raining a parameter e > 0

(1.1)
Ou- b(x, y)u - f(x, y),

where the matrix (a.(x, y)) is positive definite and symmetric for all x
(xl, Xn) in Euclidian n-space E and y in some closed interval I. We
are interested in the behavior as e --+ 0+ of the solution u(x, y; ) of the
initial value problem (i.v.p.)

(1.2) L(u) f for y > 0, u(x, 0; e) g(x),

where g is a given function; in particular, in the connection between u(x, y; e)
and the solution v(x, y) of the corresponding i.v.p.

(1.3) Lo(v) f for y > 0, v(x, O) g(x),

for the reduced equation

(1.4) L0 (v) a(x, y) Ov
=1

-t- b(x, y)v
Oy

f(x, y).

For example, in the special case L(u) =- eAu Ou/Oy, where ZX is the
n-dimensional Laplace operator, it is well known that for suitable f and g the
solution of the i.v.p. (1.2) is given by

(1.5)

where

(1.6)
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The solution of the corresponding reduced i.v.p. (1.3) is given by

v(x, y) g(x) fo f(x, ’)

It can be easily shown that

-n/2 f fu(x, y; .) r g(x + 2al/2yl/)e-I"l da

)/, e-I,ld f(x + 2a/(y da

where for any y

a ( x)/2ei/(y r)i/ (j 1,...,n) and [a (: a)1/.

Thus for suitable f and g, lim0+ u(x, y; ) exists, and

(1.7) lim0+ u(x, y; ) v(x, y).

In the general case we show under fairly weak hypothesis that (1.7) holds,
where v(x, y) is understood to be the weak solution of (1.3). Moreover, we
obtain an estimate of the rate of convergence of u(x, y; ) to v(x, y) in terms
of the moduli of continuity of the coefficients of L and the data. Our method
is based on the fundamental solution (f.s.) of the homogeneous equation

(1.8) L,(u) O,

i.e., a function F analogous to (1.6). By means of the f.s. we obtain the
explicit formula (1.5) for u(x, y; s). Once the behavior of the f.s. as e -- 0-is known, the limiting behavior of u(x, y; ) can be read off from (1.5). The
major portion of this paper (2-5) is devoted to the construction of a repre-
sentation of the f.s. which is valid for all e > 0 and whose behavior as s - 0+
can be easily analyzed. The remainder of the paper is concerned with the
application of these results to the i.v.p. (1.2).

In a recent paper O. A. Ladyjzenskaja [9] has dealt with the i.v.p, for a
parabolic system of equations of the form (1.1), i.e., where the coefficients
ai., ai, and b are interpreted as N X N matrices, while the functions u, f,
and g are N-vectors. She proves that if the coefficients and data are suf-
ficiently regular, then u(x, y; ) converges in the L-sense as -- 0+ to the
weak solution of (1.3). Our result on the i.v.p, can be viewed as an extension
of Ladyjzenskaja’s in the special case of a single equation since, under a
similar hypothesis, we prove the pointwise convergence of u to v. A similar
result is probably true for parabolic systems; work on this problem is now in
progress.

2. The structure of the fundamental solution
A function F (x, y; , 7; v) defined for all x, in E", y, in I such that y > 7,

and > 0 is said to be a f.s. of (1.8) if, as a function of x, y, it is solution
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of (1.8), and if for suitable functions g(x),

(2.1) lim f F(x, y; ., 7; e)g() d g(x).

If I’ is a f.s. of (1.8), then the solution of the i.v.p. (1.2) is given by (1.5) pro-
vided that the right-hund side exists and has the required derNatives. For
fixed > 0, Dressel [4], tdel’man [5] (for parabolic systems of equations),
Feller [6] (for n 1), and Pogorzelski [10] have proved the existence of the
f.s. under various hypotheses and have given parametfix representations of
the f.s. For second order equations the most general of these results is due
to Pogorzelski. As a by-product of the present investigation, we obtain the
following mild generalization of Pogorzelski’s result. Let I be some closed
y4nterval and let R E X I. We assume (i) A(x, y) (ai(x, y)) is
symmetric and positive definite for all (x, y) in R, and (ii) the coefficients of
L are bounded, uniformly continuous, and satisfy a uniform HSlder condition
with respect to x in R. Then for each e 0 the f.s. of (1.8) exists and can
be written in the form

F(x, y; , ,; e) G(x, y; , ,; e)
(2.2)

T dr G(x, y; s, ; e)(s, r; , n; e) ds

for any (x, y), (, y) in R such that y > , where

G(x, y; , ,; ) 2-" "" det A (, ) d exp b(, ) d

(x + .) A(, ) d (x + .)(2.3) 4

and is ghe solugion of ghe ingegral equagion

(x, y; , n; e) L,[O(x, y; , v;
(2.4)

This resul is discussed in more degail in ghe appendix of ghis paper.
The choice of ghe paramegrix G is by no means fixed. Indeed, we will

show hag (2.a) is hog well suited for use in sgudying ghe e-dependence of ghe

f.s. ualigagively, he prmetri m be, ie ome ene, n pprozime
olion of (1.8), ed i m hve he me ielriie r. or fixed

his is also grue for ghe paramegriees employed in ghe papers eiged above.
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e > 0, in view of (2.1), the latter means that

(2.5) lim f G(x, y; , 7; e)g() d g(x).

Thus the sense in which G must be an approximate solution of (1.8) is the
following. L(G) must be such that if is the solution of (2.4), then

(2.5’) lim g() d dr G(x, y; s, r; e)(s, r; , ; e) ds 0

for fixed e > 0. A sufficient condition for (2.5’) to hold is that there exist
constants , K, > 0 independent of x, y, , n, e such that

(2.6) L,(G) g[e(y y)]-(+-) exp {-ll x [/e(y )}.

Since (2.3) satisfies the equation

Ou
0, = a,(, y)

Ox, Ox. + ,=
a,(, y) u + b(, y)u oyOU

for y > , one can verify, using (i) and (ii), that (2.6) holds in this case.
In the e-dependent case F has an additional singularity which arises from

the connection between the solutions of (1.8) and those of the homogeneous
reduced equation. Let (x, y; e) be the (regular) solution of the i.v.p.

L,(u) 0 for y > , u(x,;e) g(x),

and let (x, y) be the solution of the i.v.p.

Lo(v) 0 for y > , v(x,) g(x).

We assume that g and the coefficients of L are sufficiently regular so that
fi and exist, are unique, and are twice continuously differentiable in R for
y > n. Moreover, we assume that fi is uniformly bounded in every closed
subregion of R as e 0+. Then it follows from Theorem 2 of [2] that
fi(x, y; e) (x, y) + 0(e) uniformly as e 0+ for (x, y) contained in
suitably chosen subregions S of R. Thus for (x, y) in S

(2.7) lim (x, y; e) lim f F(x, y; ,.y; e)g() d (x, y).
e0+ e0+

This implies that G must be such that

(2.8) lim f V(x, y; , ; e)g() d (x, y),
e0+

and

(2.8’) lim g() d dr G(x, y; s, -; s)b(s, r; , 7; e) ds 0

The case n 1 is dealt with in [2]; however, the result can be readily generalized
for any 1.



584 D, G. ARONSON

for (x, y) in S. It can be shown that for G given by (2.3)

G(x, y; , 7; e)g() d g(x).

Hence (2.8) is not generally satisfied, and afortiori neither is (2.8’).
To analyze the nature of the singularity implied by (2.7) we will have to

investigate the structure of the solutions of the reduced equation. Cor-
responding to the i.v.p. (1.3) we have the characteristic i.v.p.

(2.9)
dxl/dy -a(x, y), xi(y) o (j 1,

dv/dy b(x, y)v f(x, y), v(v) g(a).

,n),

These problems are equivalent in the following sense. If v v(x, y; 7) is a
solution of (1.3), then equations (2.9) are satisfied on the surface v v(x, y; 7)
in the (n + 2)-dimensional (x, y, v)-space. Conversely, if (2.9) has a solu-
tion x x(y; a, ), v v(y; , ), and if, after eliminating the parameter
a, v is a continuously differentiable function of x and y, then v is a solution of
(1.3). Suppose that the a are sufficiently regular so that the first n equa-
tions of (2.9) have a unique solution

x ($l(Y;a, 7),’",$n(Y;a, 7)) (Y;a, 7)

for all a in E" and y, in I.
acteristic of L0 through (a, 7).

The curve x (y; a, 7) is called the char-
It is easy to show that

v(y; a, q) g(a) exp b($(v; a, 7), v) dv

f((r; a, v), *) exp b($(v; a, v), v) dv dr.

In view of the assumed uniqueness of the characteristics of L0, if we put
a (7; x, y), then $(v; a, 7) (v; x, y) and

v*(x, y; 7) g((,; x, y)) exp b($(v; x, y), v) dv

(2.10)
f((-; z, g), r) exp b(4(,; z, ), ,) &, dr,

where v*(x, ; 7) =- v(; 4(7; z, ), 7). Note that v* is uniquely determined
in eases where it is not differentiable, e.g., if j, b, , and f are bounded and
continuous, and if the . are Lipsehit continuous with respeet to x. For
this reason we call v* ghe wel olion of (1.). Every classical solution of
(1.g) is a weak solution, and every continuously differentiable weak solution
of (1.) is a classical solution.

In the notation of (2.7) we have

(x, y) g((V; x, y)) exp f,Y
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Hence (2.7) implies that F has a singularity at (7; x, y), e 0 for
Y > 7, and (2.1) implies that F hasa singularity at x (y;x, y),
Y 7 for e > 0. Since we have assumed uniqueness of the characteristics
of L0, we can solve (7; x, y) 0 for x and obtain x (y; , 7) for all
(x, y), (, 7) in R. Thus in terms of x and y, r has a singularity at
x =(y;,7) fore 0, y > 7andfore > 0, y 7. In order thatGhave
the same singularities as F, G will have to be, at least, an approximate solu-
tion of (1.8) in the neighborhood of ((y; , 7), Y) for every (, 7) in R and
Y > 7, where the degree of approximation is determined by the conditions
(2.5’) and (2.8’). Essentially this means that the characteristics x (y; , 7)
play the same role in our theory as do the lines x in the e-independent
case. We will show that a sufficient condition for (2.5’) and (2.8’) to hold
is that there exist constants , k, > 0 independent of x, y, , 7, e such that

(2.11) L(G) <= ke-(’-)/(y- 7)-(+-)/ exp 1-11 x- 4)I/e(y- 7)1,

where (y; , 7). Note that the right-hand side of (2.11) has a weaker
singularity with respect to e than it has with respect to y 7. This is to
be expected since there is no integration with respect to e.
A parametrix G which satisfies (2.11) can be obtained, as we will show, by

choosing the appropriate solution of a partial differential equation which is
derived from (1.8) by replacing the coefficients by one or two terms of their
Taylor expansions about x (y; , 7). This equation is solved by Fourier
transform methods in 4, and the relevant properties of G are developed
there. Our main result (Theorem I) on the f.s. is stated at the beginning of
5, and its proof is carried out in that section. In 6 we prove our main
results (Theorems II and III) on the existence of the solution of the i.v.p.
for (1.1) and on its limiting behavior as e -- 0+. The f.s. in the e-inde-
pendent case is discussed in the appendix. We begin in 3 with a statement
of our hypothesis and with certain preliminary results concerning the char-
acteristics of the reduced operator L0.

3. Hypothesis and preliminary lemmas

Let I be some closed y-interval y’ __< y -<_ y", where y’ and y" are fixed
finite numbers. We will denote by R the product spce E X I and by R
the product spce I X E X I. If a function g(x, y) defined in R is bounded,
uniformly continuous, nd stisfies uniform HSlder condition with exponent
/with respect to x in R, we sy that g belongs to class H(,; x; R). By
uniform HSlder condition we mean there exist constants H > 0 nd 0 < , =< 1
independent of (x’, y), (x, y) in R such that

g(x’, y) g(x, y) <= HI x’ x ,
where

x (Einl Xi) 112"
For functions defined in R’, we define the class H(/; x; R) in a similar manner.

Unless the contrary is explicitly stated, all of the results in this paper are
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obtained under the following hypothesis ():

(Cl) ai(x, y) a(x, y), and there exist constants /, l* > 0 such that
@ T

uniformly in R for all real n-vectors .
(C) a(x, y), ai(x, y), and b(x, y) belong to class H(,; x; R).

(C3) The (O/Ox)ai(x, y) exist in R and belong to class H(-; x; R).

(Cl) and (2) are sufficient for the existence of the f.s. of (1.8) for each > 0.
(C3) is, in effect, a regularity condition on the characteristics of L0. Some
condition of this nature is needed in order to obtain a parametrix which satis-
fies (2.11). Note that since we do not assume that b is differentiable with
respect to x, () and () are not sufficient for the existence of a classical
solution of the i.v.p. (1.3) regardless of how smooth f and g are assumed to be.
Throughout the remainder of this paper the constants H and , will refer

to the common HSlder condition satisfied by all the quantities in () and
(), and the constant N to their common bound. In general, all constants
which appear will be independent of all variables, parameters, and indices
unless a dependence is explicitly indicated either by a superscript or in the
usual function notation. Occasionally, to simplify the writing, we will use
the summation convention and the notation u. Ou/OxOx and
u, Ou/Oy.
The characteristics of L0 are the solutions of the vector ordinary differential

equation

(3.1) dx/dy -a(x, y),

wherex (xl,...,Xn)randa (a,...,an)r. As we indicated in 2,
these characteristics play an important role in our theory. For convenience,
we enumerate here the various properties of the characteristics which will
be needed in the sequel.

LEMMA 3.1. Let () and (5C) hold. For every (, ) in R there exists for
all y in I a unique solution of (3.1), x (y; , ), such that (; , ) .
The matrices

and heir fir deriwive wih repec o exi nd belon o H(,; ; R’). If

B(y; , ) (---. ai(x, y)

Statements about boundedness and continuity of matrices are with respect to the
norm A , a’ I, where A (a).
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and E is the n X n identily matrix, then

0

0-- (Y; i, 7) --B(y; li, y)(y; , ),
(3.2) 0__ (y; , 7) (Y; , v)B(y; , 7)

Oy

(; , ) +(; , ) E,
and

(3.3) det (y; , 7) [det-(y; , )]-1 exp tr B(v; , 7) dv

in R’.

Lemm 3.1 follows esily from standard results in the theory of ordinary
differential equations (cf. Chapter 1 of [3], particularly Theorem 7.2). We
omit the details. From the boundedness of nd together with (3.3) we
conclude immediately that there exist constants 0 < dl < d such that

uniformly in R’ for all real n-vectors ).

LEMMA 3.2. Let (C2) and (C3) hold. If (, v), ((r, r) areany two points of
R and yl, y2 any two points of I, then

(3.5) I(Y ;, V) (Y ;a, r)]
where P n112N.

Proof. It follows from (3Ca) that

a(x’, y) a(x, y)

uniformly in R. Suppose y < y. For any y _>_ y we have

(y;
(3.)

and hence

I(y; , 7) (Y; a, )I-< I(y ;, n) (y ;, r)!- P I(; , 7) (; , r)[d.
Thus by Theorem 2.1 of [3, Chapter 1]

I(Y2 ;,
Since (3.6) holds with y replaced by y., and yl replaced by y -< y, we also
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[(y ;, ) b(y ;a, r) -<- I(Y. ;, V) (Y: ;a, r) le(-’),
which completes the proof.
An immediate consequence of Lemma 3.2 is the following. Let c(x, y) be

of class H(v; x, R) and let c(y; , ) c((y; , v), y). Then

c(y; , ,) c(y; , ,) HI (y; a, ,) (y; , ) [
(3.7)

i.e., c(y; , n) is in class H(; , R’).
Finally, we state as a lemma a well known property of the exponentiM

function which will be used frequently in what follows.

LEMMA 3.3. If a O, and if p > O, 0 < h < 1 are given constants, then
there exists a constant k > 0 independent of such that

a e k.
4. The parametrix and its properties

We now turn to the determination of a prametrix which has the properties
outlined in 2, i.e., a solution with appropriate singular behavior of an equa-
tion which approximates to (1.8) along a characteristic of L0. The simplest
equation which will serve our purpose is

A(u) a(y; , )u. + a(y; , ) + (x )a.(y; , )}u.
(4.1)

+ b(y; , )u u. O,

where a(y; , ) a((y; , ), y) etc., (y; , v), and (, ) is an
arbitrary point of R. The usual method of solving parabolic equations with
coefficients depending on y alone is by Fourier transforms; see, e.g., [8]. We
pursue this method in purely formal manner even though some of the coeffi-
cients of (4.1) depend linearly on x.

Let s be a real n-vector, and let

A (y; , n) (a(y; , n)), B(y; , n)
Ox

(y; ’ v)

(cf. Lemma 3.1). The Fourier transform of a solution u(x, y; , ; v) of (4.1)
is given by

dx.

If u and its x-derivatives tend to zero as Ix -- , and if the appropriate
integrals converge, then v satisfies the first order linear partial differential
equation
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(4.2) srBv,8 + v.u v[-isr{d/dy + B} esrAs + b tr B],

where v.8 (Ov/Osl,..., Ov/Os,), and we have made use of (3.1). In
(4.2), A, B, b, and are evaluated at (y; , 7).
In the (n -[- 1)-dimensional (s, y)-space let a., j 1, n, be the

coordinates of a point on the hyperplane y 7, and let a be the vector
(al, a,)r. Consider the following i.v.p.: find a solution of (4.2) for
y > n which satisfies

(4.3) v e-ir" on Y 7.

I.e., we are looking for a v such that its inverse Fourier transform, if it exists,
behaves like a delta-function for y 7. The characteristic equations corre-
sponding to (4.2) can be written in the form

(4.4) ds/dy srB, dv/dy v[-isr{d/dy - B} srAs + b tr B].

The characteristic of (4.2) which passes through (a, a,, ) is given by

(4.5) sr ar(y; , 7)

since, in view of (3.2), is the fundamental matrix of the first equation of
(4.4). Thus for each a

sr{d/dy + B} or(d/dy + B} or(d/dy)(),

and along the characteristic (4.5) through (a, , 7), v satisfies

(4.6) dv/dy v[-ir(d/dy)( ) rAo + b tr B].

If we now integrate (4.6) from to y > and apply (4.3), (3.2), and
(; , ) , we obtain

(4.7) v =exp -iaO-eaC+ (b-trB) d

where C is the symmetric matrix

(4.8) C(y; (9; , n)A (9; , 7) (9; , 7)

From (3.3) we have det > 0 in R’. Hence we can invert (4.5) and elim-
inate a from (4.7) to obtain

(4.9) v= exp -isr-esrCs + (b-trB) d

as the solution of the i.v.p. (4.2), (4.3).
Although v as given by (4.9) is a rigorous solution of (4.2), (4.3), there is

as yet only a formal connection between v and equation (4.1). We now show
that the inverse transform of v is indeed a solution of (4.1) for y > and
> 0 and that it is a suitable parametrix. The inverse Fourier transform
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of (4.9)is

G(x,y; , ; ) (2r)-" exp Ib(g;,y) trB(;,)} dg

(4.10)

j exp {is ds.

where ,, and C are evaluated at (y; , r). It follows from (C) and (3.4)
that

uniformly in R’ for any real n-vector X, or, by integrating on y from

(4.11) 0

uniformly in R’ for y > and XrX 0. Thus for every real s

e(d l/d)(y- n)srs <- es% C4 s

_
e(dl/d)(y- )srs,

and it follows that the integral on the right-hand side of (4.10) is absolutely
convergent for all (x, y), ($, ) in R’ provided that y > n and e > 0. More-
over, we can differentiate G arbitrarily often with respect to x and once with
respect to y, since the resulting integrals will still be absolutely convergent
fory > nande > 0.
To verify that A:(G) 0 and to derive the various estimates of G and its

derivatives which we will need, we can proceed directly from (4.10) by means
of a rather elegant technique due to Ladyjzenskaja [8]. However, since we
are dealing with a second order equation, it is possible to carry out the inte-
grations in (4.10) and, for our purposes, more convenient to do so. For
Y > n, C is a symmetric matrix, and, by (4.11), it is positive definite. Hence
there exists a unique lower triangular matrix M with positive diagonal ele-
ments such that

(4.12) C(y;

In fact, it can be shown using the so-called Schweins expansion [1, pp. 107-
109] that if M (m) and C (c.), then

ell C13"--1 eli /
(4.13) m /(C_ C)/

c. c.._ c
where C (j 1, n) is thej order principal minor of C. (C. det C.)
It follows from (4.11) that for y

*d ’( ’,(4.14) O < (l*/d)+(y- )+
_

C+ <-_ (l./ ) y- ) j 1, "", n.

Thus it is clear from (4.13) that M(y; , ) is continuous in R’ for y :> and
that there exists a constant/ > 0 independent of y, , n in R’ such that
(4.15) M(y; , ) <- k(y )1/.
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By the standard process of completing the squares, the exponent in the
integrand of (4.10) can be put in the form

where

T
--a (1/4e)(x )r C-l.(x ),

If we introduce al,

(4.10) becomes
an as new variables and carry out the integrations,

(4.16) G(x, y; , 7; e) h(y; , 7; e) exp {-(1/4e)zrF(y; , )z},

where z(x, y; , 7) x (y; , ), and

(4.16’)
h(y; , 7; e) 2-n{ne det C(y; , 7)

Y

exp b(v; , 7) dr,

F(y; , 7) (Y; , )C-(Y; , v)(Y; , 7).

Note that F is a symmetric matrix.
As we indicated above, G has derivatives of all orders in x and of first order

inyfory > nande > 0. In particular

(4.17)

1 TG.; -2-- e FzG, 1 r 1 rG, ---e e Fe + zrFe e Fz G

1 0 1 lzrOF )G, ---logdetC+b-arFz-- -yZ G,

where e (i1, in)r and a, b, C, F are evaluated at (y; , ). By a
straightforward computation, using the definitions of C and F as well as
certain elementary facts from matrix calculus, it can be shown that

1 0 1 zr(I) 0C-ea G, + a G, + z a. G. + bG -- log det C - z

i.e., h,(G) 0.

LEMMA 4.1.

1 arFz_ 1
z0C_ ) OG

2 - - z+b G 0-
Thus we have

If (3C) holds, then G, given by (4.16), is a solution of (4.1) for
y > ande > O.

We now obtain certain estimates for G and its derivatives which will lead
to the verification of (2.5), (2.8), and (2.11), and which will permit us to
carry out the construction of the f.s. of (1.8). If m _>_ 0 is an integer, let D
denote any m* order partial derivative with respect to x. We prove

LEMMA 4.2. For any integer m >- O, D’G and (O/Oy)D’G exist and are
uniformly continuous in R )< R for y > and e > O. There exist, constants,
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l, K(m), /(m) > 0 such that

]G(x, y; , /; v) __< K()[v(y /)]-"/ exp {-11 z l/4(y
DmG(x, Y; , v; ) <- K()[s(Y- v)]-(’+m)/expl-llzl/8s(Y

(4.18)
(O/Oy)DmG(x, Y; , 1; )1_

R(m)-(n+m+l)/2(y ?q)-(n-4-m--2)[2
in R X R for y > v and e > O.

Proof. It follows from (4.11) that

exp{--11z 1/8s(y )}

(dl/l*)(y- )--lxT xTc-lx (d2/l)(y-
uniformly in R’ for y > . Hence, in view of (4.16) and (3.4), we have

(4.19) II z I/(y ,) zrFz l z I/(y ,)

in R for y > v, where d(d l )- and d(d l)-. Since b is bounded,
(4.19) and (4.14) imply the first inequality of (4.18). The continuity of G
is clear from its structure and ().
For any integer m O, DG exists for y > y and > 0, and can be written

in the form

(4.20) DG he-()r =o (23)-m fm-zm-2,
where f--2 denotes sum of products of m j elements f, of F and
m 2j components z, of z. If C (c,), then it is clear from (4.8) that there
exists a constant k > 0 such that

c,,I Cl ,)

uniformly in R’ for y > . Thus, if C- (c), we have in view of (4.14)

c: l C-1 
uniformly in R’ for y > v. Since F [ C-1, it follows that there exists
a constant ka > 0 such that

(4.23) f,] IF] ka(y- v)-x

uniformly in R’ for y > . From (4.20), using (4.14), (4.19) and (4.23), we
conclude that there is a constant km) > 0 such that

DG < k) =0 ]z ]m-:[(y )]--,/2--+ exp {--1] z 2/4(y V)}.

An application of Lemma 3.3 yields the second inequality of (4.18).
Since F, h, and z have first partial derivatives with respect to y for y > ,

we have
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[m/2]

J--mE fm-jzm-210___ Drag OG , (2)
Oy Oy ffio

[m]2]

+ (2)-’(z, f’-z"--" + f, --z-),

where z,y cOz,/Oy for some a, f,y cOf,/Oy for some a, , and OG/Oy is given
by (4.17). From (3.1) we have z, -,, a,, and hence z, is bounded.
In addition we have from (3.2) and (4.8) that

f,, <= OF/Oy] BrF FAF + FB <- k4(y

for some constant k4 > 0. If we use this together with (4.21), (4.8), (4.14),
(4.23), and the first inequality of (4.18), it is easy to show that

+ el z I[r(y v)]-(+)/} exp {-/[ z 1/4r(y
7(m)for some constant k5 > 0. Moreover, there exists a constant . > 0 such

that

0____ D,G
Oy

[m/2]

[m/2]

+ E (IzIm--I--2J[(Y-

+ I -[( ,)1-/--+) x, (- Izl/( ,))},
and by an application of Lemma 3.3 this completes the proof.

In a similar manner we show that G satisfies (2.11).

LEMMA 4.3. There exists a constant K > 0 such that

L[a(x, y; , ,;)] K-(-+/(y ,)-(+-+/ exp {- z [/S(y

for y > and > O, where is the HSlder exponent of the coecients of L

Proof. Since the a are continuously differentiable with respect to x, it
follows from Lemma 4.1, (4.17), and the Theorem of the Mean that

L() [{a(x, u) a(U; , ,)}{-(1/2)e Fe + (1/4) Fze[ Fz}

+ z{a,(2, y) a,(y; , v)}{-- (1/2e)e gz} + {b(x, y) b(y; ,
where 2 0x + (1 0)(y; , ) for some 0, 0 < 0 < 1. Since a(y; , v)
a((y; , ,), y), we have

a(x, y) a(y; , v) H x (y; , v) [ H z

Similar inequalities hold for b and for a, in view of the fact that 2
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01 z < z I. It follows from (4.18) and (4.22) that there exists a constant
] > 0 such that for y > and > 0

L(G) =< ]cHKo{IZ I(y ,)-1 + Z I+e--(y .)-2
(4.24) +

[(y_ ,)]-,2 exp {--1] z 12/4(y-
and, by Lemma 3.3, the assertion follows.

In currying out the construction of the f.s. it is useful to distinguish between
the dependence of G on
in E we dne

G(x, y;

with the convention that if a we will omit the superscript. Note that
Lemma 4.2 holds when G is replaced by G". Moreover, in view of Lemma 3.1,
G is differentiable with respect to . We will now prove that DG is HSlder
continuous in a. This result is essentially due to Pogorzelski [10], and it is
crucial for the construction of the f.s. from a parametrix which is not differ-
entiable with respect to

LEMMA 4.4. Let a and be any two points of E. There exists a constant
() 0 such that

[D(G
uniformly in R X R for y > v and s > O, where G and G are evaluat at
(x, y; , ,; ).

Proof. In the notation of (4.20) we can write

D(G

+ h(a)[e-(/4)zr() e--(i/4e)zTF(a)z][m/2] --m
i=0 (2) f--()Z-+ G[/ (2v)0 [/-(a) f-()]z-,

where h() h(y; , v; ), etc. From (4.8), Lemma 3.1, and (3.7) there
exists a constant k ) 0 such that

(4.5) c.,(a) c.,() It(a) c()l ( ,)l a- ,
and from this together with (4.22) we have

c:i(a) c;i() c-(a) c-x()

In view of (4.16) and Lemma 3.1 we have for some constant ka > 0

(4.26) f.,(a) -f.,() F(a) F()l (y- ,)- a- ,
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which implies that there is a constant ]m) such that

=o : [f-() f-’()lz-

z-0 z I-[(
By the Theorem of the Mean, (4.26), and (4.19) we obtain

g ,l z Il a [( ,)l- exp {-zi z I/(u
Again, by the Theorem of the Mean, taking into account the boundedness of
b, (4.14), and (4.25), we have

(e (1 N [( nl- b(; e, n b(; , nl a

where k, , k > 0 are constants. By using ghese resulgs ogeher wigh

some of he esgimaes obtained in he proof of Lemma 4.2, ig is easy o show

D(G G) < k)l e 1"o {I z I-[e(Y n)]-’-+

+ z I+-s[e(y n)]-z--+} exp {--/[ z l/4e(y )},

and the result follows from Lemma 3.3.
We conclude this section by considering briefly integrals of the form

(x, y; ; e) f G(x, y; , ,; e)g() d.

In particular, we show that (2.5) and (2.8) hold for. bounded H61der con-
tinuous g. More general results, for unbounded continuous g, will be given
in 6. The essential property of G is the following.

LEMMA 4.5. Let

*(x, y; ,; e) f a(x, y; , ,; e) di

then * converges uniformly in R X I for y > , e > O, and

*(x, y; n; ) exp b(; x, y) d + 0{ [e(y n)] "/’

uniformly in R X I.

Proof. Let a (n; x, y), and write * in the form

d
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From (4.12) and (4.16’) we have that for y > /

F(a) q)(a)M-r(a)M-l(a)q(a),
where F o- F y o., etc. Let

(4.27) o (y )l/2M-l(o),(a)z(x, y; , /);

then a (y l)zrFz, and, by Lemma 3.1,

det (Oa (y )/[det C()]-1/2

\o/

exp {tr B(,; a, /) tr B(r; , /)}

Thus, for y > /and e > O,

* 2-r-/ exp b(r; a, 1) dr [e(y- v)]-/exp -4e(y v)]

where

T exp

tr B(r; , 7) dr exp tr B(r; , /) dr

and from (4.27) by virtue of the uniqueness of the characteristics of L0

)--1/2,(/; x + dp(a).M(a)a(y- 1 Y).

It follows from Lemmas 3.1, 3.2 and from (4.15) that there exists a constant
kl > 0 such that

Hence by (3.7) and the boundedness of B, there exists a constant k > 0
such that

TI k I exp tr B(; a, ,) d

for all a. Thus by the change of variables

we obtain

(4.28) q* exp b(r; a, 7) dr and
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In view of Lemmas 3.2 and 4.4 there exists a constant ka > 0 such that

a =< z exp/- l z I /S (u
uniformly inR X Rfory > /ands > 0. Hence

[q=*l -< /a f [e(y r/)]-’/’ [z[ exp {-- lzl/8s(Y v) d.
Let

a [//8e(y /)]l/2z;
then, by Lemma 3.1,

Iq*l -< /ca [e(y v) det (y;,/) da -< )]’"

Since b(v; r, v) =- b(v; x, y), this estimate together with (4.28) completes the
proof of Lemma 4.5.
From Lemma 4.5 we have immediately

COROLLARY 4.5. If g(x) belongs to class H(y’; x; E’), then

rdforml in R I for > n nd e > 0, where - min (, ’).

Proof. Let r 4(n; x, ), and write

Since belongs to class H(/; z; ’), we have, by Lemma g.2,

for some constant k > 0. Therefore, N can be estimated in the same way
as * in the proof of the lemma, and the corollary follows easily.

5. Construction of the fundamental solution

Let

where a, [, r are constants and

k(x, y; , r/) (y’; x, y) 6(y’; , /) I.
Our main result concerning the f.s. of (1.8) is

THEOREM I. /f (ae) holds, then for all (x, y), (, ) in R such that y > 7,

and for all > 0, (1.8) has a f.s. which can be written in the form
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(5.1)
F(x, y; , 7; ) G(x, y; , 7; )

+ dr G(x, y; s, r; e)b(s, r; , 7; e) ds,

where G is given by (4.16) and is the solution of the integral equation

(5.2)
(x, y; , 7; ) L[G(x, y; , 7; )]

f- dr L[G(x, y; s, r; )](s, r; , 7; ) ds.

For m 0, 1, 2, DmF and OF/Oy are uniformly continuous in R X R for y >
and > O. Moreover, there exist constants Q(’), > 0 such that for m O,
1,2

(5.3) D’r(x, Y; , 7; ) <= Q(’)a(-m/2, (2 m)/2, /8)

and (O/Oy)F(x, y; , 7; ) -<- ((--1/2, 0, /8),

where (//8) exp {-2P(y" y’)}.

The proof of Theorem I is contained in the following lemmas. We begin
by briefly sketching the sequence of ideas. If is such that L can be applied
to F, (5.1), then the requirement that F be a solution of (1.8) leads to the
equation (5.2) for . Conversely, if is a solution of (5.2), and if F admits
the required derivatives, then F satisfies (1.8). Since (5.2) is of Volterra
type, it has at most one solution. We show, by the method of successive ap-
proximations, that (5.2) does have a solution. If k were differentiable, it
would be quite simple to prove that L(F) exists. Under our hypothesis,
it is not generally the case that has any derivatives. However, does satisfy
a HSlder condition with respect to x. Following Pogorzelski [10], we prove
that the HSlder continuity of is sufficient for the existence of L(F). It
then follows that L(F) 0. Finally, we show that (2.1) holds for suitable
initial functions g, and hence F is a f.s. of (1.8).

In order to carry out this program we will need the following preliminary
result.

LEMMA 5.1. Let wl(x, y; , 7; ) be a continuous function of , 7, and let
w.(x, y; , 7; ) be a continuous function of x, y in R X R for y > and > O.
If for i 1, 2 there are constants o 1 > O, and r > 0 such that

then
w <- ki a(oi, , r),

W*(x, y; , 7; r; e) f w(x, y; s, r; e)w(s, r; , 7; e) ds

converges uniformly in R X R X I for < r < y and e > 0, and there exists
a constant k3 > 0 such that

(5.4) W*(x, y; , v; r; e) --< k3(y r)-l+’(r )-+a(a - a_, 1, r).
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If, in addition, > 0 for i 1, 2, then

W(x, y; , n; e) W*(x, y; , n; r; ) dr

converges uniformly in R X R for y > v and > O, and

W(x, y; , 7; ) -< k3 r()r()lr(, + )/-
(5.5)

Proof. Let (y’; s, ); then in view of Lemma 3.1

det (Oz/Os) det (y’; s, r) e-"(’’-’) k > 0.

Thus, using the bounds for the w and introducing as wriable of integration,
we obtain

W* k k k -+"+"(y r)-(’+)/+(v V)-(’+)/+

exp -?Z(,;,n;,r) d,

where forn < r < g

Z(x, y; , v; , r) (Y’; x, y) a + (Y’; , n) a A(x, Y; , n)
y--r r--V y--

the bound being achieved if and only if

Let

" (y- r)(r-,)]

r v [,(y, y,+ (y )(y ,)]
;,,) ( ;x,y)]

then

I = z(x,y;,,;,)-
y-,

nd detk./= (y_)(_)

With s vriBle of integration in the Bove bound for W* we obtain (5.4),
where

The symbol 1 with a single argument refers to the Euler Gamma Function.
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If /i > 0 for i 1, 2, then it is clear that W converges uniformly for y > 7,
c > 0, and (5.5) follows by integrating (5.4).
The existence of the solution of (5.2) is an easy consequence of Lemma 5.1.

We have

LEMMA 5.2. The solution (x, y; , 7; c) of (5.2) exists and is uniformly con-
tinuous in R X R for y > and > O. Moreover, there exists a constant Q > 0
such that lb <= Qa(./2, ,/2, ), where (//8) exp {-2P(y" y’)}.

Proof. It is well known that if a solution of (5.2) exists, then it is unique
and is given by

(x, y; , 7; ) ,=0 Xm(x, y; , 7; e),(5.6)

where

x0(x, y; , 7; a) L[G(x, y; , 7; c)],

fxm(x, y; , 7; e) dr x0(x, y; s, r; e)X-l(s, r; , 7; e) ds

(m>__ 1),

wherever the series (5.6) is uniformly and absolutely convergent. For any
(x, y), (}, ) in R, we have from (3.5) that

Ix --(Y; , 7)12 --> e-*e("-Y’)A2(x, Y; , ),

and hence, by Lemma 4.3, Ix01 -< Ka(5"/2, 5"/2, ). It follows from (5C)
and Lemma 4.2 that x0 L[G] is uniformly continuous in R )< R for y > v
and > 0. It is easy to show by induction, using (5.6’) and Lemma 5.1,
that x is uniformly continuous in R R for y > v and c > 0, and that

x,,(x, y; , 7; ) <- KF(5"/2)qm{ r[(m + 1)5,/2]} -1

(((m -I- 1)5,/2, (m q- 1)5,/2, )
for m _>_ 0, where q /4 KF(5,/2)(r/#)2. Thus for y > and > 0, the
series (5.6) converges uniformly and absolutely. The asserted properties
follow immediately from those of the x in view of the nature of the con-
vergence.
We remarked above that in order to prove the existence of L(F) we will

need the HSlder continuity of with respect to x. We now prove that # is
HSlder continuous.

LEMMA 5.3.
such that

If b is the solution of (5.2), then there exists a constant > 0

I(, Y; , 7; v) (x, y; , 7; ) x I*-+
[exp/--eA2(, y; , v)/8c(y 7)} + exp {--eA*(x, y; , )/8(y 7)}]

in R X R for y > v and > O.
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Proof. Consider

(4, y;

+ dr {x0(, Y; s, r; v) x0(x, y; s, r; e)}(s, r; , n; e) ds

f(, x, y; , V; e) + dr (, x, y; s, r; s) (s,,; , v; s) ds

for fixed y > and > 0. Suppose that

(5.7) x -(y;

and l-xll-O(u;.,)i.
and write 1 + :, where

1(, x, y; , ,; ) {ai(, y) ai(x, y)}G,i()

+ ai(2, y) ai(x, y) ( x)ai,(y; , v)}G,()

+ {b(, y) b(x, y)}a(),

(, x, y; , v; ) e{ai(x, y) ai(y; , v)}{G,i() G,i(x)}

+ {ai(x, y) ai(y; , ) z ai,(y; , )}{G,() G,(x)}
+ {b(x, y) b(y; , )}{G() G(x)},

and G() G(2, y; , ; e). It follows from () and Lemma 4.2 that

<

K()

+ [e(y-- V)]"/ ] 8s(y-- y)
where=-(y;,)and2= Ox+ (1- O)2forsome0 < < 1. Since

]-(;.,) ]-0+ e(x-)I ]-o]+x -].
we have, in view of (),

a,(2, y) a,(y; , ) H 2 2H .
Using this together with (5.7) and Lemm 3.3, we obtain

[e(y )](+)/ + [(y

+

for some eonsgans , > O.
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For ny m _>_ 0 we have from the Theorem of the Mean

D’G(2) DraG(x) ".= (2 x)(O/Ox)D’G(x(’)),
wherex() 0x+ (1- 0)forsome0 < 0 < 1. Thus, in view of(3C)
and Lemma 4.2, there exists a constant k > 0 such that

I++ -<- I x
[( )]+) , 8(-n)

It follows from (5.7) that

x<m) (Y;

>-- t-l- ,nl-- +i -- .Together with zl +I and Lemma 3.3 this implies

I <

N +le x I’]me-+/m+’](y v)-(++m),m+’] exp
64 s(y +)

where 1, It+ > 0 are constants.
On the other hand, suppose that instead of (5.7) we have

(5.7’)

Then it follows from (4.24) that for some constant

xo() --< + I

exp {-- 4e(y

[exp/-ll IVS(y )} + exp {--llz [/Se(y )}]

Since zl -< 2 x I, the same estimate holds for x0(x) with replaced by
z. Thus, by Lemma 3.3, we obtain
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whenever (5.7’) holds. This, together with the estimates for/tl and 52 when
(5.7) holds, yields the complete estimate for ti in the half-space z <__ I I.
It is clear that, by interchanging the roles of and x, the above argument can
be carried through for I1 =< z with analogous results. Hence we have
shown that for all (4, y), (x, y), (, 7) in R with y > 7 and all > 0 there
exists a constant ks > 0 such that

a(2, x, y; , 7; ) <-- ts 12 x Iw2-’/+’H(y 7)

[exp IV64 (y / exp {--llz IV64(y v)}]
In view of the fact that Ikl --< Qa(./2, ./2, ), it follows from Lemmah.1
that this estimate for ti also dominates

Thus the proof is complete.
We turn now o the quesgion of the differentiabiligy of I’, i.e., of

V(x, y; , 7; s) dr G(x, y; s, r; e)h(s, r; , 7; e) ds.

For this purpose, we write V in the form

V(x, y; , n; e) J(x, y; , n; ’; e) dr,

where

J(x, y; , 7; r; ) J G(x, y; s, r; e)(s, r; , 7; ) ds

and begin by examining the properties of J.

LEMMA 5.4. The integrals

J, f D’G(x, y; s, r; e)ff(s, r; , v; e) ds (m O)

and

Jv G(x, y; s, ; e)(s, ; , n; e) ds

converge uniformly, the functions J and J are uniformly continuous, and there
exist constants q() O, > 0 such that

g q()(y r)-+(-)/(r v)-+wa(/2 m/2, 1, )
and

[J (y- r)-(- ,)-i+wa(/2- 1/2, 1, )

in R X R X I for < < y and e > O. Moreover, J DJ and J
OJ/Oy for < r < y and O.
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Proof. In view of Lemmas 4.2 and 5.2, D’G, OG/Oy, and h are uniformly
continuous in R X R for y > v and > 0, and satisfy

D’GI <- K(’)a(-m/2, (2 m)/2, ),

OG/Oy <= R()a(-1/2, O, ), ][ __< Qa(./2,./2, ).

Thus the convergence, continuity, and bounds for Jm and Jy follow immedi-
ately from Lemma 5.1. Since Jm is uniformly convergent and uniformly
continuous, and since J-i is convergent, it follows by a standard argument
that J, D’J for m _-> 1, and similarly for Jy OJ/Oy.
An immediate consequence of Lemmas 5.1 and 5.4 is the fact that for m

0, 1 the integrals

V, D’J(x, y; , n; r; e) dr

converge uniformly to a uniformly continuous function in R X R for y > v
and > 0, where for some constants () > 0 we have

V, <- (’)a(//2 m/2, "r/2 + (2 m)/2, ).

Moreover, it follows that DV VI. In order to extend this result to the
case m 2 (and for Vu) it is necessary to show that DJ has a uniformly
convergent integral on 7 < r < y, i.e., obtain a sharper estimate of D2J
than the one afforded by Lemma 5.4. To accomplish this we must use the
HSlder continuity of h with respect to x and of D2G with respect to a.

The method we employ is due essentially to Pogorzelski [10].

LEMM_ 5.5. For 7 < r < y and e > 0 there exist constants q), q) > 0
such that

q2)(_ 7 (,/2- 1,0,) for 7 < r <__ (y + 7)/2
DJI <= q(2)(y r)-+/4a(.r/2 1, /4, US) for (y q- 7)/2 _-< r < y.

Proof. It follows from Lemma 5.4 that

n2gl <_ q(2)(y r)-(r 7)-+/2((,/2 1/2, 1, )

for7 < r < yand > 0. If we restrictrto7 < r <__ (7-ky)/2, wehave
(y r)- -< 2(y 7) -1, and the corresponding bound follows.
Now consider (7-b y)/2 <- r < y. For any (x,y) in R choose a in E"

such that a (y’, x, y) -< 1/2, and let S(r), for any r in I, denote the
set of points (s, r) which satisfy ]a (y’; s, r) _-< 1. Let (a(r), r) be
an arbitrary interior point of S(r), and write DJ in the form

DJ b(r, -) Ifs(’) DG ds + () D(G G’) ds + fE,-() DG dsl
+ f [h(s, r) (a, r)] DG ds,
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where h(a, r) (a, r; , v; ), etc. Note that

OG=OGI(ODG(x, y; s, r; ) --S A- e f(a)zG

where F(a) F(y; a, r). For each r in I, S(r) is the image of the unit
sphere S(y’) under the mapping induced by the characteristics of L0, and,
in view of Lemma 3.1, this mapping is one-to-one and continuously differ-
entiable. Thus if 0S(r) denotes the boundary of S(r), we have by the
Divergence Theorem

DJ (a, r)
s()

G cos (n*, i) ds* +
()

e F(a)zG ds

+ D(G-G) ds + f,_s() DGds + f [(s, r)- (a, r)] DG ds,

where cos (n*, i) is the cosine of the angle between the exterior normal to
0S(r) at s* and the s-axis. Since (v + y)/2 r < yand > 0, wecan
differentiate DJ with respect to x and obtain

DJ (’ r) [-I, DG cs (n*, i) ds*

I. ( )"(5.8) +
(,)

e F(e + zDG) ds + (G G) ds

where (a(r), r) is an arbitrary point in S(r) for each r. In particu-
lar, this representation of DJ is valid when. a(r) (r; x, y) for all r in
(+y)/2 r < y. Thuswehave

D2j IDGds= (a,r) I+I
where I denotes the k integral on the right-hand side of (5.8) with a set
equal to (r; x, y) after the indicated differentiations are performed.
For (s*, r) on 0S(r) we have, by Lemma 3.2, that

z(x, y; s*, ) e-’("-’)(x, Y; s*, ) e-(’’-’ > O.

Thus, in view of (4.18), there exists a constant k > 0 such that

Ix K() [(y r)]-t+)/exp -8(y r) s()

Similarly, since for (s, r) in E" S(r) we have z] p,

I N K([e( r)]-1 exp -lae(

[(y r)]-/2 exp
_16(y r
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To estimate 12 we note that (3.2) implies

04) (y;s,r) --el ](y;s,r) (r;s,r) =< PlY-
and hence, by 4.23 and Lemmas 4.2 and 3.3,-- e F(e +zDG) ka[(y-r)]-exp -16(y- r)

where k > 0 is constant. It follows that

for some constant > 0. Making use of Lemmas 4.4, 3.2, and 3.3, we find

(’)e’("-’)-(,)
z ’[(Y- r)]-(’+’) exp { 8(yl: r)}ds

[(u )]-+
since z (r; x, y), where k > 0 is a constant. Moreover, we have
(y’; a, ) (y’; x, y). Hence, in view of the fact that (
r < y, we obtain

,) exp {-(, ; , ,)/(
Together with the estimates for I, j 1, 4, this implies that there exists
a constant k > 0 such that

(5.9) I(a, r) I =I] k(y r)-i+?/a(/2 1, /2, ).

According to Lemma 5.3 we have

[exp {--A(s, r; , ,)/8e(r ,)} +exp {--A:(x, y; , ,)/8s(r--

T--
and by (3.5), (4.18), and Lemma 3.3 we have

_<_ /,[s(y r)]-(+2)+.a exp {-llz 1/16e(y )}

<__ k[e(y )]-("+)/+/ exp/-A2(x, y; s, r)/8s(y r)}

for some constant k > 0. It follows from Lemma 5.1 and ( - y)/2 <-
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r < y that

f lDGI ds < r)-+( -+a(7/2T1 /s(y r 7) 1, 1, /8)

<= 2/cs(y r)-+/a(//2 1, /4, /8),
where ks > 0 is a constant. Moreover, we have

T ls- /-,/+/4[(y_ )]-(+)/+/
exp {--eA(x, y; , )/8(y )},

and hence

f DGI T ds -(+-)[(y )]-(+)+/(y

exp
8e(

(- )-+’e(/- 1, /, /).

hus, in view of (5.9) and I
eonsgan > 0 such

for (n + )/2 N r < . his eomplees ghe proof of Lemma g..
Ig follows from Lemma g.g hag V converges uniformly in R

and e > 0. Moreover, here is

v, O’a(/ 1, /, /).

By Lemma .4, D is uniformly eonginuous in
and e > 0. Hence V is uniformly eonginuous in R N R for > n and e > 0.
Since DV g is eonvergeng, his implies ghag DV V. Thus we have
proved

L .6. Form 0,1,2

where DV i eiforml eonieo i R N R for > n d e > 0. Moreover,

(, ; , n; e) N Oa(/ m/, / + ( m)/, /).
Since, for m 0, 1, 2, DG and 0/0 are relaged by ,() 0, we can

use he esgimae forD given in Lemma g.g o obtain an estimate for 0/0
which will enable us go prove he uniform convergence of
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and obtain an expression for OV/Oy.

LEMMA 5.7. In R X R for y > 7 and > 0

0__ V(x, y; , 7; ) (x, y; , 7; )
Oy

(5.10) - dr G(x, y; s, r; e)b(s, r; , 7; e) ds,

where OV/Oy is uniformly continuous and there exists a constant 0 such that

(O/Oy)V(x, y; , v; ) a(/2 1/2, /2, /8).

Proof. In view of Lemmas 4.1and 5.4 we have for r < yand > 0

where ai ai(; , r), ege. Since ai(; , r)Gi is H61der eonginuous in, and since ai, ai,, and b are bounded, each of ghe erms in 0J/0g can be
esgimaged in ghe same manner as ghe corresponding z-derivagive of . hus
ghere exis eonsgangs , > 0 such

(, n)-+’’a(/ 1/, 0, )
or n<N (n+)/0 <

r)-l+/a /, /8)
(’

( (/ 1/,
or (n+)/N<.

By virgue ol Lemmas .1 and g.4, ig follows hag V converges uniformly o a
uniformly eonginuous funegion which has ghe asserged bound in R N R for
g > nande > 0.
or any > n, leg > 0, and consider

O j(x,t) dr i.V z, t) dt dt
y y

By using (5.11), it can be easily shown that the order of integrations in I*
can be interchanged and that

y+Ay

I* V(x, y + Ay) V(x, y) lira J(x, t; f, v; r; ) dr.

According to Lemma 5.3, is uniformly HSlder continuous with respect to x
in R X R for y > v and > 0. Hence it follows from Corollary 4.5 that

y+Ay

I* V(x, y + Ay) V(x, y).- (x, r; , v; ) dr.
y

On the other hand, by the first Theorem of the Mean for integrals, there exists
a,y < < y Ay, suchthat

+
V(x, t) dt V(x, )Ay,
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and therefore

V(x, y + Ay) V(x, y)
Ay

(x, r; , v; s) dr.V (x, +
A similar result holds for Ay 0 provided that y -[- Ay > 7. In view of the
uniform continuity of Vy for > 7, and of k for r _-> y > 7, the existence of
OV/Oy and formula (5.10) follow immediately.
Lemmas 5.6 and 5.7 show that L can be applied to V, and hence to F for

Y > vande > 0. Indeed, we have

L(r) L(G)

f+ dr leajk(x, y)G,jk - a(x, y)G,j + b(x, y)G -Gy}b ds b

L(G) b - dr L(G) ds,

and, since is the solution of (5.2), L(F) 0. Moreover, it follows from
Lemmas 4.2, 5.6, and 5.7 that DmF (m 0, 1, 2) and OF/Oy are uniformly
continuous in R X R for y > 7, e > 0, and that they satisfy (5.3). To com-
plete the proof of Theorem I it remains only to be shown that (2.1) holds
for suitable g. If g belongs to class H(/r; x; En), then in view of Corollary
4.5 it suffices to show that

I g()V(x, y; , 7; ) d O.
Y--b

However, for bounded g this is obvious from the bound for V given in Lemma
5.6. In 6 we will show that (2.1) holds for a much wider class of initial
functions g.

6. The initial vo]oe problem
The f.s. of (1.8) which we constructed in 5 permits us to solve the i.v.p.

(6.1) L(u) =f(x,y) for y>t, u= g(x) for y= (e>0, tinI)

and to study the behavior of its solution u(x, y; t; ) as e -- 0-, under rather
general conditions on f and g. The main result of this section is the following:

THEOREM II. Suppose that g(x) is continuous in E’, and that f(x, y) is con-
tinuous in R and HSlder continuous with respect to x uniformly for y in I. If
(3C) holds, and if there exist constants ml O, m2 >= 0 such that

]g(x) =< ml em2]x[2 in E and If(x, y) <- ml e’n2.’* in R,
then for any e > 0 and in I

u(x, y; t; e) f r(x, y; , t; e)g() d
(6.2) r

zt J
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is a solution of (6.1) in R X I for 0 <__ y- <- ’(t, t)
min(yp’ t, ( tt)/32m.), where is any number such that 0
InR X I forO < y- <- (t,t)

(6.3) lim0+ u(x, y; t; ) v*(x, y; t),

where v* is the weat solution of the i.v.p." Lo(v) f for y > t, v g for y t.
Moreover, (6.2) is the only solution of (6.1) in the class of functions which are
bounded by k e in R for some constants

To prove Theorem II we will have to investigate the properties of the inte-
grals which appear on the right-hand side of (6.2). This analysis will be
similar to the discussion of J and V in 5, and we will omit many of the details.
Throughout this section S will denote an arbitrary simply connected compact
subregion of E.
LEMMA 6.1. Let

u*(x, y; t; ) f F(x, y; , t; s)g() d$,

where g satisfies the conditions of Theorem II. Then for m O, 1, 2

Du* Drg d and u rg d,

where Du* and Ou*/Oy are continuous in R X I for 0 < y- (, t) and
> O, uniformly for x in S. There exist constants k()(), () > 0 such that

form O, 1,2

)
(6.4)

and 0 u* =< ()e-1/(y_ t)-exp{4 . X},
where X (’ ,
Pro@ geg I Drd (m O, 1, 2) and I(0r/0)d. We

will show ghag and u sagisfy ghe inequaligies (0.4), i.e., ghag ghese integrals
converge uniformly in S N I for 0 < - N and e > 0, where S is arbi-
trary. he lemma hen follows in view of he continuity of
and .
We asserg ghag if 1 N mt exp (m z ), ghen for any r in I

where m m exp 4m P(g" ’)}. or zl N 2P(" ’), (6.g) is
obvious. Suppose ghag z 2P(" ’). In view of Lemma a.1 we have
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Thus I,t,(y’; x, r) >- Ix Ix 41 >= P(Y" Y’) and

lxl-< {Ix-ol + I1}

--< I + Plo I(" ’) + P(u" ’) =< 41 [:.
Therefore, (6.5) holds for all x.

It follows from (6.5) with r 7 and Theorem I that

"(’) f [s(y t)]u*l <= mu

exp 4m.

where o- 4(’; , n). Ig is easy go verify

Se(y-- t) IX- a

4m- 32sm(y- t) ’X
where

8s(y- t) IX- 1 d$,

- 32em:(y t)
s( t) !, 2 ,

[e(Y t)]-’/2 XI f e-I dv

=/(’)(t)[s(Y- t)]-’’ exp -{4m; X

Similarly, u satisfies (6.4).
Remark. Let wl(x, y; , 7; e) be continuous in R X Rfory > v,e > 0,

and let w.(x, y) be continuous in R, where ]wll <- ka(a, t, r) for r > 0

Hence

= i. X.- 32sm.(y- t)

Thus if 0 < e(y- t) <= (- t)/32m2 for some 0 < t < , we have

In:l-< mQ() exp{ 4mi" ,2}
[e(y- t)]-(n+’) exp

t) l-- 212 d.

Consider the change of variables

In view of Lemma 3.1 there exists a constant k > 0 such that

det (0/0) [/8e(y t)] n/2 det(y’; , 7) -> (1/k)[t/Ss(y t)] > 0.
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and w.l <= mlem[:[. Then by the argument used above it follows that

f 4m.r.}(6.6) wl(x, y;

in R X I for 0 < y _-< rain (y" 7, (r t)/4sm2) and

Since L(r) 0, it follows from Lemma 6.1 that L(u*) O. Moreover,
(6.4) implies that u* is bounded as y -- t+. We now show that u* g(x)
as y t+, i.e., that u* satisfies (6.1) for f 0.

LEMMA 6.2. If g(x) satisfies the conditions of Theorem II, then

lim_t+ u*(x, y; t; e) limt__ u*(x, y; t; ) g(x)

in R X I for > 0, and

lim *(z,
e-,O+

in R X I for 0 < y <- , where he convergence is uniform for x in S.

Proof. Write u* in the form

g(r) f G d + f [g(,)- g(a)]G d + f g() V d,u*--

where a 4)(t; x, y). According to Lemma 4.5, we have

Gd= exp bd+0{[s(y-

and according to (6.6) and Lemma 5.6 we have

f gVd <=
Thus it suffices to show that

05 f [g() g(a)]G d 0

in the various cases under consideration.
Consider first the case y t+. For any 0 < i _< 1/2, let $,(x)

{1] x [

_
3i/2} and write 05 o51 + 052, where o51 is taken over $, and

o5 is taken over E" $,. It follows easily from Lemma 3.1 that x <=
P(y- t). Thus if 0 <-_ y- <- ,/2P, we have

(6.7) I 1 _-< I xl + Ix 1 _-< 2 orin s(x)

and

A(x, y; , t) => e-e("-’){I x] Ix ]}
> tie-(’’-’) > 0 for in E $(x).
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Moreover, since S is compact, there exists a sphere S* in E with radius at
most 1/2 diam (S) -t- P(y" y’) such that the (closed) cylinder S* X I con-
tains all points (a, r), where a (r; x, y) for arbitrary x in S and y, r in I.
Thus in view of (4.18) and (6.7) there exists a constant ]1 > 0 such that

1 1 maxl"-’e.’inS* g(x") g(x’) for 0 < y 5/2P.
On the other hand, it follows from (4.18), (6.5), and (6.7’) that

I1 N m exp --2e(y-- t)
{exp4ml(y’;,t)

Wexp4m’X’}[(Y-t)]-’exp(-A(x’Y;’v))d2(yt)

for 0 < y 5/2P. Thus, by (6.6) with , there exists a constant
k(S) > 0 depending only on S such that

k(S) exp {-/2(y t)} for x in S and 0 < y 5/2P.

Hence, for any given 0 > 0, there exist 8(0, S) > 0 and p(0, S) > 0, inde-
pendent of x in S, such that 0/2 for all 0 < y 5(0, S)/2P and

0/2 for all 0 < y p(0, S), where p(O, S) (0, S)/2P, i.e.,
0asytinR X I fort > 0, uniformly in S X IforanyS.
The cases r 0% and y- can be treated simultaneously in a similar

manner. Let $(x, y) {, t A(x, y; , t) 5e-e("-’)}. Then for (, t)
in $ we have a 5andfor(,t) inEn- $wehaveA(x, y;,t)
> 0. Proceeding as in the previous paragraph we find

5 max,,_,,,. e(x") e(x’)

and k(S) exp {-/2(y t)} for x in S,

where both estimates hold for all y > 0 and v > 0, and the assertion
follows easily.
We now consider the second term on the right-hand side of (6.2).

LEMMA 6.3. Let

where f ifie he eondiion of Theorem II. The

ie R N I for O < -- N (,) nd e > 0. Moreover

Proof. Since f(z, ) is a eonginuous funegion of x uniformly for in I, ig

follows ghag he eonelusions of Lemmas 6.1 and 6.2 apply go
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for any r/in I such that < y. Thus (6.8) follows immediately from (6.4).
If we show that

D* dn and - * dn

converge uniformly in S N I for 0 < N (, ) and e > 0, where S is
arbigrary, ghen ghe lemma follows by essengially ghe same argumeng as
used go prove ghe exisgenee of L,(V) in g. Hence ig will suee go obgain an
esgimae forD* analogous go ghe one forD in Lemma g.g, since D* and
0*/0 are relaged by L,(g*) 0.

Indeed, if we esgimage Dfg by ghe roeedure employed in Lemma g.g,
we find that

)-+/ fD* k e-(y f(, ) + f(, ) f(, ) DG d

+ flf( ,n) l[D Vld 

for some constant k > 0, where a (; x, y). In view of (6.5), (6.6), and
Lemma 5.6, there exists a constant kx(S, ) > 0 such that

Tx W T k(S, D)e-i(y_

inSXIfor0 < y- (g,)ande> 0. ForxinS, aisinthesphere
S*. Let S* denote the sphere which is concentric with S* and whose radius
is one unit larger than that. of S*. Then if we write T as the sum of two
integrals, T) taken overS and T) taken over E" S*, we have from (4.18),
Lemma 3.2, and the HSlder continuity of f that

m < H(S** )k f z I[s(y r)]-(’+)/ exp t 8e(y 7) d

)1<_ ka H(S)[e(y r

for x in S, where k2,/ca > 0 are absolute constants, H(S) > 0 is a constant
depending on S*, and 0 < =< 1 ( may also depend on S’1 ). Since for in
E &* we have A(x, y; , V) >_-- e-P(’’-’) > 0, it follows (cf. the es-
timates for 092 in Lemma 6.2) that

T) _-< /(S, tt)[s(y- )1- exp {-+=52/2(y- r)}.

Thus there is a constant ks(S, ) > 0 such that

D"* =</(S, la)e-(y r/)-+/ + ks(S, tt)[e(y r/)]-+

inSX Ifor0 < y- n

_
(,,r/)ande> 0. The proof of thelemma can

now be completed as indicated above.
It follows from Lemmas 6.1, 6.2, and 6.3 that (6.2) is a solution of the i.v.p.
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(6.1), and in view of (6.4)

lim d/ I’(x, y; , 7; e)f(, /) d

lim F(x, y; f, v; e)f(f, ) df d
e0+

f((n; x, y), n) exp b(,; x, y) d, dy,

which together with Lemma 6.2 proves that (6.3) holds. Moreover, accord-
ing to (6.4) and (6.8) there exists a constant k(z) > 0 such that

[u(x, y; t; e) (z) exp {(4m/z) X 1
inR X I for0 =< y- t_<- (,t) and > 0. Thus the uniqueness ofuin
the class of functions which do not grow more rapidly than kl ekll in R
follows from a theorem of M. Krzyiafiski [7; Theorem I]. This completes
the proof of Theorem II.
Theorem II can be improved in two ways. The conclusion of the theorem

remains valid if the HSlder continuity of f with respect to x is replaced by
Dini continuity. In addition, it is possible to obtain an estimate of the
difference u(x, y; t; ) v*(x, y; t) in S X I in terms of the bounds for f and
g, and the moduli of continuity of f, g, and the coefficients of L. To simplify
the exposition we will carry this out only for the special case in which f and
g are bounded and the various continuity conditions are uniform in R. For
the general case of unbounded f and g the argument is essentially the same,
although the details are considerably more complicated. The principal
tool of this phase of the investigation is the following"

LEMMA 6.4. If g(x) is uniformly continuous and g <= 2 in E’, then there
exists a constant ]c 0 independent of g such that for e(y t) 0 suciently
small and any which satisfies 0 1

(6.9)

y

u*(X, Y; t; ) g((t; x, y)) exp b(v; x, y) dv

_-< //-[e(y t)]s -t- 9r(g; [(y- t)]s2)
uniformly in R X I, where y > t, > 0 and (g; r) is the modulus of con-
tinuity of g.

Proof. It follows as in the proof of Lemma 6.2, by using (6.4) with ml 2
and m2 0, that

y

u* g(a) exp b d -<_ /cl[s(y-- t)]/ +1< 1

for some constant k > 0 (independent of g), where a b(t; x, y). Since g
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is uniformly continuous in E", there exist a constant p > 0 and a function
9g(g; r) defined and positive for 0 < r -< p such that 9T(g; r) 0 as r $ 0 and

e(x") (x’) <- (; x" x’ I) for x,, x’ =< p.

In view of the boundedness of g we can extend the definition of to the
range r > p by the formula 9T(g; r) ------ 2 for r => p. Then in view of (4.18)
and Lemma 3.2 we have

I1 -< ks f i)T(g; a I)[s(y t)]-’/ exp d,(- t)

where k. > 0 is a constant (independent of g). Choose any it such that
0 < ti < 1, and suppose that [e(y t)]/ < p. Then since 9i:(g; r) is an
increasing function of r for 0 -< r _<_ p and 9T -< 2/ for all r => 0, we have

I1 (g; [(y t)]/) f i[s(y t)]-"/ exp 1-- a \ d(- t) J
[s(y-- t)]-!- 2/. exp --where $ {1] - a =< [e(Y- t)]/} Hence there exists a constant

k3 > 0 (independent of g) such that for e(y t) > 0 sufficiently small

cl <-- /3 i)T(g; [e(y t)]/)
in R X I, and (6.9) follows,

Remark. It is clear that if we make additional assumptions about the
nature of i), the estimate (6.10) for I1 can be improved. For instance if
(g; r) Hr for some 0 < , -< 1, then 09 --< kg(g; [e(y t)]1/2).
As a consequence of Lemma 6.4 we have

THEOREM III. Suppose that g(x) is uniformly continuous in E’, and that
f(x, y) is uniformly continuous in R and uniformly Dini continuous with respect
to x in R. If () holds, and if there exist constants N1, N > 0 such that
gl <= Yl in E and lfl <= N in R, then the conclusion of Theorem II holds

in R X I fort <= y <- y,r and e > O. Moreover, there exists a constant k > 0
independent of f and g such that for v(y t) > 0 suciently small and any
which satisfies 0 < <

In(x, y; t; ) v*(x, y; t) <= k[Nl[V(y t)] + 9T(g; [e(y t)])
(6.11)

+ (y- t){N[(y- t)]w + i)(f; [s(y- t)]/)}]
uniformly in R X I, where y > t, > 0 and 9g(f; r) is the modulus of con-
tinuity off with respect to x.

Proof. In the proof of Theorem II the exact nature of the continuity of f
as u function of x is used only in showing that D(t* dq and ] O*/Oy dq
converge, i.e., in estimating D*. It is clear from the proof of Lemma 6.3



PARABOLIC EQUATION CONTAINING A SMALL PARAMETER 617

that it suffices to show that ] T2 d converges. Let rg(f; r) be the modulus
f continuity of f as a function of x, where r(f; r) 2N2 for r __> p. The
assumption that f is Dini continuous means that for any finite r > 0

(f; < .T)T-1 dr

Note that if 0 < < 1, then

(6.12) (f; r")r-1 dr _1 (f, )_ d < .
If we proceed as in the proof of Lemma 6.4, it is clear that there exist con-.
stants 1 2 0 such that

T k[e(y ,)]-l(f; [e(y-

+ N k[e(y- v)]- exp {-[e(y- v)]-+}
in R X I for e(y- ) > 0 sufficiently small and 0 < < 1. Thus it follows
from (6.12) that ] T d converges uniformly in R X I for y > and e > 0.
Therefore the conclusion of Theorem II holds in the present case. The
estimate (6.11) follows immediately from (6.9).

Appendix
By the methods employed in the body of this paper we obtain the follow-

ing result for the parabolic operator

L(u) = ai(x, y)u. + ai(x, y)u,i + b(x, y)u u,.

THEOREM. U () and () hold, then for all (x, y), (, ) in R such that

Y > v, the f.s. of L(u) 0 exists and can be written in the form

F(x, y; , v) O(x, y; , v) + dr O(x, y; s, r)#(s, r; , n) ds,

where

O(z, ; , n) 2 r deg A(, ) d

exp b(, ) d (x + a) r A(, ) d (x + a)

(; , n) (, ) ,
ed i he olion of he integral eaion

If O(z) ang f(z, ) aify he condiion of Theorem II (where he HOlder
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continuity of f ,with respect to x can be replaced by Dini continuity), then

u(x, y; t) r(x, y; }, t)g(}) d} d f F(x, y; }, y)f(}, V) d}

is the unique (in the sense of Theorem II) solution of the i.v.p.

L(u) f(x,y) for y > t, u- g(x) for y

in R X I forO <- y <= min (y" t, (1 )/32m), where 0 < t < land
1/(y ) is the lower bound for the eigenvalues of ( A(x, ) &,)-’ for y > .
The proof of this theorem can be carried out along the same lines as the

proofs of Theorems I and II above. We will omit the details and content
ourselves with a few remarks concerning the most important modifications of
these proofs which must be made. The parametrix ((x, y; , 7) is a solution
with singularity at (, 7) of the equation

(h.1) ,j=l aj(, y)u, -- a(, y)u. -b b(, y)u u, O.

Moreover, since a(y; , ) <= P(Y 7) in R’, it is easy to show that there
exists a constant/ > 0 depending only on ], P, and y" y’ such that

exp --1/4(x t -- a) r A(, ) d (x -- 8(y 7) J’
where

in R for all y > y and all real n-vectors ). By using these two facts, together
with the observation Ix + a <- Ix + P(Y ), the analogues of
Lemmas 4.2 and 4.3 can be proved with little difficulty. Thus, for example,
we obtain estimates of the form

D’(x, Y; , 7)
<- g(’(y- v)-(+) exp {-l] x- /16(y- )} (m 1).

Since we no longer assume that the a(x, y) are differentiable with respect to
x, it is necessary to alter the definition of G employed in 4 slightly in the

G (x, y; , n) with re-present case in order to assure the differentiability of -spect to . In particular, for any a in E" we define

(x,y;,n) 2-" det A(,)d
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i.e., " is the f.s. of (A.1) with coefficients evaluated at (, y). With so
defined, the analogues of Lemmas 4.4 and 4.5 can be shown to hold. The
remainder of the proof of the theorem proceeds by a systematic specializa-
tion of the relevant results in 5 and 6. Since these results depend only on
the properties of G and G derived in 4, the theorem follows.
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