THE FUNDAMENTAL SOLUTION OF A LINEAR PARABOLIC
EQUATION CONTAINING A SMALL PARAMETER!

BY
D. G. AronsoN

1. Introduction

We consider the second order linear parabolic differential equation con-
taining a parameter ¢ > 0

L) = ¢ 35 oyl ) 20k + 3 el )
(1.1) 2,j=1 ] =11 Xi

ou
+ b(z, y)u — - £, ),
where the matrix (a;;(x, y)) is positive definite and symmetric for all 2 =
(1, -+, x,) in Euclidian n-space E" and y in some closed interval I. We

are interested in the behavior as ¢ — 0+ of the solution u(x, y; €) of the
initial value problem (i.v.p.)

(1.2) L.(u) =f for y >0, u(z, 0; &) = g(x),

where ¢ is a given function; in particular, in the connection between u(z, y; €)
and the solution v(z, y) of the corresponding i.v.p.

(1.3) Ly(v) =f for y >0, oz 0) = g(x),
for the reduced equation
= D) v
1-4 = . —— — ey =% .
(14) Lo(v) ;1 ai(z,y) 5 + b(=, y)v P £z, y)

For example, in the special case L.(u) = eAu — du/dy, where A is the
n-dimensional Laplace operator, it is well known that for suitable f and g the
solution of the i.v.p. (1.2) is given by®

u(z, y; €) = fI‘(x, y; & 0; e)g(§) dt

(1.5) ,
—fo dan‘(x, y; & n; €)f(&,m) dE,
where
T(x, y; & m5¢) = 27 {x"e"(y — )"} °
(1.6)

-exp{ 4s(y ;(xg & }
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2 If no domain of integration is indicated, the integral is to be taken over the whole
of En.
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The solution of the corresponding reduced i.v.p. (1.3) is given by

o(@ ) = 9(2) = [ f(z,») dv.

It can be easily shown that

u(@, y;8) = w_”/z{f g(z + 2a8112y112)e"l“|2 dot

- f dn ff(x + 206 (y — )%, p)e da} ,

where for any 7 < y

a; = (& —2))/2e"(y = )" (G=1,---,n) and |a|= (iua)"
Thus for suitable f and g, lim..o u(z, y; €) exists, and

(1.7) limesoq u(z, y; €) = v(x, y).

In the general case we show under fairly weak hypothesis that (1.7) holds,
where v(z, y) is understood to be the weak solution of (1.3). Moreover, we
obtain an estimate of the rate of convergence of u(z, y; €) to v(x, y) in terms
of the moduli of continuity of the coefficients of L. and the data. Our method
is based on the fundamental solution (f.s.) of the homogeneous equation

(1.8) L.(u) = 0,

i.e., a function T analogous to (1.6). By means of the f.s. we obtain the
explicit formula (1.5) for w(x, y; ). Once the behavior of the f.s. as ¢ — 04
is known, the limiting behavior of u(z, y; €) can be read off from (1.5). The
major portion of this paper (§§2-5) is devoted to the construction of a repre-
sentation of the f.s. which is valid for all € > 0 and whose behavior as ¢ — 0+
can be easily analyzed. The remainder of the paper is concerned with the
application of these results to the i.v.p. (1.2).

In a recent paper O. A. Ladyjzenskaja [9] has dealt with the i.v.p. for a
parabolic system of equations of the form (1.1), i.e., where the coefficients
aij, a;, and b are interpreted as N X N matrices, while the functions wu, f,
and g are N-vectors. She proves that if the coefficients and data are suf-
ficiently regular, then u(z, y; €) converges in the L’-sense as ¢ — 0+ to the
weak solution of (1.3). Our result on the i.v.p. can be viewed as an extension
of Ladyjzenskaja’s in the special case of a single equation since, under a
similar hypothesis, we prove the pointwise convergence of u to ». A similar
result is probably true for parabolic systems; work on this problem is now in
progress.

2. The structure of the fundamental solution

A function T'(z, y; £, ; ¢) defined for all z, £in E", y, nin I such that y > 9,
and ¢ > 0 is said to be a f.s. of (1.8) if, as a function of z, y, it is a solution
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of (1.8), and if for suitable functions g(x),

(2.1) }’m T(x, y; & m; €)g(§) d§ = g().

If T'is a f.s. of (1.8), then the solution of the i.v.p. (1.2) is given by (1.5) pro-
vided that the right-hand side exists and has the required derivatives. For
fixed ¢ > 0, Dressel [4], Eidel’man [5] (for parabolic systems of equations),
Feller [6] (for n = 1), and Pogorzelski [10] have proved the existence of the
f.s. under various hypotheses and have given parametrix representations of
the f.s. For second order equations the most general of these results is due
to Pogorzelski. As a by-product of the present investigation, we obtain the
following mild generalization of Pogorzelski’s result. Let I be some closed
y-interval and let R = E™ X I. We assume (i) A(z, y) = (ai(x, y)) is
symmetric and positive definite for all (z, ) in R, and (ii) the coefficients of
L, are bounded, uniformly continuous, and satisfy a uniform Hélder condition
with respect to z in R. Then for each ¢ > 0 the f.s. of (1.8) exists and can
be written in the form

T(x,y; & m58) = G(x,y5 6, n; €)
v
+f drfG(x, y; s, 3 (s, 75 £ m5 €) ds
n
for any (z, v), (§ 7) in R such that y > #, where

v -2 v
Gz, y; &, me) =27 {e"w" det f A ) dv} exp {f b(g, v) dv

(2.2)

1 r Y -1
@—ft4+a) =@—&+ o, T — &+ ),
Y
sy &) = [ ai(e,) dv,
n
and ¢ is the solution of the integral equation

¥(z,y; & n; €) = LlG(x, y; & n; €)]

(24) y
+ f" dr f LG(z, y; s, 75 €)W (s, 75 &, m; €) ds.
This result is discussed in more detail in the appendix of this paper.

The choice of the parametrix G is by no means fixed. Indeed, we will
show that (2.3) is not well suited for use in studying the ¢-dependence of the
f.s.3  Qualitatively, the parametric must be, in some sense, an approximate
solution of (1.8), and it must have the same singularities as T'. For fixed

3 This is also true for the parametrices employed in the papers cited above.
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& > 0, in view of (2.1), the latter means that

(2.5) lim | G(z,y; & n; e)g(§) de = g(2).

vt

Thus the sense in which G must be an approximate solution of (1.8) is the
following. L.(G) must be such that if ¢ is the solution of (2.4), then

Yy
(25') lim f g(%) dgf dr f G(x,y; s, m;e(s, 756, m;6) ds = 0
y>nt n
for fixed ¢ > 0. A sufficient condition for (2.5’) to hold is that there exist
constantsy, K, > 0 independent of z, y, £, 7, € such that
(26) |L(@)| = Kle(y — m)I""*" " exp {—l| & — £ /ey — n)}.
Since (2.3) satisfies the equa,tlon

e Z];_ ai(t,y) a a -+ ;a,(é, y) + b(g y)u — 3y = O

for y > 7, one can verify, using (i) and (11), that (2.6) holds in this case.
In the e-dependent case I' has an additional singularity which arises from

the connection between the solutions of (1.8) and those of the homogeneous

reduced equation. Let %(z, y; ¢) be the (regular) solution of the i.v.p.

Lc(u) =0 for y >, ’U/((E, 5 8) = g(x):
and let #(x, y) be the solution of the i.v.p.
Lo(v) = 0 for y > 9, 7)(.’12, 7) = g(x)'

We assume that g and the coefficients of L. are sufficiently regular so that
% and ¥ exist, are unique, and are twice continuously differentiable in R for
y > n. Moreover, we assume that @ is uniformly bounded in every closed
subregion of R as ¢ — 0+4. Then it follows from Theorem 2 of [2] that
iz, y; €) = #(x, y) + O(e) uniformly as ¢ — 0+ for (, y) contained in
suitably chosen subregions S of R.* Thus for (, y) in S

(@7)  lim alz,y;e) = lm [ T4 6 w5 2)g(8) dt = (s, ).
&-»0+4 >0+
This implies that G must be such that
(2.8) lim f G(, y; & m; )g(§) dt = v(a, y),
&0+
and
Y
(28) lim fg(E) dff drfG(x, ys s, 75 e)¥(s, 5 &, m; ) ds = 0
&0+ n

4 The case n = 1 is dealt with in [2]; however, the result can be readily generalized
for any n = 1.
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for (z, y) in S. It can be shown that for G given by (2.3)

lisa. Gz, y; & m; €)g(£) dt = g(x).
Hence (2.8) is not generally satisfied, and a fortiori neither is (2.8").
To analyze the nature of the singularity implied by (2.7) we will have to
investigate the structure of the solutions of the reduced equation. Cor-
responding to the i.v.p. (1.3) we have the characteristic i.v.p.

dx]/dy = _af(xr y)’ xj(") = aj (.7 = 1; e )n))
dv/dy = b(z,y)v — f(x,y), v(n) = g(a).

These problems are equivalent in the following sense. If v = »(x, y; 7) is a
solution of (1.3), then equations (2.9) are satisfied on the surface v = v(x, y; )
in the (n + 2)-dimensional (z, y, v)-space. Conversely, if (2.9) has a solu-
tion z; = x;(y; o, v), v = v(y; o, n), and if, after eliminating the parameter
a, v is a continuously differentiable function of 2 and y, then v is a solution of
(1.3). Suppose that the a; are sufficiently regular so that the first n equa-
tions of (2.9) have a unique solution

(2.9)

T = (¢1(?/: «, "7)’ Tt ¢n(yy @, 77)) = ¢(y; «, "7)

for all @ in E" and y, 5 in I. The curve x = ¢(y; e, 1) is called the char-
acteristic of Ly through (o, 5). It is easy to show that

v(y; o, m) = g(a) exp f: b(6(v; a, m),v) dv

- ‘/;” F(@(r; @, ), 7) exp {j;y b(¢(v; a, ), ») dv} dr.

In view of the assumed uniqueness of the characteristics of Lo, if we put
a = ¢(n; 3, y), then ¢(v; &, 1) = ¢(v; x, y) and

v*(z, ;1) = g(o(n; z,y)) exp fy b((v; @, y),v) dv
(2.10) ’

- f:f(qb(f; ,y), ) exp {fy b(o(v; 2,9),7) dv} dr,

where v*(z, y; 1) = v(y;é(n; 2, y), n). Note that v* is uniquely determined
in cases where it is not differentiable, e.g., if a;, b, g, and f are bounded and
continuous, and if the a; are Lipschitz continuous with respect to . For
this reason we call v* the weak solution of (1.3). Every classical solution of
(1.3) is a weak solution, and every continuously differentiable weak solution
of (1.3) is a classical solution.

In the notation of (2.7) we have

oz, y) = g(o(n; x,y)) exp f: b(o(v; 2, 9),v) dv.
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Hence (2.7) implies that T' has a singularity at £ = ¢(9; «, y), € = 0 for
y > n, and (2.1) implies that T has a singularity at ¢ = z = ¢(y; =, y),
y = nfor ¢ > 0. Since we have assumed uniqueness of the characteristics
of Ly, we can solve § — ¢(9; z, y) = 0 for x and obtain z = ¢(y; &, 7) for all
(z, ¥), (§ ) in R. Thus in terms of z and y, T has a singularity at
z =¢(y; ¢ n)fore =0,y > nand fore > 0,y = 5. In order that G have
the same singularities as T', G will have to be, at least, an approximate solu-
tion of (1.8) in the neighborhood of (¢(y; &, 1), y) for every (&, n) in R and
y > n, where the degree of approximation is determined by the conditions
(2.5") and (2.8"). Essentially this means that the characteristics ¢ = ¢(y; £, )
play the same role in our theory as do the lines + = £ in the e-independent
case. We will show that a sufficient condition for (2.5") and (2.8’) to hold
is that there exist constants v, k, I > 0 independent of z, y, &, 7, ¢ such that

(211) | L(@) | S ke Ty — q)T" T exp (=l @ — ¢ [Ye(y — )},

where ¢ = ¢(y; £ n). Note that the right-hand side of (2.11) has a weaker
singularity with respect to ¢ than it has with respect to y — #. This is to
be expected since there is no integration with respect to e.

A parametrix G which satisfies (2.11) can be obtained, as we will show, by
choosing the appropriate solution of a partial differential equation which is
derived from (1.8) by replacing the coefficients by one or two terms of their
Taylor expansions about x = ¢(y; £ 7). This equation is solved by Fourier
transform methods in §4, and the relevant properties of G are developed
there. Our main result (Theorem I) on the f.s. is stated at the beginning of
§5, and its proof is carried out in that section. In §6 we prove our main
results (Theorems IT and IIT) on the existence of the solution of the i.v.p.
for (1.1) and on its limiting behavior as ¢ — 04+. The f.s. in the e-inde-
pendent case is discussed in the appendix. We begin in §3 with a statement
of our hypothesis and with certain preliminary results concerning the char-
acteristics of the reduced operator L, .

3. Hypothesis and preliminary lemmas

Let I be some closed y-interval ' < y < "/, where ¥’ and 3"’ are fixed
finite numbers. We will denote by R the product space E” X I and by R’
the product space I X E™ X I. If a function g(x, y) defined in R is bounded,
uniformly continuous, and satisfies a uniform Hélder condition with exponent
v with respect to x in R, we say that g belongs to class H(y; z; R). By a
uniform Hoélder condition we mean there exist constants H > 0and 0 <y £ 1
independent of (2/, y), (z, ¥) in R such that

Ig(xly y) - g(x; y) I = H| x’ — xlv’

|| = (Xiae)™

For functions defined in R’, we define the class H(y;x; R’) in a similar manner.
Unless the contrary is explicitly stated, all of the results in this paper are

where
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obtained under the following hypothesis (3C):
(301) @aij(z,y) = aji(x, y), and there exist constants Iy, Iy > 0 such that
NN S Do hmraii(z, YN N < BN
uniformly in R for all real n-vectors .
(3C2)  aii(z, y), ai(z, y), and b(z, y) belong to class H(y; z; R).
(3¢3) The (8/0x;)a;(x, y) exist in R and belong to class H(v; z; R).

(3¢,) and (3C;) are sufficient for the existence of the f.s. of (1.8) for each £ > 0.
(3¢;) is, in effect, a regularity condition on the characteristics of L,. Some
condition of this nature is needed in order to obtain a parametrix which satis-
fies (2.11). Note that since we do not assume that b is differentiable with
respect to x, (3C;) and (3C;) are not sufficient for the existence of a classical
solution of the i.v.p. (1.3) regardless of how smooth f and ¢ are assumed to be.

Throughout the remainder of this paper the constants H and y will refer
to the common Hélder condition satisfied by all the quantities in (3C;) and
(3C3), and the constant N to their common bound. In general, all constants
which appear will be independent of all variables, parameters, and indices
unless a dependence is explicitly indicated either by a superscript or in the
usual function notation. Occasionally, to simplify the writing, we will use
the summation convention and the notation wu.; = 0°/dx;dx; and
Uy = Ou/oy.

The characteristics of L, are the solutions of the vector ordinary differential
equation

(31) dx/dy = —a(x7 y)’

where = (21, -+, 2,)" and @ = (ay, -+, a,)". As we indicated in §2,
these characteristics play an important role in our theory. For convenience,
we enumerate here the various properties of the characteristics which will
be needed in the sequel.

Lemma 3.1, Let (3C2) and (3C3) hold. For every (&, n) in R there exists for
all y in I a unique solution of (3.1), x = ¢(y; &, 1), such that ¢(n; & 7) = &.
The maitrices

¢e(y; £,1) = (;% ¢i(y; E,n)), ®:(y; £,1) = o5 (y; £ 1)

and their first derivatives with respect to y exist and belong to H(y; &; R').5 If

i}
Busgm = (2 al)
ox; w=0 (y; £,m)
5 Statements about boundedness and continuity of matrices are with respect to the

norm | 4 | = 2;,; | aij |, where A = (ai;).
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and E is the n X n identity matriz, then

% se(y; m) = —B(y; & n)ée(y; £ 1),

(32) s
'a'a ‘I’s(y; £ 7)) = q:‘é(y; £ ﬂ)B(y; £ 7])7

¢:i(n; &, 1) = Bi(n; £,7m) = E
and

(33)  det ¢e(y; £,) = [det ®:(y; £, 7)]7" = exp{— f tr B(v; £, 1) du}
n R,

Lemma 3.1 follows easily from standard results in the theory of ordinary
differential equations (cf. Chapter 1 of [3], particularly Theorem 7.2). We
omit the details. From the boundedness of ¢; and ®; together with (3.3) we
conclude immediately that there exist constants 0 < d; < d; such that

(34) diAN'N = Nrhi M = doN'N and N'\/dp < N®: B N < N'N/d,

uniformly in R’ for all real n-vectors \.

Lemma 3.2, Let (3Cy) and (3C3) hold. If (&, 9), (o, 7) areany two points of
R and yy , y2 any two points of I, then

—Plye—v1l <« “b(yl ) Ey ",) — ¢(y1 y 0y T) l < P|112—1ll|
(3.5) ¢ l¢(y2 ; & "7) - ¢(?/2 ) 0y T) l ¢

where P = n'’’N.
Proof. Tt follows from (3C;) that
la(@’, y) — a(z,y) | = Pl2’ — x|
uniformly in B. Suppose 11 < y2. For any y = y; we have
oy &m) — ¢(y;0,7) = ¢(y36m) — ¢(y150,7)

3.6 v
o + j; {a(¢(u; 9, 7), ”) - a(¢(1’§ &), V)} dv,

and hence
lo(y; &m) — ¢(y;0,7) [ S [d(y15 6 1) — ¢y 0,7) |
Y
+P [ 16056 — ¢ 0,7) | .
Y1
Thus by Theorem 2.1 of [3, Chapter 1]

|6(g25 6 1) — (50, 7) | S oy 6 m) — Sy 0, 7) |70
Since (3.6) holds with y replaced by s, and y; replaced by ¥ < ., we also
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have

|6y 6m) —d(pso )| S 16(4; 1) — (Y20, 1) |07,

which completes the proof.
An immediate consequence of Lemma 3.2 is the following. Let ¢(z, y) be
of class H(y; @, R) and let ¢(y; & n) = c(@(y; £ n),y). Then

le(y; o m) — c(y; & n) | < H|é(y; 0, 1) — ¢(y; & 1) |
< He'yP(y"——y')l o — £l7 — Hl - — gl'v,

ie., c(y; & n) isin class H(y; ¢ R').
Finally, we state as a lemma a well known property of the exponential
function which will be used frequently in what follows.

3.7

LemMA 33. Ifa = 0,andif p > 0,0 < h < 1 are given constants, then
there exists a constant k > 0 independent of o such that

afe™® < ke,
4. The parametrix and its properties

We now turn to the determination of a parametrix which has the properties
outlined in §2, i.e., a solution with appropriate singular behavior of an equa-
tion which approximates to (1.8) along a characteristic of Lo. The simplest
equation which will serve our purpose is

Ac(u) = ean(y; & nua + {ai(y; & n) + (2 — ér)aix(y; & n)lu,;
+0(y; & nu — uy =0,

where a’jk(y; £ "I) = alk(¢<y) £ 77)7 y) ete., ¢ = d’k(y, £ 77)9 and (Sy ’7) is an
arbitrary point of R. The usual method of solving parabolic equations with
coefficients depending on y alone is by Fourier transforms; see, e.g., [8]. We
pursue this method in a purely formal manner even though some of the coeffi-
cients of (4.1) depend linearly on z.

Let s be a real n-vector, and let

(4.1)

Ay ,m) = (ay(y; &,m)), By &m) = (g% (y;é‘,n))

(cf. Lemma 3.1). The Fourier transform of a solution w(z, y; £, n; €) of (4.1)
is given by

v(s,y; 6,m€) = fe"”T“u(x, y; E,my€) de .

If u and its z-derivatives tend to zero as |z | — o, and if the appropriate
integrals converge, then v satisfies the first order linear partial differential
equation
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(42) s"Bv, + v, = v[—is"{d¢/dy + B¢} — es"As + b — tr B],

where v, = (dv/9s1, ---, v/9s,), and we have made use of (3.1). In
(4.2), A, B, b, and ¢ are evaluated at (y; &, 7).

In the (n + 1)-dimensional (s, y)-space let @;, 7 = 1, ---, n, be the
coordinates of a point on the hyperplane y = 7, and let « be the vector
(a1, -+, a,)". Consider the following i.v.p.: find a solution of (4.2) for
y > 7 which satisfies
(4.3) v=1¢"%" on y=n.

Le., we are looking for a v such that its inverse Fourier transform, if it exists,
behaves like a delta-function for y = 5. The characteristic equations corre-
sponding to (4.2) can be written in the form

(44) ds/dy = s"B,  dv/dy = v[—is"{d¢/dy + Be} — es"As + b — tr B].
The characteristic of (4.2) which passes through (oq, - -, as, ) is given by
(4.5) s = &' ®(y; £ 1)

since, in view of (3.2), ®; is the fundamental matrix of the first equation of
(4.4). Thus for each «

s"{d¢/dy + B¢} = o{®; dg/dy + @ By} = o’ (d/dy) (% ¢),
and along the characteristic (4.5) through (e, -+, @s, 7), v satisfies
(4.6)  dv/dy = v[—ia"(d/dy)(®;¢) — ea’®; A®; & + b — tr B].

If we now integrate (4.6) from % to ¥y > % and apply (4.3), (3.2), and
#(n; £ m) = & we obtain

Y
4.7 v = exp {—iaTd:'g ¢ — ea"Ca + f (b —trB) dv} ,
n
where C is the symmetric matrix
Yy
(4.8) Cly; &m) = f ®:(v; £, MA; &) B (v; &) dv.
n

From (3.3) we have det ®; > 0 in R’. Hence we can invert (4.5) and elim-
inate « from (4.7) to obtain

Y
(4.9) v = exp {-—is% — es"¢: Cop; s + f (b — tr B) du}
n

as the solution of the i.v.p. (4.2), (4.3).

Although v as given by (4.9) is a rigorous solution of (4.2), (4.3), there is
as yet only a formal connection between » and equation (4.1). We now show
that the inverse transform of v is indeed a solution of (4.1) for y > 5 and
&£ > 0 and that it is a suitable parametrix. The inverse Fourier transform
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of (4.9) is

G(x,y; £, m;¢) = (2m)"exp [/y {b(v; &,m) — tr B(»;£,9)} dV]
(4.10) '

. f exp {is"(x — ¢) — &s"¢: Cp; s} ds.

where ¢, ¢: , and C are evaluated at (y; £, 9). It follows from (3¢;) and (3.4)
that

(IF /d)AN™ £ N'®; AB{ N = NT(8C/y)\ = U5 /dy
uniformly in R’ for any real n-vector A, or, by integrating on y from ytoy > 9
(411) 0 < (If/d)(y — mNN S NON £ (I/d) (y — MNN
uniformly in R’ for y > 5 and A"\ 0. Thus for every real s
e(d ii/da) (y — m)s"s S es"ge Cog s S e(daly/di)(y — m)ss,

and it follows that the integral on the right-hand side of (4.10) is absolutely
convergent for all (z, y), (¢ %) in R’ provided thaty > n and e > 0. More-
over, we can differentiate G arbitrarily often with respect to  and once with
respect to y, since the resulting integrals will still be absolutely convergent
fory > nand € > 0.

To verify that A.(G) = 0 and to derive the various estimates of G and its
derivatives which we will need, we can proceed directly from (4.10) by means
of a rather elegant technique due to Ladyjzenskaja [8]. However, since we
are dealing with a second order equation, it is possible to carry out the inte-
grations in (4.10) and, for our purposes, more convenient to do so. For
y > 1, C is a symmetric matrix, and, by (4.11), it is positive definite. Hence
there exists a unique lower triangular matrix M with positive diagonal ele-
ments such that

(4.12) C(y; & n) = M(y; & n)M"(y; £ n).

In fact, it can be shown using the so-called Schweins expansion [1, pp. 107-

109] that if M = (m;;) and C = (¢;;), then
/ (Cia €™,

where C; (j = 1, - - , n) is the j** order principal minorof C. (C, = det C.)
It follows from (4.11) that fory > 9

(414) 0< (B/d)'(y—n)'=sCi s (B/d)’(y—n)', j=1,-,n

Thus it is clear from (4.13) that M (y; £, 9) is continuous in R’ for y > 5 and
that there exists a constant k¥ > 0 independent of y, £, 5 in R’ such that

(4.15) | M(y; &) | < k(y — )"

Cu -+ Ca Cy
(4.13) m;; = : : B

.
.

Cir G- Cjs
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By the standard process of completing the squares, the exponent in the
integrand of (4.10) can be put in the form

—a'a — (1/4¢)(x — ¢)"®; CT'®(x — ¢),
where
M s — (¢/26YM 7% (x — ¢).

If we introduce a1, -+ + , @, as new variables and carry out the integrations,
(4.10) becomes

(4.16) G(x,y5& 15 ¢) = h(y; & n; €) exp {—(1/4e)2"F (y; &, n)4},

where z(x, y; & 77) =T — ¢(y; £ 77)) and

Y
h(y; & m; €) = 27" {x"e" det C(y; &)} " expf b(v; £, n) dv,
(4.16') "

F(y; & m) = ¥ (y; & m)C (g5 & m)®:(y; & n).
Note that F is a symmetric matrix.

As we indicated above, G has derivatives of all orders in z and of first order
inyfory > nand ¢ > 0. In particular

G, = --2-12 e; FzG, G = (— 7 Fex + . 2" Fe; e Fz) G,
(417) 10 1 1 oF
- _(_19 _ 1 r _ L ot
G,,,—( 2aylogdet0+b 28an ot 6yz)G’,
where e; = (85, "+, 6x;)" and a, b, C, F are evaluated at (y; &, 9). Bya

straightforward computation, using the definitions of C and F as well as
certain elementary facts from matrix calculus, it can be shown that

rdCt

19 1
EQjx G,jk + a; G,j + 2k a;k G,j + G = (—-2- 5—-— log detC — 4—8- ZTQE W P 2

_1 7 1 Ta‘l>5 —1 G
2san % C <I>z+b>G—@,

ie., A:(G@) = 0. Thus we have

LemMma 4.1.  If (3C) holds, then G, given by (4.16), is a solution of (4.1) for
y > nand € > 0.

We now obtain certain estimates for G and its derivatives which will lead
to the verification of (2.5), (2.8), and (2.11), and which will permit us to
carry out the construction of the f.s. of (1.8). If m = 0 is an integer, let D™
denote any m order partial derivative with respect to x. We prove

Lemma 4.2. For any integer m = 0, D™G and (8/9y)D™G exist and are
uniformly continuous in B X R for y > n and ¢ > 0. There exist constants,
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I, K™, K™ > 0 such that
|Gz, y; & ms ) | < K¥le(y — )1 ™ exp {—1| 2 |*/4e(y — )},

| D"G(x, y; & n; ) | £ K'™le(y — n)]7 "™ exp {—1] 2 */8e(y — n)},
(4.18)

| (8/0y)D™G(x, y; & m; €) |
< Ry — )T exp (—1] 2 /8e(y — m))
m R X Rfory > nand e > 0.
Proof. It follows from (4.11) that
(d/B)(y — n)™NN S NCTN £ (do/1T) (y — 7)”NN
uniformly in R’ for y > 5. Hence, in view of (4.16") and (3.4), we have
(4.19) Uel"/(y —n) S 2"Fz s Ul 2["/(y — n)

in R fory > n, wherel = di(d213) " and § = do(di I3)™. Since b is bounded,
(4.19) and (4.14) imply the first inequality of (4.18). The continuity of G
is clear from its structure and (3C).

For any integer m = 0, D™@ exists for y > g and ¢ > 0, and can be written
in the form

(4.20) D"G = he ORI (9)ITm YT iyt

where D f" 72" denotes a sum of products of m — j elements fos of F and
m — 2j componentsz,of 2. If C = (c.g),then it is clear from (4.8) that there
exists a constant k; > 0 such that

(4.21) lea| £ 2 leisl =101 < Ty — )
uniformly in R’ for y > . Thus, if C™' = (cz3), we have in view of (4.14)
(4.22) || S CT S ha(y — )™

uniformly in R’ for y > 5. Since F = & C7'®;, it follows that there exists
a constant k; > 0 such that

(4.23) | fag | S | F| S sy — 9)

uniformly in R’ for y > 5. From (4.20), using (4.14), (4.19) and (4.23), we
conclude that there is a constant k{™ > 0 such that

| DG | < k™ 28 |2 |"Mle(y — )T exp {—1) 2 |7/4e(y — )}

An application of Lemma 3.3 yields the second inequality of (4.18).
Since F, h, and z have first partial derivatives with respect to y for y > 9,
we have
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6G [m/2]
@DmG - o Z (2 )J—mz fm-—y m—27

[m/2]

+ G ZO (28)!"’"2(2,1/ fm—lzmwl—ﬁ + f,yfm_l_jzm_zj)’
j=

where z,, = 92./dy for some a, f, = 9fas/dy for some «, B, and 3G/3y is given
by (4.17). From (3.1) we havez, = —¢a, = a., and hence 2z, is bounded.
In addition we have from (3.2) and (4.8) that

|fu| < |9F/ay| = | B'F — FAF + FB| < k(y — n)™

for some constant ks > 0. If we use this together with (4.21), (4.8), (4.14),
(4.23), and the first inequality of (4.18), it is easy to show that

|0G/ay | < ks{le(y — M) + ele(y — n)]7 "2 4 | 2|[e(y — )"
+ &l 2 [e(y — M "} exp (=1 2 |*/4e(y — )},

for some constant ks > 0. Moreover, there exists a constant ks™ > 0 such

that

0 m, (m) GG tm/2) m—2j| —m+§
o < o —_
ayDG < ks {lay ]; 2| ™" [e(y — n)]

[m/2]

-+ jgo (|z|m—1_2j[8(y _ n)]—n/2_m+j

b ele "Mty — I exp (<121 /sely = )]
and by an application of Lemma 3.3 this completes the proof.
In a similar manner we show that G satisfies (2.11).
LemmA 4.3.  There exists a constant K > 0 such that
| LiG(x, y; £ ;)] | £ Ke " Py — )™ "2 exp {—1] 2 [//8e(y — n)}
fory > nand € > 0, where v is the Hélder exponent of the coefficients of L, .

Proof. Since the a; are continuously differentiable with respect to z, it
follows from Lemma 4.1, (4.17), and the Theorem of the Mean that

L(G) = [elan(z, y) — an(y; & )} —(1/2e)e] Fer + (1/46%)e] Fzer Fz}
+ afa; (%, y) — a;a(y; & 0} —(1/2e)ef Fa} + {b(z,y) — b(y; & )]G,

where & = 6z + (1 — 0)¢(y; £, 7) forsome 6,0 < § < 1. Since aj(y;& 1) =
as($(y; & ), ), we have

lan(z, y) — an(y; & 0) | < Hlx — ¢(y; 6 0) |" = H|z|".

Similar inequalities hold for b and for a;,; in view of the fact that | 2 — ¢ | =
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6lz| < |z|. It follows from (4.18) and (4.22) that there exists a constant
k > 0 such that fory > nand e > 0

| Le(G) | S kHEKo{|2|"(y — m)7 + |2 e (y — n)™"
(4.24) + e ey — )7+ | 2|7
ety = M exp {=1] 2 [/4e(y — )},
and, by Lemma 3.3, the assertion follows.
In carrying out the construction of the f.s. it is useful to distinguish between

the dependence of G on £ through z, and through % and F. Thus for any o
in E" we define

G'(2,y; & m; €)
= h(y) oy, 15 8) €xp {°°' (1/48)'?'T(x’ Y; & "I)F(y; o, ’7)2(90, ¥; & "7)}’

with the convention that if ¢ = ¢ we will omit the superscript. Note that
Lemma, 4.2 holds when G is replaced by G°. Moreover, in view of Lemma, 3.1,
G’ is differentiable with respect to &.  We will now prove that DG’ is Holder
continuous in ¢. This result is essentially due to Pogorzelski [10], and it is
crucial for the construction of the f.s. from a parametrix which is not differ-
entiable with respect to &.

LemMA 4.4. Let o and & be any two points of E". There exists a constant
K™ > 0 such that

| D™(6® — G) | £ K™[e(y = I "™ 5 — o |" exp {~1| 2 "/8e(y — m)}

uniformly in B X R for y > n and ¢ > 0, where G° and G’ are evaluated at
(z, y; & m; €).

Proof. In the notation of (4.20) we can write
D™(G° = G°) = [h(5) — h(e))e IO (20) T (@)
+ h(a_)[e—(llu)zTF(i)z _ e—(1/4e)zTF(o)z] ;::(/)2] (2£)j—m2fm—j(&)zm—2j
+ G )T — TR

where h(é) = h(y; &, n; ), ete. From (4.8), Lemma 3.1, and (3.7) there
exists a constant k; > 0 such that

(425) |cas(d) — cap(o) | = |C(8) — C(o) | £ ku(y — )| 6 — a7,
and from this together with (4.22) we have
| €a3(8) — cas(o) | = 1C7(8) = C7(0) |
S[CNE) [[C(e) = C@) [[CT(o) | S ey — )75 = o |".
In view of (4.16’) and Lemma 3.1 we have for some constant k3 > 0
(4.26) |fup(5) = fas(0) | S |F(3) — F(o) | S ka(y — M) 6 — o ",
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which implies that there is a constant k{™ such that
| Ziz 2e) " 1) — o)k
< ke — o "2 2 ["e(y — mIT
By the Theorem of the Mean, (4.26), and (4.19) we obtain
—(1/4€) 2T F(3) 2 —(1/4€) 2T F(0) 2
le —e |
S kdz’|a — o|"e(y — )] exp (=1 2["/4e(y — 1)}

Again, by the Theorem of the Mean, taking into account the boundedness of
b, (4.14), and (4.25), we have

Y
1) = W) S klely = DI [ 16033,n) = b(s; 0,m) | v

n

+ ks & (y — 7)7"*|det C(5) — det C(o) | < kiely — )] ™6 — o |7

where ks, ks, by > 0 are constants. By using these results together with
some of the estimates obtained in the proof of Lemma 4.2, it is easy to show
that

| D™(G" — G°) | < k™6 — o |7 220" {2 " Me(y — g
+ | 2|" M e(y — )Y exp (1] 2 7/4e(y — )},

and the result follows from Lemma 3.3.
We conclude this section by considering briefly integrals of the form

’

9@, y;m; ) = fG(w, y; & m; €)g(§) dk.
In particular, we show that (2.5) and (2.8) hold for bounded Hélder con-

tinuous g. More general results, for unbounded continuous g, will be given
in §6. The essential property of @ is the following.

Lemma 4.5, Let
$* (@, ysme) = fG(w, y; £ €) dE;
then g* converges uniformly in B X I fory > 5, ¢ > 0, and
9*(z, y; m; &) = exp f: b(v; z, y) dv + O{[e(y — m]"™"}

uniformly in B X 1.

Proof. Let o = ¢(9;x, y), and write g* in the form

g =[ea+[@-0ra=g+g.
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From (4.12) and (4.16’) we have that fory > 9

F(o) = &{(c)M " (o) M (0)%:(0),
where F(c) = F(y; o, n), etc. Let
(4.27) a=— (y = 0)""M7(0)2:(0)2(, y; & n);
then | « |2

da;\
det :
¢ (82,-)

Thus, fory > nand ¢ > 0,

gt = o exp{f:b(”B 1) dv}[f [e(y — ﬂ)]“n/z exp{ —4;5—_':2—;1—)} da

+ / Tle(y — 9)]™? exp{— &leﬁl_i;;} da] =gt + g%z,

(y — n)2"Fz, and, by Lemma 3.1,

(y — n)™*[det C(a)]*

- exp fy {tr B(y; 0,7) — tr B(»; g )} dv.

n

where

T = exp{—/utrB(u; o, 1) dv}

Y Y
. [exp f tr B(v; £,7) dv — exp f tr B(»; o, ) dv] ,
n n
and from (4.27) by virtue of the uniqueness of the characteristics of Lo

£ =o(nz+ de(a)M(a)aly — 07", p).

1t follows from Lemmas 3.1, 3.2 and from (4.15) that there exists a constant
ky > 0 such that

1€ —o| =% 7 geo) | | M (o) [(y — )| S Tl ).

Hence by (3.7) and the boundedness of B, there exists a constant k» > 0
such that

Y
|T| £ ks |e|” exp{—[ tr B(»; o, n) dv}
n
for all @. Thus by the change of variables

B = ey — )]
we obtain

Y
(428) g% = expf b(v;o,1) dv and |ga| £ 2[e(y — )]
n
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In view of Lemmas 3.2 and 4.4 there exists a constant &3 > 0 such that
|G — G| = ksle(y — )] 2" exp { =1 2 ['/8e(y — n)}
uniformly in B X R fory > nand ¢ > 0. Hence
|97 = ksf [e(y — )] ™" |2|"exp {— U]2]*/8e(y — n)} dE.
Let

a = [I/8e(y — m)]"%;
then, by Lemma 3.1,

* 8 (rtmiz v/2 . —|a|? yI2
1921 = ks (7 [y — 1" [ det @y 5, der S Tale(y — )]

Since b(v; o, 1) = b(»; z, y), this estimate together with (4.28) completes the
proof of Lemma 4.5.

From Lemma 4.5 we have immediately

CoroLLARY 4.5. If g(x) belongs to class H(y'; x; E™), then
y A
9z, y; 15 6) = glon; 2, ) epr b(v; 2, 9) dv + O{le(y — 0)]™*}
n

uniformly in R X I for y > n and € > 0, where 4 = min (v, v").
Proof. Let ¢ = ¢(9;z, y), and write

9= 9@g* + [ o9 — g()]G &t = gg* + 51
Since g belongs to class H(y'; x; E™), we have, by Lemma 3.2,

lg(8) — g(o) | S H'|E — o|" < kil 2|”

for some constant ks > 0. Therefore, g: can be estimated in the same way
as g5 in the proof of the lemma, and the corollary follows easily.

5. Construction of the fundamental solution
Let

@(a, B,7) = & "y — )T exp {—rA%(x, y;5 £ 1) /ey — )},
where «, 8, r are constants and
Az, y; 6 1) = |6(y52,9) — oy 6 n) |

Our main result concerning the f.s. of (1.8) is

TuroreEM 1. If (3¢) holds, then for all (x, y), (& n) in R such that y > 9,
and for all € > 0, (1.8) has a f.s. which can be written in the form
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T(x,y; & m5€) = Gz, y; & n; €)

5.1 v
(5.1) +f drfG(:c, Y; 8, 75 €W (s, 75 & 5 €) ds,

where G is given by (4.16) and ¢ is the solution of the iniegral equation

Y(z,y; & m; &) = L|G(x, y; £ m; €)]

+ fy drfLe[G(w, y; s, 75 &) W(s, 75 £ 5 €) ds.

Form = 0,1, 2, D"T and T /0y are uniformly continuous in B X R fory > 1
and ¢ > 0. Moreover, there exist constants Q™, Q > 0 such that form = 0,
1,2

3y D@ E e | S QUe(-m/2, (2 = m)/2, #/8)

and | (8/8y)T(x, y; & m; €) | < Qa(—4, 0, #/8),
where + = (1/8) exp { —2P(y" — y')}.

(5.2)

The proof of Theorem I is contained in the following lemmas. We begin
by briefly sketching the sequence of ideas. If ¢ is such that L. can be applied
to T, (5.1), then the requirement that T' be a solution of (1.8) leads to the
equation (5.2) for y. Conversely, if ¢ is a solution of (5.2), and if T' admits
the required derivatives, then T satisfies (1.8). Since (5.2) is of Volterra
type, it has at most one solution. We show, by the method of successive ap-
proximations, that (5.2) does have a solution. If ¢ were differentiable, it
would be quite simple to prove that L.(T') exists. Under our hypothesis,
it is not generally the case that ¢ has any derivatives. However, ¢ does satisfy
a Hoélder condition with respect to xz, Following Pogorzelski [10], we prove
that the Holder continuity of ¢ is sufficient for the existence of L.(T'). It
then follows that L.(T') = 0. Finally, we show that (2.1) holds for suitable
initial functions g, and hence T is a f.s. of (1.8).

In order to carry out this program we will need the following preliminary
result.

LemMa 5.1. Let wi(x, y; & n; €) be a continuous function of & u, and let
we(z, y; &, m; €) be a continuous function of z, y in R X R fory > nand ¢ > 0.
If for © = 1, 2 there are constants «; , B; , ks > 0, and r > 0 such that

l'wi‘ =k G’(ai’ﬁi7r)y
then

W*(x, y; &, m; 15 ) = fwl(x, y; s, 5 €)we(s, 73 £, 15 €) ds

converges uniformly in R X R X I for n < v < y and € > 0, and there exists
a constant k3 > 0 such that

(54) I W*(.’L', Y; & my 75 8) | = k3(y - T)_l+ﬁl(7 - ’7)_1+52a(a1 + a2, 1"")'
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If, in addition, B; > 0 for ¢ = 1, 2, then
Wz, y; & n; ) = f: W*(@, y; & n; 75 €) dr
converges uniformly in B X R for y > nand ¢ > 0, and
| W (2, y; 8 n56) | ks T(B)T(B){T (81 + 82)) ™"
+ G(au + a2, B1 + B2, 7).

Proof. Let ¢ = ¢(y'; s, 7); then in view of Lemma 3.1

det (80:/0s;) = det ¢e(y/';s, 7) = ¢ ™ ) = k7t > 0.

(5.5)

Thus, using the bounds for the w; and introducing ¢ as variable of integration,
we obtain

!W*l < Ky ko ke €—n+a1+a2(y _ T)—-(n+2)/2+ﬂ1(7, _ n)—-(n+2)/2+ﬂz

f exp{ - EZ(x, Y & n; 0, r)} do,
where for n < 7 < y
185 20,9) — o | 1605 6m) — o' L Az, y5 6 m)
y— T—n y—n
the bound being achieved if and only if
¢ = (T = ") ¢(y'; 2, y) + (g—:—;) o(y'; & ).

y—n

Z(x,y; £, my0,7) =

’

Let

b= <£>1/2 {[G—_—yﬂ;(}:-;’—)]m [0 — o(y; & n)]

T v ’ ’
+ [(—~——(?7t7)] [y &m) — o(y'; =, y)]};

y— 1)
then
2 _ T A A,y 8, n)}
|ul —E{Z(x,y,é,n,a,r) T

With u as variable of integration in the above bound for W* we obtain (5.4),
where

n/2
ks = ky ko ks ™ f M du = Iy ks ks (;—') .

¢ The symbol I' with a single argument refers to the Euler Gamma Function.
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If B; > 0 for ¢ = 1, 2, then it is clear that W converges uniformly for y > 9,
e > 0, and (5.5) follows by integrating (5.4).

The existence of the solution of (5.2) is an easy consequence of Lemma, 5.1.
We have

LemMa 5.2.  The solution ¥(zx, y; & n; €) of (5.2) exists and is uniformly con-
tinuousin R X Rfory > nand e > 0. Moreover, there exists a constant Q > 0
such that | ¢ | = QQ(v/2, v/2, ), where + = (1/8) exp { —2P(y" — y')}.

Proof. It is well known that if a solution of (5.2) exists, then it is unique
and is given by

(56) ‘l/(xa Y; f, n; 8) = Z:=0 Xm(x, Y; Ey n; 8))

where

xo(Z, y; & n5 &) = L[G(x, y; & n; €)],
N XX, Y5 &y E) = fy dr f x0(, Y3 8, 75 €)xma(s, 75 &, m; &) ds
(5.6") »

(m =z 1),

wherever the series (5.6) is uniformly and absolutely convergent. For any
(z, y), (& n) in R, we have from (3.5) that

|z = ¢(y; & n) [ 2 7Y N (2, y; £ 1),

and hence, by Lemma 4.3, | xo| £ KG(v/2, v/2, #). It follows from (3¢)
and Lemma 4.2 that xo = L.[G] is uniformly continuous in R X R fory > ¢
and ¢ > 0. It is easy to show by induction, using (5.6’) and Lemma 5.1,
that x. is uniformly continuous in R X R for y > nand ¢ > 0, and that

| xm (@, 5 £ 5 €) | = KT(/2)¢"{T[(m + 1)v/2)} ™"
-a((m + 1)v/2, (m + 1)v/2,7)

for m = 0, where ¢ = ky KT'(v/2)(x/#)™?. Thus fory > g and e > 0, the
series (5.6) converges uniformly and absolutely. The asserted properties
follow immediately from those of the x, in view of the nature of the con-
vergence.

We remarked above that in order to prove the existence of L.(T) we will
need the Holder continuity of ¥ with respect to x. We now prove that ¢ is
Holder continuous.

LemMma 5.3. If ¢ is the solution of (5.2), then there exists a constant Q > 0
such that

V(& Y6 m6) — ¥z, y56m58) | < Q
- [exp {—#A%(E, y; & 1) /8e(y — )} +
m B X R fory > nand e > 0.

—n/2+7v/4
— 2 |7/2€ n/2+y/

l

z
exp { —FA%(x, y; & 1)/8e(y — )}]
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Proof. Consider

V(& ys 6me) — v,y 6 m8) = xo(F, y; & m 8) — x0T, y3 & m; €)

+f drf {x0(%, y5 8,75 ) — xolw, 45 8,75 )} (s, 75 &, w5 €) ds

Y
= 8(%,2,y; &5 ¢) +f drfﬁ(i, z, y; 8 73 €) Y(s, 758,15 €) ds
n
for fixed y > nand ¢ > 0. Suppose that

lx_¢(y;5, n)l = lf—¢(?/,$a7l)|
(5.7)
and 2|Z—a|=|Z2—o(y; &0,
and write 6 = & -+ 8, where
(%, x, y; & m; &) = elap(F, y) — aun(x, Y)}G (T)
+ {ai(&, y) — ai(z, y) — (& — x)ain(y; & 0)}G i(T)
0(Z, x, y; & m5 &) = elap(x, y) — ap(y; & UG #(T) — G a(z)}
+ {ai(z, y) — ai(y; & 1) — & ai(y; & MHG,(E) — G i(x)}
+ {o(z, y) — b(y; & HHGE(E) — G(2)},
and G(Z) = G(&, y; & n; ). It follows from (3¢) and Lemma 4.2 that
X é{eHKw |& — z|”
[ely — mieor
K(l)
[e(y — n)]@HDR ; |% — @ | |ain(Z, y) — a;u(y; 1) |
HK“”I%—:::I"\ { 1|z) }
TG —are TP\ Bl — )
whereZ2 = & — ¢(y; ¢, 9) and Z = 6z + (1 — 6)Z for some 0 < 8 < 1. Since
|Z—o(y;ém) | =|2—¢+0(x—3)|s|T—¢|+ |z —2|=2|T—¢],
we have, in view of (3C;),
lain(Z,y) —ain(y; ) | S H|Z—¢|" < 2'H |z —¢|".
Using this together with (5.7) and Lemma 3.3, we obtain

(] = I |g — oo E12” 20
= ey — e ™ fely — pleoP

Hi } ~ zmg}
'ﬂm—ﬁwem{sm—w

<k, li _ x\'ylzs—n/2+'y/4(y _ n)—<n+2)/2+7/4 exp{ _ 16€l(?‘/2|_2 n)}

+

for some constants k; , k2 > 0.
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For any m = 0 we have from the Theorem of the Mean
D"G(z) — D"G(z) = 2 i (% — :)(8/x:) DG (™),

where 2™ = 6,, ¢ + (1 — 6,,)% for some0 < 8,, < 1. Thus, in view of (3¢)
and Lemma 4.2, there exists a constant k; > 0 such that

Ia2|§k3|gz_x1[[_el_g_l”__zexp{ LM}

ey — )]+ 8e(y—)

Izll+'v {-”x(f) —¢ lz}
+ = mieE 2 %P\ T ey =

‘zlv {_llx(O)—¢l2]
T = 1R P\ S = S
It follows from (5.7) that

2™ —¢(ys6,0) | =% — ¢ + Ou(z — &) |
Z|Z—¢|—btnlZ—z|23|2]2|2— ]|

Together with | 2| < | Z | and Lemma 3.3 this implies

- V2 ¢ l 3 |1+'y/2 l 3 |2+'y/2
8| S ka| & — | [ey — n)] R + [e(y — p)]or

_lﬂ_w} { __tzP
+ [y — m1e02 [ P T 3350 — ) f

= |2
< I | & — @ [Py — )" rHDIzee exp{-—- - i(lyz]_ ,7)}

where k4, ks > 0 are constants.
On the other hand, suppose that instead of (5.7) we have

(5.7") le —¢(y; &) | = |2 —¢(y;6m) | 2[5 — 2.
Then it follows from (4.24) that for some constant ks>0
| x0(%) | < ks | 2 — x|

. I e ‘ 3 ‘7/2 € ‘ 3 '2+7/2‘ l 3 l2+1/2 l 3 "ylz
GG =1k + ey = ek T 5y — piemh T Gy = oin

- exp {_ L} .
4e(y — n)
Since | 2| < 2| & — x|, the same estimate holds for xo(z) with Z replaced by

2. Thus, by Lemma 3.3, we obtain

16(2, 2,y 8 m; €) | S r | & — o [Ty — TR

“[exp { =12 "/8e(y — )} + exp (1| 2["/8e(y — )}]
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whenever (5.7’) holds. This, together with the estimates for & and d, when
(5.7) holds, yields the complete estimate for § in the half-space |z | < | Z].
It is clear that, by interchanging the roles of £ and x, the above argument can
be carried through for | 2| < |z | with analogous results. Hence we have

shown that for all (&, y), (z, y), (§ 1) in B with y > 5 and all ¢ > 0 there
exists a constant ks > 0 such that

lé(i, z, Y; E, n; 8) I < kg | I—zx l"//2£—n/2+‘¥/4(y _ n)—(n+2)/2+7/4
- [exp {—1|z"/64e(y — n)} + exp {—1|z[*/64e(y — n)}]

In view of the fact that |¢ | £ Qa(v/2, v/2, 1), it follows from Lemma 5.1
that this estimate for 6 also dominates

Y
f dr f oY ds.
L]
Thus the proof is complete.
We turn now to the question of the differentiability of T, i.e., of

Y
V(z,y; &n; €) =f" dr fG(w, y; 8,75 €)Y(s, 75 &, m; ) ds.

For this purpose, we write V in the form

Y
V(x,y; & ; €) =f J(x,y; & n; 5 €) dr,
n
where

J(@,y; 6,m15€) = fG(x, y; 8, (s, 75 & m; €) ds,

and begin by examining the properties of J.
LemMA 5.4. The integrals

In = fD'”G(x, y; 8, 75 E)W(s, 75 £, m; €) ds (m = 0)
and

3
Jy = fa—yG(w, y; 8,5 E)W(s, 73 &, m; €) ds

converge uniformly, the functions J . and J, are uniformly continuous, and there
exist constants ¢™ > 0, § > 0 such that

[ Jm] < ¢™(y — )72 — )70 (y/2 — m/2, 1, 7)
and
|y £ @y — 07— n)7a(y/2 — 1/2, 1, 1)

mRXRXIforn<rt<vyande>0. Morever, J, = D"J and J, =
dJ /oy forn < v < yand e > 0.
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Proof. In view of Lemmas 4.2 and 5.2, DG, 8G/dy, and ¢ are uniformly
continuous in B X R for y > 7 and ¢ > 0, and satisfy

| D"G | £ K™a(—m/2, (2 — m)/2, #),
|0G/oy | = R®a(—4,0,7), |¥]| < Qa(v/2,v/2, 7).

Thus the convergence, continuity, and bounds for J,, and J, follow immedi-
ately from Lemma 5.1. Since J, is uniformly convergent and uniformly
continuous, and since J,; is convergent, it follows by a standard argument
that J, = D™J for m = 1, and similarly for J, = 4J/dy.

An immediate consequence of Lemmas 5.1 and 5.4 is the fact that for m =
0, 1 the integrals

Y
Vm=f D"J(x,y; & n; 5 €) dr
n

converge uniformly to a uniformly continuous function in B X R fory > g

=(m)

and ¢ > 0, where for some constants ¢ > 0 we have
| V|l = 3™@(v/2 — m/2,v/2 + (2 — m)/2, ).

Moreover, it follows that DV = V;. In order to extend this result to the
case m = 2 (and for V,) it is necessary to show that D’J has a uniformly
convergent integral on n < r < ¥, i.e., obtain a sharper estimate of D*J
than the one afforded by Lemma 5.4. To accomplish this we must use the
Holder continuity of y with respect to z and of D’G’ with respect to o.
The method we employ is due essentially to Pogorzelski [10].

LemMa 5.5. For g < 7 < y and £ > O there exist constants ¢i*, g5 > 0

such that
(2) —1+7/2 o
q1 (T'“"I) @(7/2_1’0’7) fOT 7l<7—§(y+77)/2
¢ (y — n)7a(v/2 — 1,v/4,#/8) for (y+w)/2= <y
Proof. It follows from Lemma 5.4 that
| DT | 2 ¢®(y — 7' — ) a(y/2 = 1/2, 1, #)

forp < r<yande >0 Ifwerestrict rton <7 = (n+ y)/2, we have
(y — 7)™ = 2(y — n)7", and the corresponding bound follows.

Now consider (3 + ¥)/2 = = < y. For any (z, y) in R choose « in E”
such that | @« — ¢(¢¥/, 2, ¥) | £ %, and let S(7), for any = in I, denote the
set of points (s, 7) which satisfy |a — ¢(y';s, 7) | < 1. Let (o(7), 7) be
an arbitrary interior point of S(7), and write DJ in the form

|D2Jl§{

DJ = y(a,7) I:fs(’) D& ds + L(T) D(G - G")ds + DG ds]

E"—-8(r)

+ [ Wis,m) — w(o, 1) DG ds,
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where (o, 7) = ¥(o, 7; & 1; ¢), ete. Note that

T
DG (x, y; s, 75 ¢) = %;G” = ——aii G + 2%(3_2 — ei> F(o)2&,
where F (o) = F(y; o, 7). For each 7 in I, S(7) is the image of the unit
sphere S(y’) under the mapping induced by the characteristics of Lo, and,
in view of Lemma 3.1, this mapping is one-to-one and continuously differ-
entiable. Thus if d8(7) denotes the boundary of S(7), we have by the
Divergence Theorem

- — . * 3) ds* 4+ L 9 _ .)T .
DJ =y(o,7) |: fas(r) G’ cos (n*, 1) ds* + 3% ‘/;(T) (asi e;) F(o)2G” ds
+[ p@-6)ds+ DG ds] + [ W) = (o, 1) DG ds,
8(r) En—8(7)

where cos (n*, 1) is the cosine of the angle between the exterior normal to
d8(7) at s* and the s;-axis. Since (9 + ¥)/2 < r < yand ¢ > 0, we can
differentiate DJ with respect to x and obtain

DJ = y(o,7) |:— DG" cos (n*,1) ds*

38(r)

(5.8) + 1 (6_¢ - e~>T F(e; @ + 2D@) ds + f DG — @) ds
2¢ Jsery \9s; ¢ ! 8(r)

+ [ preds|+ [Wen) vl e as,

where (o(7), 7) is an arbitrary point in S(7) for each r. In particu-
lar, this representation of DJ is valid when o(7) = ¢(7;2,y) for all 7 in
(n+y)/2 =7 <y. Thus we have

4
D = fD*G.pds =¥on) XL+ 1

where I, denotes the k*® integral on the right-hand side of (5.8) with o set
equal to ¢(r; z, y) after the indicated differentiations are performed.
For (s* 7) on d8(7) we have, by Lemma 3.2, that

l2(z, y; 8% 7) | 2 € 7Y™ A, y; 8%, 1) 2 37V = p > 0.

Thus, in view of (4.18), there exists a constant k; > 0 such that

2
< O __\]—taDr2 _ “2_____ f * <
| I;| < K% [e(y — 7)] exp{ 850y = T)} o ds*< k.
Similarly, since for (s, 7) in E" — S(7) we have | 2| = p,

2
| I| £ K®le(y — 7)] " exp {_E%}

. f [s(y — T)]_"/2 exp{:—l%y:?)—} ds é ’92 .
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To estimate I, we note that (3.2) implies

9 (yisr) —el =12 (yisr) =2 (n < _
asi(y)s)T) eﬁl la$i(y’s,7) ds; (778)7') =P|y T‘?
and hence, by 4.23 and Lemmas 4.2 and 3.3,

T
(Q‘?ﬁ - e,-) F(e; G 4+ zDG")
381'

where k3 > 0 is constant. It follows that

112\ = k4€_1

< ks le(y — 1™ eXP{ - 16».5(‘;—‘-2 T)}’

for some constant ks > 0. Making use of Lemmas 4.4, 3.2, and 3.3, we find

‘Igl = K(2) L(‘r) ‘8 - 0"7[8(y - T)J—(n+2)/2 exp{—gg(lylL_—l;_).} as

2
< @ YPW ") v N -nt2)2 _lle]
= K ']t;(‘r) [2"leCy — =] exp{ 8s(y — 1) ds

< kale(y — 7"

since ¢ = ¢(7;x,y), where ks > 0 is a constant. Moreover, we have
o(y';0, 7) = ¢(y'; z, y). Hence, in view of the fact that (n 4+ y)/2 =
7 < y, we obtain

[¥(o, 7) | < QeT™* 2 (r — )" exp {—#A (o, 15 8,1) Je(r — )}
< Qe (y — )T exp { —A%(w, y; £, 1) /e(y — n) ).

Together with the estimates for I;,5 = 1, - -+ , 4, this implies that there exists
a constant ks > 0 such that

(59) (o, ) || T L] = ke(y = N7 a(r/2 = 1,9/2, ).
According to Lemma 5.3 we have
[, 7) = ¥(o, 1) | S Qs — o |7 — )= iR
Jexp {—#%s, 75 & n)/8e(r — )} +exp {—FA%(e, y; & n)/8e(r — )]
=T+ T,
and by (3.5), (4.18), and Lemma 3.3 we have
s — o ‘7/2 l DG | < | 2 |7/26(7/2)P(u"—y’> ID2G|
< Tnfe(y — D" exp {—1] 2 ["/16e(y — 7))
< Tnle(y — D72 exp (74w, y; 8, 7)/8e(y — 7))

for some constant k; > 0. It follows from Lemma 5.1 and (n + y)/2 =<
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7 < y that
f |D’G| Tyds < ks(y — )7 (r — )7 a(y/2 — 1,1,#/8)

< 2ks(y — T)—~1+7/4@(7/2 1, /4 #/8),
where ks > 0 is a constant. Moreover, we have
T2 < Q I S — o ‘7/28—n/2+7/4[_%_(y _ n)]—(n+2)I2+7/4

*exXp {—;'Az(xy Y; & ’7)/85(11 - 77)},
and hence

A —

’C7 Q&'

L T
= k(y — )7 @(v/2 — 1,v/4,7/8).
Thus, in view of (5.9) and |Is| £ [|D’G| (T, + T:) ds, there exists a
constant ¢s > 0 such that
| DT | = ¢”(y — )7 Me(v/2 = 1,7/4, #/8)

for (n + ¥)/2 £ 7 < y. This completes the proof of Lemma, 5.5.
It follows from Lemma, 5.5 that V, converges uniformly in R X R fory > ¢
and ¢ > 0. Moreover, there is a constant §® > 0 such that

| V2| £ ¢%a(v/2 — 1,7/2, #/8).

By Lemma 5.4, D*J is uniformly continuousin R X R X I forn < r < y
and ¢ > 0. Hence V,is uniformly continuous in B X R fory > npand ¢ > 0.
Since DV = V, is convergent, this implies that D’V = V,. Thus we have
proved

LemMmA 5.6. Form =0, 1, 2
Y
D"V (x,y; &m; &) = f drfD"‘G(x, Y; 8, 7; eW(s, 75 & m; &) ds,
n

where D™V s uniformly continuous in R X R fory > nand € > 0. Moreover,
there exist constants §™ > 0 such that
| D"V(x, y; & 5 6) | < §™a(v/2 — m/2, v/2 4 (2 — m)/2, #/8).
Since, for m = 0, 1, 2, D™G and 6G/dy are related by A.(G) = 0, we can
use the estimate for D*J given in Lemma 5.5 to obtain an estimate for 4.J/dy
which will enable us to prove the uniform convergence of

[UAY

fw@Mws

(n+2—-7)/2l‘%(y _ n)]—(n+2)/2+7/4(y . T)-—l+1/4

Y9
Vu(x, y; & n; 8) =L @J((B, Y; &5 T 8) dr
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and obtain an expression for 9V /dy.

Lemma 5.7. InR X Rfory > nande > 0

ai V(z,y; & m; ) = ¥(x, y; & n; €)
(5.10)

Yy
+ f dr f 2 G,y 5,75 (s, 75 6 my ) ds,
] 9y
where dV /3y is uniformly continuous and there exists a constant § > O such that
| (0/0)V (2, y; & m5€) | = ¢Q(v/2 — 1/2,v/2,7/8).
Proof. In view of Lemmas 4.1 and 5.4 we have fory < r < yand ¢ > 0
%?-/J- = ggll/ds = f lean G, 5 + {a; + 2 a;2}G ; + bGlY ds,

where a;x = an(y; s, 7), ete.  Since a;x(y; o, 7)G 5 is Holder continuous in
o, and since a;, a;; , and b are bounded, each of the terms in 4.J/dy can be
estimated in the same manner as the corresponding z-derivative of J. Thus
there exist constants ¢, §a > 0 such that

QI(T - 77)_1+7/2@'('Y/2 - 1/2a 0) i')

for n<7=(n+y)/2
iy — 1) aly/2 — 1/2,v/4,7/8)

for (n+y)/2=7r<y.
By virtue of Lemmas 5.1 and 5.4, it follows that V, converges uniformly to a

uniformly continuous function which has the asserted bound in B X R for
y > nand e > 0.

For any y > 1, let Ay > 0, and consider

vty y+Ay ty
f Vy(z,t) dt = f dt f 2 J(x,t) dr = I
v Yy 7 at

By using (5.11), it can be easily shown that the order of integrations in I'*
can be interchanged and that

(5.11) ’g‘—y] =<

Y+ Ay
I* = V(z,y + Ay) — V(z,y) — f lim J(z,¢t; & n; 75 €) dr.
v

t->1+

According to Lemma 5.3, ¢ is uniformly Hélder continuous with respect to x
in R X Rfory > nand ¢ > 0. Hence it follows from Corollary 4.5 that

y+Ay
I* = V(z,y + Ay) — V(z,y) — f Y(z, 7; & n; &) dr.
y

On the other hand, by the first Theorem of the Mean for integrals, there exists
ag,y <y <y+ Ay, such that

y+Ay
f Vi(z, t) dt = V,(z, §)Ay,
Y
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and therefore

Vizg,y + Ay) — V(z,y) _ _ O CE
Ay = Vy(x’ ?/) + A_yL ‘I/(xy T, g, 5 8) dr.

A similar result holds for Ay < 0 provided that y + Ay > 5. In view of the
uniform continuity of V, for § > #, and of ¢ for 7 = y > 9, the existence of
dV /dy and formula (5.10) follow immediately.

Lemmas 5.6 and 5.7 show that L. can be applied to V, and hence to I' for
y > nand ¢ > 0. Indeed, we have

+ fy dff {eap(z, ¥)G 3 + a;(z, 1)G; + bz, )G —Gy}¥ ds — ¢

=L(G) — ¢y + f: drfLe(G)‘// ds,

and, since ¢ is the solution of (5.2), L.(T') = 0. Moreover, it follows from
Lemmas 4.2, 5.6, and 5.7 that D"T (m = 0, 1, 2) and 4T'/dy are uniformly
continuous in B X R for y > 5, ¢ > 0, and that they satisfy (5.3). To com-
plete the proof of Theorem I it remains only to be shown that (2.1) holds
for suitable g. If g belongs to class H(y'; x; E™), then in view of Corollary
4.5 it suffices to show that

lim [ g(&)V(z,y; & n; &) dE= 0.

y=>n+
However, for bounded g this is obvious from the bound for V given in Lemma
5.6. In §6 we will show that (2.1) holds for a much wider class of initial
functions g.

6. The initial value problem
The f.s. of (1.8) which we constructed in §5 permits us to solve the i.v.p.

(6.1) Lo(u) = f(z,y) for y >t u=g(x) for y=t (e>0,¢tinl)
and to study the behavior of its solution u(x, y; t; €) as € — 04, under rather
general conditions on f and g. The main result of this section is the following:

TuroreEM II.  Suppose that g(x) is continuous in E", and that f(z, y) s con-
tinuous in R and Holder continuous with respect to x uniformly for y in I. If
(30) holds, and if there exist constants my > 0, me = 0 such that

lg(z) | £ me™™” in E"  and | f(z, y) | € mye™™” iR,

then for any ¢ > 0 and tin I
ule, i) = [ D0 0)g(®) d
(62) )
—ft dan‘(w,y; g m; €)f(gn) dt
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min(y"’ — ¢, (# — wu)/32ems), where u is any number such that 0 < p < 7.
InRXIfor0<y—1t=d4gut)

is a solution of (6.1) in R X I for 0 = y — ¢t = 9(p, t) =

(6.3) lim,o+ u(z, y; ¢; &) = v*(x, y; 1),

where v* 1s the weak solution of the 1.v.p.: Lo(v) = ffory > t,v = g fory = 1.
Moreover, (6.2) is the only solution of (6.1) in the class of functions which are
bounded by ki ¢***'* in R for some constants ky , ks > 0.

To prove Theorem II we will have to investigate the properties of the inte-
grals which appear on the right-hand side of (6.2). This analysis will be
similar to the discussion of J and V in §5, and we will omit many of the details.

Throughout this section S will denote an arbitrary simply connected compact
subregion of E".

LemMaA 6.1. Let

uw*(x, ;8 €) = fI‘(x, y; 8, £)g(§) dg,

where g satisfies the conditions of Theorem II. Then for m = 0, 1, 2

* 9 ok o
D™u —fD Tgdt and é)yu = 6yl‘gd.{-,
where D™u* and ou*/dy are continuous in B X I for 0 <y — t < §(u, t) and

€ > 0, uniformly for x in S. There exist constants k™ (u), E(u) > 0 such that
form =0,1,2

| D™u* | < k™ (w)le(y — )" exp{ dma £ | X lz}
(6.4) #
and ‘ :—y u*

< ke (y -0 exp{ ‘-1%2 | X 12},
where X = ¢(y'; z, y).

Proof. Letuy = [D"Tgdt (m = 0,1,2) and uy = [ (8T/dy)gdt. We
will show that un, and uy satisfy the inequalities (6.4), i.e., that these integrals
converge uniformly in S X I for0 < y — ¢ £ ¢ and ¢ > 0, where S is arbi-
trary. The lemma then follows in view of the continuity of D™T, 9T'/dy,
and g.

We assert that if | g| < m exp (my |z |*), then for any 7 in I

(6.5) | g(x) | < msexp {4ma | o(y'; 2, 7) [},

where ms = my exp {4my PX(y" — y)*}. For |z | < 2P(y" — '), (6.5) is
obvious. Suppose that | x| = 2P(y” — y’). In view of Lemma 3.1 we have
le =o'z, 7) | = [o(r;2,7) — (52, 7) | SPlr—y | S P — ).
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Thus |¢(y';2, 7) | 2 |z — |2 —¢| 2 P(y’ — ¢') and
lz"={le—o|+ o]}
SlelP+2P ||y — )+ P —y)Ys4|eél.

Therefore, (6.5) holds for all .
It follows from (6.5) with + = 5 and Theorem I that

Iu,’f, I = maQ(m) [ [s(y _ t)]—(n+m)/2

.exp{4m210'|2—'8?(—?)j—_——t)‘lX—0"2}d£,

where ¢ = ¢(y'; & 1). It is easy to verify that

47’1&‘0"2 8_8(:[/—

| X —of

_ 4my 7 2_?—3287"/2(?/—0 T2

where

%= 7
 — 32eme(y — 1)

Thusif 0 < e(y — ¢) = (# — u)/32m, for some 0 < u < 7, we have

k| < me Q™ exp{‘”"”m }

. f [s(y _ t)]—(n+m)/2 exp{ Se(ylll ) l X|2} ds

Consider the change of variables
v = [u/8e(y — " (¢ — X).
In view of Lemma 3.1 there exists a constant & > 0 such that

det (9v:/0t;) = [u/8e(y — 1)) det ¢:(y'5 £, 1) = (1/k)[w/8e(y — )] > 0.
Hence

n/2
| vm | < ks Q™ (%) [e(y — )™ exp {4m” | X |} f ey

= k™ (wlely — )" exp {Mn” | X | }

Similarly, u, satisfies (6.4).
Remark. Let wi(z, y; & »; €) be continuousin B X Rfory > »,¢ > 0,
and let w.(z, y) be continuous in R, where |w,| < kQ(a, B, r) for r > 0
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ma|z(2

and |w, | £ mye Then by the argument used above it follows that

(6.6)

f wiz, y; & m; e)wa(E,m) dE | < k(w)e(y — n) 7 exp {4—7%21 IXV}

in R X I for0 <y — n £ min (y — 9, (r — p)/dem,) and
e>0(0<p<r).

Since L.(T) = 0, it follows from Lemma 6.1 that L.(u*) = 0. Moreover,
(6.4) implies that u* is bounded as y — t+. We now show that u* — g(z)
as y — -+, i.e., that u* satisfies (6.1) for f = 0.

Lemma 6.2. If g(x) satisfies the conditions of Theorem 11, then
limyeq w*(x, Y5 ¢; &) = lime,,— w*(z, y;t; ) = g(x)

m R X I for e > 0, and

Y
lim w*(z, y; ¢ €) = g(o(t; 2, y)) exp/ b(v; z,y) dv
&->04 t

mBRXIfor0<y—t= g(p,t), wherethe convergence is uniform for x in S.

Proof. Write u* in the form
w=g(0) [Gae+ [® - g@Nede+ [ gV
where ¢ = ¢(¢; z, y). According to Lemma 4.5, we have
des,z = exp fty bdv + Ofle(y — "},
and according to (6.6) and L.emma 5.6 we have

[ ov | < kwtetw = o e { eF x .

Thus it suffices to show that

9= [l® g6 —0

in the various cases under consideration.

Consider first the case y — t+. For any 0 < & < 1, let S(x) =
{¢]|x — &| < 35/2} and write § = g1 + go, where g, is taken over 8; and
Jo is taken over E” — 8;. It follows easily from Lemma 3.1 that |z — o | =

Py —t). Thusif0 <y — t < 8/2P, we have

(6.7) l¢—o|=slE—z|+|z—0| =25 for £ in 8;(x)
and
(67’) A(x) Y, 5, t) = e—P(y"—y')“ E - $I - |$ -0 ”

=6 Y 2§50 for £in E" — 8s(x).
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Moreover, since S is compact, there exists a sphere S* in E™ with radius at
most 1 diam (S) + P(y” — y’) such that the (closed) eylinder S* X I con-
tains all points (o, 7), where ¢ = ¢(7; 2, y) for arbitrary « in S and y, 7 in I.
Thus in view of (4.18) and (6.7) there exists a constant k; > 0 such that

| g1 | = by maxps o <os,0tinen | g(27) — g(2') | for0 <y — ¢ = §/2P.
On the other hand, it follows from (4.18), (6.5), and (6.7’) that

a42
70

| 92| < ms K© exp{ - m} f {exp 4ms | $(y'; §,1) [

+ exp 4m, | X P}le(y — )7 exp{ - %@%—%n—)} dt

for0 <y —t < §/2P. Thus, by (6.6) with u = 17, there exists a constant
k2(8) > 0 depending only on S such that
| 92| < ka(S) exp {—78*/2e(y — t)} forzin Sand 0 <y — t < 8/2P.

Hence, for any given 6 > 0, there exist §(8, S) > 0 and p(6, S) > 0, inde-
pendent of x in S, such that | §; | < 6/2forall0 <y — ¢t < §(6, S)/2P and
| 92| < 6/2forall0 <y — ¢t = p(6, S), where p(6, S) = 8(6, S)/2P, i.e.,
g—0asy —>t+ in R X I for ¢ > 0, uniformly in S X I for any S.

The cases ¢ — 0+ and ¢ — y— can be treated simultaneously in a similar
manner. Let S;(z, y) = {§ ¢]| Az, y; 1) = 3¢ 7"} Then for (& t)
in 8; we have | £ — ¢ | < & and for (£ ¢) in E” — 8; we have A(z, y; £ t) =
§ > 0. Proceeding as in the previous paragraph we find

[ 91| = I maX|z'’—o'| <8,2’ es* | g(x") — g(z') l
and | go| £ ka(8) exp {—#6%/2e(y — ¢)}  forzin S,

where both estimates hold for all y — ¢ > 0 and ¢ > 0, and the assertion
follows easily.

We now consider the second term on the right-hand side of (6.2).
LemMma 6.3. Let

a(z,y;t8) = — [l dan‘(w,y; g n; e)f (& n) dg,
where f satisfies the conditions of Theorem I1I. Then
Lu(z, y; t; €)1 = f(=, y)
MR XIfor0<y—1t=dg(pt)ande>0. Moreover
(6.8) | a(z, y; t;€) | < kO (u)(y — ) exp {(4mat/u)| X [}
Proof. Since f(x, y) is a continuous function of x uniformly for y in I, it

follows that the conclusions of Lemmas 6.1 and 6.2 apply to

a*(z,y;m; ) = fI‘(x, y; & m; €)f(&,n) d
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for any 5 in I such that 9 < y. Thus (6.8) follows immediately from (6.4).
If we show that

fyDL*d d f"a i*d
 D'a*dn an t@u n

converge uniformly in 8 X I for0 < y — t < §(u, t) and € > 0, where S is
arbitrary, then the lemama follows by essentially the same argument as that
used to prove the existence of L.(V) in §56. Hence it will suffice to obtain an
estimate for D*a* analogous to the one for D’J in Lemma 5.5, since D*i* and
du*/dy are related by L.(a*) = 0.

Indeed, if we estimate [ D’Gf dt by the procedure employed in Lemma 5.5,
we find that

| D'a*| S ke (y — )™ | floyn) |+ [ 15 = fo,m) || D' | d

+ [15&m || DV |dg = T+ T + T,

for some constant k; > 0, where ¢ = ¢(9; 2, y¥). In view of (6.5), (6.6), and
Lemma 5.6, there exists a constant k;(S, u) > 0 such that

Ty + Ty < ku(S, w)e ' (y — n)7 "

inS X IforO0<y—n=49(un)ande > 0. Forzxin S, ¢isin the sphere
S*. Let St denote the sphere which is concentric with S* and whose radius
is one unit larger than that of S*. Then if we write T as the sum of two
integrals, Ts" taken over St and Ts> taken over E™ — ST, we have from (4.18),
Lemma 3.2, and the Holder continuity of f that

O < H(S*)k f |2 ey — )]~ "7 eXP{ - zsel(g|/z—| n)} @
< ks H(ST)le(y — )77

for x in S, where k; , k; > 0 are absolute constants, H (S’f) > 0 is a constant
depending on Sf, and 0 <4 =< 1 (¥ may also depend on ST). Since for £ in
E" — St wehave Az, y; £, 1) = ¢ 7% ) = § > 0, it follows (cf. the es-
timates for J» in Lemma 6.2) that
T = ka(S, w)le(y — 7)1 exp {—#8°/2e(y — n)}.
Thus there is a constant ks(S, u) > 0 such that
| Da* | < a(S, w)e ™ (y — m) 7+ ks( S, w)le(y — )]

inS X Ifor0<y—n =9y n) and & > 0. The proof of the lemma can
now be completed as indicated above.

It follows from Lemmas 6.1, 6.2, and 6.3 that (6.2) is a solution of the i.v.p.
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(6.1), and in view of (6.4)

v
im [“an [ D,y 6m 006 n) de

e»04 Yt

= f,y{lim fl“(x, y; & m; €)f (&) d&'}dn

e->04

= ‘/;y{f(d’(n; z, y): 77) €xp _[: b(”; z, y) dV} dﬂ,

which together with Lemma, 6.2 proves that (6.3) holds. Moreover, accord-
ing to (6.4) and (6.8) there exists a constant k(u) > O such that

| u(z, y; t; €) | £ k(u) exp {(4mef/p)| X [}

inRX IforO0=<y—1t= 9(ut)and e > 0. Thus the uniqueness of « in
the class of functions which do not grow more rapidly than k; & in R
follows from a theorem of M. Krzyzafiski [7; Theorem I]. This completes
the proof of Theorem II.

Theorem II can be improved in two ways. The conclusion of the theorem
remains valid if the Hélder continuity of f with respect to z is replaced by
Dini continuity. In addition, it is possible to obtain an estimate of the
difference u(x, y; t; &) — v*(z, y;t) in S X I in terms of the bounds for f and
g, and the moduli of continuity of f, g, and the coefficients of L, . To simplify
the exposition we will carry this out only for the special case in which f and
g are bounded and the various continuity conditions are uniform in R. For
the general case of unbounded f and ¢ the argument is essentially the same,
although the details are considerably more complicated. The principal
tool of this phase of the investigation is the following:

LemmA 6.4. If g(x) is uniformly continuous and | g | £ N in E™, then there
exists a constant k > 0 independent of g such that for e(y — t) > 0 sufficiently
small and any & which satisfies 0 < & < 1

v
u*(z,y; 8 6) — glo(t2,9)) expft b(v; z,y) dv

(6.9)
< k{Nle(y — 01" + am(g; [e(y — O1)

uniformly in R X I, wherey > t,& > 0and M(g;r) s the modulus of con-
tinusty of g.

Proof. 1t follows as in the proof of Lemma 6.2, by using (6.4) with m; = N
and my = 0, that

Y
u* — g(o) exp f b dv
7

< Nlale(y — 01"+ 1 9|

for some constant k; > 0 (independent of g), where ¢ = ¢(¢; z, ). Since g
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is uniformly continuous in E", there exist a constant p > 0 and a function
M(g; r) defined and positive for 0 < r < p such that M(g;r) | 0Oasr | 0and

lg(2’) — g(a’) | = M(g; |2 — 2" |) for |2 —2'| £ p

In view of the boundedness of ¢ we can extend the definition of 9 to the
range r > p by the formula 9(g; 7) = 2N forr = p. Then in view of (4.18)
and Lemma 3.2 we have

915k [ o e~ o ety — 0T exp{ ~1LEZ g
where k; > 0 is a constant (independent of g). Choose any § such that
0 < & < 1, and suppose that [e(y — t)]"”* < p. Then since IM(g; r) is an
increasing function of r for 0 < r < pand M = 2N forall r = 0, we have

. e Y Ple—ol \
|91 < ke one(g; le(y — 1) [{s ey — )] exp{ ( oy
oWk { Sl — 0} [ tetw - 01 e {“%}'T‘Eﬁ%} d,

where 8 = {£]||& — o| = [e(y — t)]""}. Hence there exists a constant
ks > 0 (independent of g) such that for e(y — ¢) > 0 sufficiently small

(6.10) 191 = kso(g; [e(y — )]

in R X I,and (6.9) follows.

Remark. 1t is clear that if we make additional assumptions about the
nature of 9, the estimate (6.10) for | g | can be improved. For instance if
IM(g;r) = Hr" forsome 0 <y < 1,then | g| = ka(g; [e(y — 1)]).

As a consequence of Lemma 6.4 we have

TuroreEM III. Suppose that g(x) s uniformly continuous in E", and that
f(z, ) is uniformly continuous in R and uniformly Dinz continuous with respect
to x wn R. If (3C) holds, and if there exist constants N1, N» > 0 such that
lg| £ Nyin E" and |f| < N, in R, then the conclusion of Theorem II holds
m R X Ifort £y =<y ande > 0. Moreover, there exists a constant k > 0
independent of f and g such that for e(y — t) > 0 suffictently small and any 6
which satisfies0 < 6§ < 1

| u(z, y;t;€) — v*(2, ;) | < k[Nile(y — 1" + m(g; [e(y — )1
+ (y — ){Nale(y — DI + m(f; [e(y — )]

uniformly in B X I, where y > t, ¢ > 0 and M(f; r) vs the modulus of con-
tinusty of f with respect to x.

(6.11)

Proof. In the proof of Theorem II the exact nature of the continuity of f
as a function of z is used only in showing that [Y D** dy and [¥ d8u*/dy dn
converge, i.e., in estimating D’@*. It is clear from the proof of Lemma 6.3
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that it suffices to show that [} T, dn converges. Let 9 (f; r) be the modulus
Jf continuity of f as a function of x, where M (f; r) = 2N, for r = p. The
assumption that f is Dini continuous means that for any finite » > 0

for M(f; 7)r dr < .

Note that if 0 < « < 1, then
(6.12) f m(f; ) dr = é‘/ M(f, v)v " dy < .
0 0

If we proceed as in the proof of Lemma 6.4, it is clear that there exist con-
stants k; , k2 > 0 such that

| T2 | S Rale(y — m)I7'90(f; [e(y — )1
+ Nokele(y — m)] ™" exp {—3le(y — n)]7 7}

in R X I for e(y — n) > O sufficiently small and 0 < § < 1. Thus it follows
from (6.12) that [7 T dn converges uniformlyin R X I for y > tand £ > 0.
Therefore the conclusion of Theorem II holds in the present case. The
estimate (6.11) follows immediately from (6.9).

Appendix

By the methods employed in the body of this paper we obtain the follow-
ing result for the parabolic operator

L(w) = 2.0 im1aii(m, Yuis + 2im1 adz, y)us + b, Y)u — uy .

TueoreM. If (3¢;) and (3C2) hold, then for all (x, y), (§ 1) in R such that
y > n, the f.s. of L(u) = 0 exists and can be wrilten in the form

- y -
T'(z,y; & 1) = Gz, y; & n) +.f" drfG(w, y; s, (s, 75 &m) ds,

where

Y —1/2
Gz, y; 6 1) = 2_"{7r" det "; A(g v) dv}
. exp{f: bt ») dv — }(z — £ + a>T([:A<s, ») du)_l (o — &+ a)} :

Yy
o = a(y7 Ea 7’) = f a(£7 V) dV}
n
and ¥ is the solution of the integral equation
— y -
\l/(xy y; &, 77) = L[G(.’l), v; & 7))] + f dr f L[G(.’E, Y s T)]'ﬁ(sy 75 &, "7) ds.
n

If g(x) and f(x, y) satisfy the conditions of Theorem II (where the Hélder
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continuity of f with respect to x can be replaced by Dini continuity), then

u(x, Y t) = f I‘(x: y; & t)g(&) d¢ — j;” dn f P(x; Y; & ﬂ)f(£1 77) dé

18 the unique (in the sense of Theorem II) solution of the i.v.p.

L(u) = f(z,y) for y>t  w=g(x) for y=1
imR X Ifor0 <y —t<min(y’ —t10— u)/32ms), where 0 < u < I and
1/(y — n) is the lower bound for the eigenvalues of ([ A(x, v) dv)™" fory > .

The proof of this theorem can be carried out along the same lines as the
proofs of Theorems I and II above. We will omit the details and content
ourselves with a few remarks concerning the most important modifications of
these proofs which must be made. The parametrix G(z, y; &, ) is a solution
with singularity at (&, 7) of the equation

(A1) 2oPimraii(E, y)ui + 2im1ai(E Y)us + b(E y)u — uy = 0.

Moreover, since | a(y; & n) | = P(y — %) in R/, it is easy to show that there
exists a constant k¥ > 0 depending only on i, P, and ¢/ — ¢’ such that

axn{ ~3 — £+ ([ 40 &) (x——s+a)f

s keo{ -5 4,

T. T
lk)\ = <f A(E,v)dv) )\_S.z)\)\
Yy—n Yy—n
in R for all y > 5 and all real n-vectors \. By using these two facts, together
with the observation |z — ¢ + a| < |z — £| + P(y — n), the analogues of
Lemmas 4.2 and 4.3 can be proved with little difficulty. Thus, for example,
we obtain estimates of the form

| D"G(z, y; & n) |
S K™y —n) " exp{—lla — £[//16(y — )} (m 2 1).

Since we no longer assume that the a;(z, y) are differentiable with respect to
x, it is necessary to alter the definition of G° employed in §4 slightly in the
present case in order to assure the differentiability of G°(x, y; £ ») with re-
spect to £ In particular, for any ¢ in E” we define

- v -1/2
G‘T(x’ Y; 57 "7) = 2—-n{7rn detf A(Jy V) dl’}
7

where

© exp {/;y b(o,») dv — tlz — & + aly; o, n)]"

: (j;” A(q,») du>~1 [¢ — &+ a(y; «r,n)]} ,
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i.e., G° is the f.s. of (A.1) with coefficients evaluated at (s, y). With G° so
defined, the analogues of Lemmas 4.4 and 4.5 can be shown to hold. The
remainder of the proof of the theorem proceeds by a systematic specializa-
tion of the relevant results in §§5 and 6. Since these results depend only on
the properties of G and G° derived in §4, the theorem follows.
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