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Abstract If a closed smooth manifold M with an action of a torus T satisfies certain

conditions, then a labeled graph GM with labeling in H2(BT ) is associated with M ,

which encodes a lot of geometrical information on M . For instance, the “graph coho-

mology” ring H∗
T (GM ) of GM is defined to be a subring of

⊕
v∈V (GM )H

∗(BT ), where

V (GM ) is the set of vertices of GM , and is known to be often isomorphic to the equivari-

ant cohomologyH∗
T (M) ofM . In this paper, we determine the ring structure ofH∗

T (GM )

with Z (resp., Z[ 1
2
]) coefficients whenM is a flag manifold of type A, B, or D (resp., C)

in an elementary way.

1. Introduction

Let T be a compact torus of dimension n, and let M be a closed smooth T -

manifold. The equivariant cohomology of M is defined to be the ordinary coho-

mology of the Borel construction of M ; that is,

H∗
T (M) :=H∗(ET ×T M),

where ET denotes the total space of the universal principal T -bundle ET →BT

and ET ×T M denotes the orbit space of ET ×M by the diagonal T -action.

Throughout this paper, all cohomology groups are taken with Z coefficients unless

otherwise stated. The equivariant cohomology of M contains a lot of geometrical

information on M . Moreover it is often easier to compute H∗
T (M) than H∗(M)

by virtue of the localization theorem, which implies that the restriction map

(1.1) ι∗ : H∗
T (M)→H∗

T (M
T )

to the T -fixed point set MT is often injective; in fact, this is the case when

Hodd(M) = 0. When MT is isolated, H∗
T (M

T ) =
⊕

p∈MT H∗
T (p), and hence

H∗
T (M

T ) is a direct sum of copies of a polynomial ring in n variables because

H∗
T (p) =H∗(BT ).

Therefore we suppose that Hodd(M) = 0 and MT is isolated. Goresky, Kot-

twitz, and MacPherson [4] (see also [5, Chapter 11]) found that under the further

condition that the weights at a tangential T -module are pairwise linearly inde-

pendent at each p ∈ MT , the image of ι∗ in (1.1) above is determined by the
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fixed point sets of codimension one subtori of T when considering cohomology

with Q coefficients. Their result motivated Guillemin and Zara [6] to associate

a labeled graph GM with M and define the graph cohomology ring H∗
T (GM ) of

GM , which is a subring of
⊕

p∈MT H∗(BT ). Then the result of Goresky, Kottwitz,

and MacPherson can be stated as H∗
T (M)⊗Q is isomorphic to H∗

T (GM )⊗Q as

graded rings when M satisfies the conditions mentioned above.

The result of Goresky, Kottwitz, and MacPherson can be applied to many

important T -manifolds M such as flag manifolds and compact smooth toric vari-

eties. When M is such a nice manifold, H∗
T (M) is known to be often isomorphic

to H∗
T (GM ) without tensoring with Q (see [8], [9], for example). In this paper, we

determine the ring structure of H∗
T (GM ) (resp., H∗

T (GM )⊗Z[ 12 ]) in an elementary

way when M is a flag manifold of type A, B, or D (resp., C).

The equivariant cohomology ring H∗
T (M) of a flag manifold M of classical

type is determined (see, e.g., [3]), and our computation of H∗
T (GM ) confirms that

(resp., H∗
T (M)⊗ Z[ 12 ]) is isomorphic to H∗

T (GM ) (resp., H∗
T (GM )⊗ Z[ 12 ]) when

M is of type A, B, or D (resp., C). The main point in our computation is to show

that H∗
T (GM ) is generated by some elements which have a simple combinatorial

description. When M is a flag manifold of type An−1, those elements τ1, . . . , τn in

H∗
T (GM ) correspond to the equivariant first Chern classes in H∗

T (M) of complex

line bundles over M obtained from the flags. One can show that those first Chern

classes generate H∗
T (M) over H∗(BT ) using topological techniques. However,

our concern is to compute the graph cohomology H∗
T (GM ) directly, and so we

show that τ1, . . . , τn generate H∗
T (GM ) over H∗(BT ) in a purely combinatorial

or elementary way.

This paper is organized as follows. In Section 2 we introduce the notion of

a labeled graph and its graph cohomology following the notion of a Goresky,

Kottwitz, and MacPherson (GKM) graph and its graph cohomology. We treat

type A in Section 3, which is a prototype of our argument. Type C is treated

in Section 4, and the argument is almost the same as type A if we work over

Z[ 12 ]-coefficients. Types B and D can also be treated similarly, but more sub-

tle arguments are necessary when we work over Z-coefficients. This is done in

Sections 5 and 6.

This paper is the detailed and improved version of the announcement [1].

Recently the first author (see [2]) has determined the ring structure of H∗
T (GM )

along the line developed in this paper when M is the flag manifold of type G2.

2. Labeled graphs and graph cohomology

Let T be a compact torus of dimension n. Any homomorphism f from T to a

circle group S1 induces a homomorphism f∗ : H∗(BS1)→H∗(BT ), so assigning

f to f∗(u), where u is a fixed generator of H2(BS1), defines a homomorphism

from Hom(T,S1) (the group of homomorphisms from T to S1) to H2(BT ). As
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is well known, this homomorphism is an isomorphism, so that we make the iden-

tification

Hom(T,S1) =H2(BT )

and use H2(BT ) instead of Hom(T,S1) throughout this paper.

Let G be a graph with labeling

�(e) ∈H2(BT ) for each edge e of G.

We call G a labeled graph in this paper. Remember that H∗(BT ) is a polynomial

ring over Z generated by elements in H2(BT ).

DEFINITION

The graph cohomology ring of G, denoted H∗
T (G), is defined to be the subring of

Map(V (G),H∗(BT )) =
⊕

v∈V (G)H
∗(BT ), where V (G) denotes the set of vertices

of G, satisfying the following condition:

h ∈ Map(V (G),H∗(BT )) is an element of H∗
T (G) if and only if h(v) − h(v′) is

divisible by �(e) in H∗(BT ) whenever the vertices v and v′ are connected by an

edge e in G.

Note that H∗
T (G) has a grading induced from the grading of H∗(BT ).

REMARK

Guillemin and Zara [6] introduced the notion of GKM graph motivated by the

result of Goresky, Kottwitz, and MacPherson [4]. It is a labeled graph but requires

more conditions on the labeling � and encodes more geometrical information on

a T -manifold M when it is associated with M . However, what we are concerned

with in our paper is the graph cohomology of G defined above, and for that

purpose we do not need to require any condition on the labeling � although the

labeled graphs treated in this paper are all GKM graphs.

Here is an example of a labeled graph arising from a root system, which is our

main concern in this paper.

EXAMPLE

For a root system Φ in H2(BT ) (with an inner product) we define a labeled

graph GΦ as follows. The vertex set V (GΦ) of GΦ is the Weyl group WΦ of Φ,

which is generated by reflections σα determined by α ∈ Φ. Two vertices w and

w′ are connected by an edge, denoted ew,w′ , if and only if there is an element α

of Φ such that w′ =wσα, and we label the edge ew,w′ with wα. Since σα = σ−α,

this labeling has ambiguity of sign, but the graph cohomology ring H∗
T (GΦ) is

independent of the sign.

If G is a compact semisimple Lie group with Φ as the root system and T is

a maximal torus of G, then the labeled (or GKM) graph associated with G/T is

GΦ (see [7, Theorem 2.4]).
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3. Type An−1

Let {ti}ni=1 be a basis of H2(BT ), so that H∗(BT ) can be identified with the

polynomial ring Z[t1, t2, . . . , tn]. We choose an inner product on H2(BT ) such

that the basis {ti}ni=1 is orthonormal. Then

(3.1) Φ(An−1) :=
{
±(ti − tj)

∣∣ 1≤ i < j ≤ n
}

is a root system of type An−1. We denote by An the labeled graph associated

with Φ(An−1). The graph An has the permutation group Sn on n letters [n] =

{1,2, . . . , n} as the vertex set. We use the one-line notation w =w(1)w(2) · · ·w(n)
for permutations. Two vertices w,w′ are connected by an edge ew,w′ if and only

if there is a transposition (i, j) ∈ Sn such that w′ =w · (i, j), in other words,

w′(i) =w(j), w′(j) =w(i) and w′(r) =w(r) r �= i, j,

and the edge ew,w′ is labeled by tw(i) − tw′(i).

For each i= 1, . . . , n, we define elements τi, ti of Map(V (An),H
∗(BT )) by

(3.2) τi(w) := tw(i), ti(w) := ti for w ∈ Sn.

In fact, both τi and ti are elements of H2
T (An).

REMARK

Let 0⊂E1 ⊂ · · · ⊂En be the tautological flag of bundles over a flag manifold of

An−1 type. They admit natural T -actions, and one can see that τi corresponds

to the equivariant first Chern class cT1 (Ei/Ei−1) of the equivariant line bundle

Ei/Ei−1.

EXAMPLE

We have the case n = 3. The root system Φ(A2) is {±(ti − tj) | 1 ≤ i < j ≤ 3}.
The labeled graph A3 and τi for i= 1,2,3 are as follows.
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Figure 1

THEOREM 3.1

Let An be the labeled graph associated with the root system Φ(An−1) of type An−1

in (3.1). Then

H∗
T (An) = Z[τ1, . . . , τn, t1, . . . , tn]/

(
ei(τ)− ei(t)

∣∣ i= 1, . . . , n
)
,

where ei(τ) (resp., ei(t)) is the ith elementary symmetric polynomial in τ1, . . . , τn
(resp., t1, . . . , tn).
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The rest of this section is devoted to the proof of Theorem 3.1. We first prove

the following.

LEMMA 3.2

H∗
T (An) is generated by τ1, . . . , τn, t1, . . . , tn as a ring.

Proof

We shall prove the lemma by induction on n. When n= 1, H∗
T (A1) is generated

by t1 since A1 is a point, so the lemma holds.

Suppose that the lemma holds for n− 1. Then it suffices to show that any

homogeneous element h of H∗
T (An), say, of degree 2k, can be expressed as a

polynomial in the τi’s and ti’s. For each i= 1, . . . , n, we set

Vi :=
{
w ∈ Sn

∣∣w(i) = n
}
.

The sets Vi give a decomposition of Sn into disjoint subsets. We consider the full

labeled subgraph Li of An with Vi as the vertex set, where the full subgraph

means that any edge in An connecting vertices in Vi lies in Li. Note that the

vertices of Li can naturally be identified with permutations on {1,2, . . . , n}\{i}
and Li is isomorphic to An−1 for any i. In fact, let φi be the map from Vi to

Sn−1 which maps w to w(1)w(2) · · ·w(i− 1)w(i+ 1) · · ·w(n). It is clear that φi

is a bijection and φi induces the isomorphism between Li and An−1 as a labeled

graph; namely, if v and v′ are connected by an edge e in Li, then φi(v) and φi(v
′)

are also connected by an edge e′ in An−1, and �(e) = �(e′).

The restriction of h ∈H∗
T (An) to L1 is of the form

h|L1 =
k∑

i=0

Pit
i
n,

where Pi is some homogeneous element in H∗
T (An−1) of degree 2(k − i), since

L1 and An−1 are isomorphic. By inductive assumption, each Pi is generated by

τj , tj ∈H∗
T (An−1). For v ∈ L1, τj+1(v) is equal to τj(φ1(v)) for 1≤ j ≤ n− 1, so

there is a polynomial P in τi’s and ti’s such that (h−P )(v) = 0 for any v in V1.

Therefore we may assume that h(v) = 0 for any v in V1 by subtracting from h a

polynomial in τi’s and ti’s.

Let q be the maximal integer up to min{k+ 1, n} so that

(3.3) h(v) = 0 for any v ∈
q−1⋃
i=1

Vi,

where q ≥ 2. Note that a vertex w in Vq is connected by an edge in An to a

vertex v in Vi for i �= q if and only if v = w · (i, q). In this case h(w) − h(v) is

divisible by tw(i) − tw(q) = tw(i) − tn and h(v) = 0 whenever i < q by (3.3), so

h(w) is divisible by tw(i)− tn for i < q. Thus, for each w ∈ Vq , there is an element

gq(w) ∈ Z[t1, . . . , tn] such that

(3.4) h(w) = (tw(1) − tn)(tw(2) − tn) · · · (tw(q−1) − tn)g
q(w),
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where gq(w) is homogeneous and of degree 2(k + 1− q) because h(w) is homo-

geneous and of degree 2k.

One expresses

(3.5) gq(w) =

k+1−q∑
r=0

gqr(w)t
r
n

with homogeneous polynomials gqr(w) of degree 2(k+1− q− r) in Z[t1, . . . , tn−1].

CLAIM

For each r with 0≤ r ≤ k+1− q, there is a polynomial Gq
r in τi’s (except τq) and

ti’s (except tn) with integer coefficients such that Gq
r(w) = gqr(w) for any w ∈ Vq.

Proof of claim

If the vertex w in Vq is connected by an edge in An to a vertex v in Vq , then there

is an element (i, j) ∈ Sn such that v =w · (i, j) where i and j are not equal to q.

Since h is an element of H∗
T (An), h(w)−h(v) has to be divisible by tw(i)− tw(j),

in other words,

(3.6) h(w)≡ h(v) mod tw(i) − tw(j).

On the other hand, it follows from (3.4) that we have

(3.7) h(w) = gq(w)

q−1∏
s=1

(tw(s) − tn), h(v) = gq(v)

q−1∏
s=1

(tv(s) − tn).

Here, since v = w · (i, j), we have w(i) = v(j), w(j) = v(i), and w(s) = v(s) for

s �= i, j. Moreover w(i) and w(j) are not equal to n because i and j are not equal

to q. Therefore

q−1∏
s=1

(tw(s) − tn)≡
q−1∏
s=1

(tv(s) − tn) �≡ 0 mod tw(i) − tw(j).

This together with (3.6) and (3.7) implies that

gq(w)≡ gq(v) mod tw(i) − tw(j)

and hence

gqr(w)≡ gqr(v) mod tw(i) − tw(j) for any r

because w(i) and w(j) are not equal to n. Therefore gqr(w)− gqr(v) is divisible

by tw(i) − tw(j) for any r. This means that gqr restricted to Lq is an element of

H∗
T (Lq). The vertices of Lq can be identified with permutations on {1, . . . , n}\{q},

and hence Lq is naturally isomorphic to An−1, so the induction assumption on n

implies that there is a polynomial Gq
r in τi’s (except τq) and ti’s (except tn) with

integer coefficients such that Gq
r(w) = gqr(w) for any w ∈ Vq = V (Lq), proving the

claim. �
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Since τi(w) = tw(i) and w(i) = n for w ∈ Vi, we have

(3.8)

q−1∏
j=1

(τj − tn)(w) = 0 for any w ∈
q−1⋃
i=1

Vi.

Therefore, it follows from (3.4), (3.5), the claim above, and (3.8) that putting

Gq =
∑k+1−q

r=0 Gq
rt

r
n, we have

(
h−Gq

q−1∏
j=1

(τj − tn)
)
(w) = h(w)− gq(w)

q−1∏
j=1

(tw(j) − tn)

= 0 for any w ∈
q⋃

i=1

Vi.

Therefore, subtracting the polynomial Gq
∏q−1

j=1(τj − tn) from h, we may assume

that

h(v) = 0 for any v ∈
q⋃

i=1

Vi.

The above argument implies that h finally takes zero on all vertices of An (which

means h= 0) by subtracting polynomials in τi’s and ti’s with integer coefficients,

and this completes the induction step. �

Let k be a commutative ring. We take k = Z or Z[ 12 ] later. Remember that the

Hilbert series of a graded k-algebra A∗ =
⊕∞

j=0A
j , where Aj is the degree j part

of A∗ and assumed to be of finite rank over k, is a formal power series defined

by

F (A∗, s) :=
∞∑
j=0

(rankkA
j)sj .

LEMMA 3.3

We have F (H∗
T (An), s) =

1
(1−s2)2n

∏n
i=1(1− s2i).

Proof

We first note that H∗
T (An) is free over Z because it is a submodule of⊕

w∈Sn
H∗(BT ). Let dn(k) := rankZH

2k
T (An). Then

(3.9) F
(
H∗

T (An), s
)
=

∞∑
k=0

dn(k)s
2k.

For q with 0≤ q ≤ k+ 1, we set

F 2k
q =

{
h ∈H2k

T (An)
∣∣∣ h(w) = 0 for any w ∈

q⋃
i=1

Vi

}
.

Then we have a filtration

H2k
T (An) = F 2k

0 ⊃ F 2k
1 ⊃ · · · ⊃ F 2k

k ⊃ F 2k
k+1 = 0,
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and since gqr in (3.5) belongs to H
2(k+1−q−r)
T (Lq) =H

2(k+1−q−r)
T (An−1) as shown

in the claim and gqr can be chosen arbitrarily, we have

rankZF
2k
q−1 − rankZF

2k
q =

k+1−q∑
r=0

dn−1(k+ 1− q− r) =

k+1−q∑
r=0

dn−1(r).

Therefore, we have

(3.10) dn(k) =

min{k+1,n}∑
q=1

k+1−q∑
r=0

dn−1(r).

If we set dn−1(j) = 0 for j < 0, then an elementary computation shows that (3.10)

reduces to

(3.11) dn(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑n
i=1 i · dn−1(k+ 1− i)

if k ≤ n− 1,∑n
i=1 i · dn−1(k+ 1− i) + n

∑k+1
i=n+1 dn−1(k+ 1− i)

if k ≥ n.

We shall abbreviate F (H∗
T (An), s) as Fn(s). Then, plugging (3.11) into (3.9), we

obtain

Fn(s) =
∞∑
k=0

(
dn−1(k) + 2dn−1(k− 1) + · · ·+ ndn−1(k+ 1− n)

)
s2k

+ n

∞∑
k=n

(
dn−1(k− n) + · · ·+ dn−1(1) + dn−1(0)

)
s2k

= Fn−1(s) + 2s2Fn−1(s) + · · ·+ ns2n−2Fn−1(s)

+ n
(
dn−1(0)s

2n 1

1− s2
+ dn−1(1)s

2n+2 1

1− s2
+ · · ·

)

= Fn−1(s)(1 + 2s2 + · · ·+ ns2n−2) + n
s2n

1− s2
Fn−1(s)

=
1− s2n

(1− s2)2
Fn−1(s).

On the other hand, F1(s) = 1/(1−s2) since H∗
T (A1) = Z[t1]. Therefore the lemma

follows. �

We abbreviate the polynomial ring Z[τ1, . . . , τn, t1, . . . , tn] as Z[τ, t]. The canonical

map Z[τ, t]→H∗
T (An) is a degree-preserving homomorphism which is surjective

by Lemma 3.2. Let ei(τ) (resp., ei(t)) denote the ith elementary symmetric poly-

nomial in τ1, . . . , τn (resp., t1, . . . , tn). It easily follows from (3.2) that ei(τ) = ei(t)

for i= 1, . . . , n. Therefore the canonical map above induces a degree-preserving

epimorphism

(3.12) A∗
n := Z[τ, t]/

(
ei(τ)− ei(t)

∣∣ i= 1, . . . , n
)
→H∗

T (An).

We note that A∗
n is a Z[t]-module in a natural way.
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LEMMA 3.4

A∗
n is generated by {

∏n−1
p=1 τ

ip
p | ip ≤ n− p} as a Z[t]-module.

Proof

Clearly the elements
∏n−1

p=1 τ
ip
p , with no restriction on exponents ip, generate A∗

n

as a Z[t]-module. Therefore, it suffices to prove that τn−p+1
p can be expressed as

a polynomial in τ1, . . . , τp and ti’s with the exponent of τp less than or equal to

n− p.

Let hi(t) (resp., hi(τ)) be the ith complete symmetric polynomial in t1, . . . , tn
(resp., τ1, . . . , τn) and h0(t) = e0(t) = 1. Since ei(τ) = ei(t) for any i, we have

n∏
i=1

(1− τix) =

n∏
i=1

(1− tix),

where x is an indeterminate. It follows that∑
i≥0

hi(τ1, . . . , τp)x
i =

p∏
i=1

1

1− τix

=
n∏

i=p+1

(1− τix)
n∏

i=1

1

1− tix

=
(n−p∑

i=0

(−1)iei(τp+1, . . . , τn)x
i
)(∑

i≥0

hi(t)x
i
)
.

(3.13)

Comparing coefficients of xn+1−p in (3.13), we have

(3.14) hn+1−p(τ1, . . . , τp) =

n−p∑
i=0

(−1)iei(τp+1, . . . , τn)hn+1−p−i(t),

while it easily follows from the definition of hi that

(3.15) hn+1−p(τ1, . . . , τp) = τn+1−p
p +

n−p∑
i=0

τ ip · hn+1−p−i(τ1, . . . , τp−1).

By (3.14) and (3.15) we have

τn+1−p
p =−

n−p∑
i=0

τ ip · hn+1−p−i(τ1, . . . , τp−1)

+

n−p∑
i=0

(−1)iei(τp+1, . . . , τn)hn+1−p−i(t).

(3.16)

On the other hand, it follows from ei(τ) = ei(t) that

i∑
j=0

ej(τ1, . . . , τp)ei−j(τp+1, . . . , τn) = ei(t) for any i,
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that is,

ei(τp+1, . . . , τn) = ei(t)−
i∑

j=1

ej(τ1, . . . , τp)ei−j(τp+1, . . . , τn) for any i.

Thus one obtains

e1(τp+1, . . . , τn) = e1(t)− e1(τ1, . . . , τp),

e2(τp+1, . . . , τn) = e2(t)− e2(τ1, . . . , τp)− e1(τ1, . . . , τp)e1(τp+1, . . . , τn)

= e2(t)− e2(τ1, . . . , τp)− e1(τ1, . . . , τp)
(
e1(t)− e1(τ1, . . . , τp)

)
,

and so on. This shows that ei(τp+1, . . . , τn) can be written as a linear combination

of
∏p

k=1 τ
ik
k , with ik ≤ i, over Z[t]. Therefore, it follows from (3.16) that τn+1−p

p

is written as a polynomial in τ1, . . . , τp and ti’s with the exponent of τp less than

or equal to n− p. �

Now we are in a position to complete the proof of Theorem 3.1.

Proof of Theorem 3.1

If two formal power series a(s) =
∑∞

i=0 ais
i and b(s) =

∑∞
i=0 bis

i with real coef-

ficients ai and bi satisfy ai ≤ bi for every i, then we express this as a(s)≤ b(s).

The Hilbert series of the free Z[t]-module generated by
∏n−1

k=1 τ
ik
k is given by

1
(1−s2)n s

2
∑n−1

k=1 ik , so it follows from Lemma 3.4 that

F (A∗
n, s)≤

1

(1− s2)n

∑
0≤ik≤n−k

s2
∑n−1

k=1 ik ,

and the equality above holds if and only if generators
∏n−1

p=1 τ
ip
p with ip ≤ n− p

are linearly independent over Z[t]. Here the right-hand side above is equal to

1

(1− s2)n

∑
0≤ik≤n−k

(n−1∏
k=1

s2ik
)
=

1

(1− s2)n

n−1∏
k=1

( ∑
0≤ik≤n−k

s2ik
)

=
1

(1− s2)n

n−1∏
q=1

(1 + s2 + · · ·+ s2q)

=
1

(1− s2)2n

n∏
i=1

(1− s2i),

which agrees with F (H∗
T (An), s) by Lemma 3.3. Therefore F (A∗

n, s)≤ F (H∗
T (An),

s). On the other hand, the surjectivity of the map (3.12) implies the opposite

inequality. Therefore F (A∗
n, s) = F (H∗

T (An), s). Since the map (3.12) is surjec-

tive and F (A∗
n, s) = F (H∗

T (An), s), we conclude that the map (3.12) is actually

an isomorphism. This proves Theorem 3.1. �
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4. Type Cn

The argument developed in Section 3 works for the case of type Cn with a little

modification. In this section we shall state the result and mention necessary

changes in the argument.

The root system Φ(Cn) of type Cn is given by

(4.1) Φ(Cn) =
{
±(ti + tj),±(ti − tj),±2tk

∣∣ 1≤ i < j ≤ n,1≤ k ≤ n
}
,

and its Weyl group is the signed permutation group on ±[n] := {±1, . . . ,±n},
which we denote by S̃n. Namely, w ∈ S̃n permutes elements in ±[n] up to sign.

Again we use the one-line notation w = w(1)w(2) · · ·w(n). The number of ele-

ments in S̃n is 2nn!.

Let Cn be the labeled graph associated with the root system Φ(Cn). It has

S̃n as vertices, and two vertices w,w′ ∈ S̃n are connected by an edge ew,w′ if and

only if one of the following occurs:

(1) there is a pair {i, j} ⊂ [n] such that(
w′(i),w′(j)

)
=±

(
w(j),w(i)

)
and w′(r) =w(r) for r( �= i, j) ∈ [n];

(2) there is an i ∈ [n] such that

w′(i) =−w(i) and w′(r) =w(r) for r( �= i) ∈ [n].

We understand that

t−m :=−tm for a positive integer m.

Then the edge ew,w′ is labeled by tw(i) − tw′(i) in case (1) above and by 2tw(i) in

case (2) above, and the elements τi and ti for i= 1, . . . , n defined by

(4.2) τi(w) := tw(i) and ti(w) := ti

belong to H2
T (Cn).

If Mn is a flag manifold of type Cn, then the restriction map

H∗
T (Mn)→

⊕
w∈S̃n

H∗(BT )

is injective and the image is known to be described as

Z[τ1, . . . , τn, t1, . . . , tn]/
(
ei(τ

2)− ei(t
2)

∣∣ i= 1, . . . , n
)
,

where ei(τ
2) (resp., ei(t

2)) is the ith elementary symmetric polynomial in τ21 , . . . ,

τ2n (resp., t21, . . . , t
2
n; see [3, Chapter 6]). So, one may expect that H∗

T (Cn) is

generated by τ1, . . . , τn, t1, . . . , tn as a ring, but this is not true in general, as

shown in the following example. This fact was pointed out by T. Ikeda, L. C.

Mihalcea, and H. Naruse (private communication).
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Figure 2

EXAMPLE

Take n= 2. One can check that h ∈Map(S̃2,H
∗(BT )) defined by

h(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if v(1) = 2, v(2) = 2 or (v(1), v(2)) = (−2,1),

−2t2(t1 − t2)(t1 + t2) if (v(1), v(2)) = (1,−2),

2t22(t1 + t2) if (v(1), v(2)) = (−1,−2),

2t1t2(t1 + t2) if (v(1), v(2)) = (−2,−1)

is an element of H∗
T (C2) (see Figure 2). In fact, the element h agrees with

1

2
(τ1 − t2)(τ2 − t2)(τ1 − τ2 + t1 + t2),

and this shows that h is not a polynomial in τ1, τ2, t1, t2 over Z.

The problem is caused by the presence of the factor 2 in the root system (4.1),

and if we work over Z[ 12 ] instead of Z, then the argument developed in Section 2

works with a little modification and we obtain the following.

THEOREM 4.1

Let Cn be the labeled graph associated with the root system Φ(Cn) of type Cn as

above. Then

H∗
T (Cn)⊗Z

[1
2

]
= Z

[1
2

]
[τ1, . . . , τn, t1, . . . , tn]/

(
ei(τ

2)− ei(t
2)

∣∣ i= 1, . . . , n
)
,

where ei(τ
2) (resp., ei(t

2)) is the ith elementary symmetric polynomial in τ21 , . . . ,

τ2n (resp., t21, . . . , t
2
n).

The proof of Theorem 4.1 is almost the same as that of Theorem 3.1, and we

shall outline it. First we prove the following.

LEMMA 4.2

H∗
T (Cn)⊗Z[ 12 ] is generated by τ1, . . . , τn, t1, . . . , tn as a ring.
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Proof

The proof goes as in Lemma 3.2. When n= 1, C1 has only one edge with vertices

1 and −1, and the label of the edge is 2t1. Since τ1(±1) =±t1, it is easy to check

that the lemma holds when n= 1.

The key step in the proof of Lemma 3.2 was that if h ∈H∗
T (An) vanishes on

Vi for i < q, then one could modify h so that it vanishes on Vi for i < q + 1 by

subtracting a polynomial in τi’s and ti’s with integer coefficients from h, where

the polynomial was of the form Gq
∏q−1

i=1 (τi − tn). In the case of type Cn, we

consider

V ±
i :=

{
w ∈ S̃n

∣∣w(i) =±n
}

and the full labeled subgraph L±
i of Cn with V ±

i as the vertex set. We use a similar

argument to that for type An. As in the case of type An, φ
+
i : V +

i → S̃n−1 (resp.,

φ−
i : V −

i → S̃n−1) which maps w to w(1)w(2) · · ·w(i−1)w(i+1) · · ·w(n) gives an
isomorphism between the labeled graphs L+

i (resp., L−
i ) and Cn−1. Suppose that

the lemma holds for n− 1. Let h ∈H∗
T (Cn) be a homogeneous element of degree

2k. We will show that h can be expressed as a polynomial in τi’s and ti’s with

coefficients Z[ 12 ].

The restriction of h to L+
1 is of the form

h|L+
1
=

k∑
i=0

Pit
i
n,

where each Pi is some homogeneous element in H∗
T (Cn−1) of degree 2(k − i)

because L+
1 is isomorphic to Cn−1. By inductive assumption, each Pi is generated

by τj ’s and tj ’s. Therefore we may assume that h(v) = 0 for any v ∈ V +
1 by

subtracting from h a polynomial in τi’s and ti’s.

Let q be the maximal integer up to min{k+ 1, n} so that

h(v) = 0 for any v ∈
q−1⋃
i=1

V +
i ,

where q ≥ 2. Note that a vertex w in V +
q is connected by an edge in Cn to a vertex

v in V +
i for i �= q if and only if (w(i),w(q)) = (v(q), v(i)) and w(r) = v(r) for r

( �= i, q) ∈ [n]. In this case, h(w) − h(v) is divisible by tw(i) − tv(i) = tw(i) − tn.

Since h(v) = 0 whenever i < q, h(w) is divisible by tw(i) − tn. Thus, for each

w ∈ V +
q there is an element gq(w) ∈ Z[ 12 ][t1, . . . , tn] such that

h(w) = (tw(1) − tn)(tw(2) − tn) · · · (tw(q−1) − tn)g
q(w),

where gq(w) is a homogeneous polynomial of degree 2(k+1− q) with coefficients

Z[ 12 ].

One expresses

gq(w) =

k+1−q∑
r=0

gqr(w)t
r
n
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with homogeneous polynomials gqr(w) of degree 2(k + 1− q − r) in Z[ 12 ][t1, . . . ,

tn−1].

CLAIM

For each r with 0≤ r ≤ k+1− q, there is a polynomial Gq
r in τi’s (except τq) and

ti’s (except tn) with coefficients Z[ 12 ] such that Gq
r(w) = gqr(w) for any w ∈ V +

q .

Proof of claim

If the vertex w in V +
q is connected by an edge in Cn to a vertex v in V +

q , then

one of the following occurs:

(1) there is a pair {i, j} ⊂ [n] \ {q} such that(
w(i),w(j)

)
=±

(
v(j), v(i)

)
and w(r) = v(r) for r( �= i, j) ∈ [n];

(2) there is an i ∈ [n] \ {q} such that

w(i) =−v(i) and w(r) = v(r) for r( �= i) ∈ [n].

In both cases (1) and (2), h(w)− h(v) is divisible by tw(i) − tv(i).

On the other hand

h(w) = gq(w)

q−1∏
s=1

(tw(s) − tn), h(v) = gq(v)

q−1∏
s=1

(tv(s) − tn).

Since w and v are connected by an edge,

q−1∏
s=1

(tw(s) − tn)≡
q−1∏
s=1

(tv(s) − tn) �≡ 0 mod tw(i) − tv(i).

Therefore

gq(w)≡ gq(v) mod tw(i) − tv(i),
†

and hence

gqr(w)≡ gqr(v) mod tw(i) − tv(i) for any r

because w(i) and v(i) are not equal to n. Therefore gqr(w)− gqr(v) is divisible by

tw(i) − tv(i) for any r. This means that gqr is an element of H∗
T (L+

q ). Since L+
q

is isomorphic to Cn−1, the induction assumption implies that gqr is a polynomial

Gq
r in τi’s (except τq) and ti’s (except tn) with coefficients Z[ 12 ], proving the

claim. �

Since τi(w) = tw(i) and w(i) = n for w ∈ V +
i , we have

q−1∏
j=1

(τj − tn)(w) = 0 for any w ∈
q−1⋃
i=1

V +
i .

† We use 1
2

here. In case (2), tw(i) − tv(i) = 2tw(i) is not a prime in Z[t1, . . . , tn], and hence

this argument does not work unless we tensor Z

[
1
2

]
with H∗

T (Cn).
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Putting Gq =
∑q−1

r=0G
q
rt

r
n, we have

(
h−Gq

q−1∏
j=1

(τj − tn)
)
(w) = h(w)− gq(w)

q−1∏
j=1

(tw(j) − tn)

= 0 for any w ∈
q⋃

i=1

V +
i .

Therefore, subtracting the polynomial Gq
∏q−1

j=1(τj − tn) from h, we may assume

that

h(v) = 0 for any v ∈
q⋃

i=1

V +
i .

The above argument implies that h finally becomes zero on all vertices of L+
n by

subtracting polynomials in τi’s and ti’s with coefficients Z[ 12 ].

Now we redefine q to be the maximal integer up to min{k+ 1, n} such that

h(v) = 0 for any v ∈
q−1⋃
i=1

V −
i

(in the case when h(v) �= 0 for some v ∈ V −
1 , we take q = 1). Note that a vertex

w in V −
q is connected by an edge in Cn to a vertex v in V +

i if and only if one of

the following occurs:

(3) (w(i),w(q)) =−(v(q), v(i)) and w(r) = v(r) for r ( �= i, q) ∈ [n],

(4) i= q, w(q) =−v(q) and w(r) = v(r) for r ( �= q) ∈ [n].

In both cases (3) and (4), h(w) − h(v) is divisible by tw(i) − tv(i) = tw(i) − tn.

Also, w is connected by an edge in Cn to a vertex v ∈ V −
i for i �= q if and only

if (w(i),w(q)) = (v(q), v(i)) and w(r) = v(r) for r ( �= i, q) ∈ [n]. In this case,

h(w)− h(v) is divisible by tw(i) − tv(i) = tw(i) + tn.

This together with the assumption that h(v) = 0 for v ∈
⋃n

i=1 V
+
i ∪

⋃q−1
j=1 V

−
j

implies that there is an element fq(w) ∈ Z[ 12 ][t1, . . . , tn] such that

h(w) = fq(w)

n∏
i=1

(tw(i) − tn)

q−1∏
j=1

(tw(i) + tn),

where fq(w) is a homogeneous polynomial of degree 2(k+ 1− q − n) with coef-

ficients Z[ 12 ]. Using the same argument as before, we can see that there exists a

polynomial F q in τi’s and ti’s with coefficients Z[ 12 ] such that F q(w) = fq(w) for

each w ∈ V −
q . Moreover

( n∏
i=1

(τi − tn)

q−1∏
j=1

(τi + tn)
)
(v) = 0 for v ∈

n⋃
i=1

V +
i ∪

q−1⋃
j=1

V −
j .
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Therefore, subtracting the polynomial F q
∏n

i=1(τi− tn)
∏q−1

j=1(τj + tn) from h, we

may assume that

h(v) = 0 for any v ∈
n⋃

i=1

V +
i ∪

q⋃
j=1

V −
j .

The above argument implies that h finally becomes zero on all vertices of Cn
by subtracting polynomials in τi’s and ti’s with coefficients Z[ 12 ]. This shows

that h can be written as a polynomial in τi’s and ti’s with coefficients Z[ 12 ], as

required. �

It easily follows from (4.2) that ei(τ
2) = ei(t

2) for i= 1, . . . , n. Therefore we have

a degree-preserving epimorphism

(4.3) Z

[1
2

]
[τ, t]/

(
ei(τ

2)− ei(t
2)

∣∣ i= 1, . . . , n
)
→H∗

T (Cn)⊗Z

[1
2

]
,

and the same argument as in Lemma 3.4 proves the following.

LEMMA 4.3

The left-hand side in (4.3) is generated by
∏n−1

k=1 τ
ik
k with ik ≤ 2(n− k) + 1 as a

Z[ 12 ][t]-module.

Then, comparing the Hilbert series of both sides in (4.3), we see that the map

(4.3) is an isomorphism. The details are left to the reader.

5. Type Bn

In this section we treat type Bn. The root system Φ(Bn) of type Bn is given by

(5.1) Φ(Bn) =
{
±(ti + tj),±(ti − tj),±tk

∣∣ 1≤ i < j ≤ n,1≤ k ≤ n
}
,

and its Weyl group is the same as that of type Cn, that is, the signed permutation

group S̃n.

Let Bn be the labeled graph associated with the root system Φ(Bn). This

labeled graph has the same vertices and edges as Cn. Their labels are almost same.

The only difference is that the edge ew,w′ with w,w′ such that w′(i) =−w(i) for

some i ∈ [n] and w′(r) =w(r) for r( �= i) ∈ [n] is labeled by tw(i) in Bn while it is

labeled by 2tw(i) in Cn.
We define τi and ti for i = 1, . . . , n by (4.2). They belong to H2

T (Bn). As

remarked above, the only difference between Bn and Cn is the factor 2 in the

labels on the edges ew,w′ mentioned above. Therefore, if we work over Z[ 12 ] instead

of Z, then the same argument as in the case of type Cn proves the following.

LEMMA 5.1

We have

H∗
T (Bn)⊗Z

[1
2

]
= Z

[1
2

]
[τ1, . . . , τn, t1, . . . , tn]/

(
ei(τ

2)− ei(t
2)

∣∣ i= 1, . . . , n
)
.
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The above lemma is not true without tensoring with Z[ 12 ]. We need to intro-

duce another family of elements to generate H∗
T (Bn) as a ring. Since ei(τ)(w)≡

ei(t)(w) (mod 2) for any w in S̃n, ei(τ) − ei(t) is divisible by 2, and one sees

that

fi :=
(
ei(τ)− ei(t)

)
/2

is actually an element of H∗
T (Bn). Note that f0 = 0 since e0 = 1 by definition.

The purpose of this section is to prove the following.

THEOREM 5.2

Let Bn be the labeled graph associated with the root system Φ(Bn) of type Bn in

(5.1). Then

H∗
T (Bn) = Z[τ1, . . . , τn, t1, . . . , tn, f1, . . . , fn]/I,

where I is the ideal generated by

2fi − ei(τ) + ei(t) (i= 1, . . . , n),

2k∑
j=1

(−1)jfj
(
f2k−j + e2k−j(t)

)
(k = 1, . . . , n),

where f� = e�(t) = 0 for � > n.

REMARK

If we set t1 = · · ·= tn = 0, then the right-hand side of the identity in Theorem 5.2

reduces to

Z[τ1, . . . , τn, f1, . . . , fn]/J,

where J is the ideal generated by

2fi − ei(τ) (i= 1, . . . , n),

2k−1∑
j=1

(−1)jfjf2k−j + f2k (k = 1, . . . , n),

where f� = 0 for � > n, and this agrees with the ordinary cohomology ring of the

flag manifold of type Bn (see [10, Theorem 2.1]).

The idea of the proof of Theorem 5.2 is the same as before, but the argument

becomes more complicated because of the elements fi. We first observe relations

between fi’s in H∗
T (Bn) and those in H∗

T (Bn−1).

LEMMA 5.3

For w in S̃n with w(q) = ±n, let w′ be an element in S̃n−1 represented by

w(1) · · ·w(q− 1)w(q+ 1) · · ·w(n). We denote fi in H∗
T (Bn) by f

(n)
i . Then

f
(n−1)
i (w′) =

{∑i−1
j=0 f

(n)
i−j(w)(−tn)

j if w(q) = n,∑i−1
j=0 f

(n)
i−j(w)t

j
n +

∑i
j=1 ei−j(t1, . . . , tn−1)t

j
n if w(q) =−n.
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Proof

We have

ei(t1, . . . , tn)− ei(t1, . . . , tn−1) = ei−1(t1, . . . , tn−1)tn

and

ei
(
τ1(w), . . . , τn(w)

)
− ei

(
τ1(w

′), . . . , τn−1(w
′)
)

= ei−1

(
τ1(w

′), . . . , τn−1(w
′)
)
τq(w).

Therefore

f
(n)
i (w)− f

(n−1)
i (w′)

=
1

2

(
ei
(
τ1(w), . . . , τn(w)

)
− ei(t1, . . . tn)

)
− 1

2

(
ei
(
τ1(w

′), . . . , τn−1(w
′)
)
− ei(t1, . . . , tn−1)

)
=

1

2

(
ei−1

(
τ1(w

′), . . . , τn−1(w
′)
)
τq(w)− ei−1(t1, . . . , tn−1)tn

)

=

{
f
(n−1)
i−1 (w′)tn if w(q) = n,

−(f
(n−1)
i−1 (w′) + ei−1(t1, . . . , tn−1))tn if w(q) =−n.

Using the above identity repeatedly, we obtain the following for w with w(q) = n:

f
(n−1)
i (w′) = f

(n)
i (w)− f

(n−1)
i−1 (w′)tn

= f
(n)
i (w)−

(
f
(n)
i−1(w)− f

(n−1)
i−2 (w′)tn

)
tn

= f
(n)
i (w)− f

(n)
i−1(w)tn +

(
f
(n)
i−2(w)− f

(n−1)
i−3 (w′)

)
t2n

...

=

i−1∑
j=0

f
(n)
i−j(w)(−tn)

j .

The case w(q) =−n can be treated in the same way. �

LEMMA 5.4

H∗
T (Bn) is generated by τ1, . . . , τn, t1, . . . , tn, f1, . . . , fn as a ring.

Proof

We use induction on n as before. When n= 1, B1 has only one edge with vertices

1 and −1, and the label of the edge is t1. Since τ1(±1) =±t1, it is easy to check

that the lemma holds when n= 1.

As before, we consider V ±
i := {w ∈ S̃n |w(i) =±n} and the full labeled sub-

graph L±
i of Bn with V ±

i as the vertex set, where L+
i and L−

i are both isomorphic

to Bn−1 for each i= 1, . . . , n. If h ∈H∗
T (Bn) vanishes on V +

i for i < q, then one

can modify h so that it vanishes on V +
i for i < q + 1 by subtracting from h an

integer coefficient polynomial of the form Gq
+

∏q−1
k=1(τk − tn) in τi’s, ti’s, and fi’s.
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In fact, we obtain Gq
+ as an element of Map(S̃n,H

∗(BT )) whose restriction to L+
q

belongs to H∗
T (L+

q ). Since L+
q is isomorphic to Bn−1 and H∗

T (Bn−1) is generated

by τi’s, ti’s, and fi’s by the induction assumption, we can take Gq
+ as a polyno-

mial in τi’s, ti’s, and fi’s with integer coefficients, where we use Lemma 5.3.

If h vanishes on all V +
i and V −

j for j < q with some q ≥ 1, then one can also

modify h so that it vanishes on all V +
i and V −

j for j < q+1 by subtracting from

h some polynomial in τi’s, ti’s, and fi’s with integer coefficients. However, this

polynomial is not of the form Gq
−
∏n

k=1(τk− tn)
∏q−1

l=1 (τl+ tn) because
∏n

k=1(τk−
tn)(w) is divisible by 2 for w ∈ V −

i . Instead of
∏n

k=1(τk − tn), we use the element

1

2

n∏
k=1

(τk − tn) =
1

2

n∑
k=0

(−1)n−kek(τ)t
n−k
n

=
1

2

n∑
k=0

(−1)n−k
(
2fk + ek(t)

)
tn−k
n(5.2)

=

n∑
k=1

(−1)n−kfkt
n−k
n ,

so that the polynomial which we subtract is of the form

Gq
−

( n∑
k=1

(−1)n−kfkt
n−k
n

) q−1∏
l=1

(τl + tn),

where Gq
− is a polynomial in τi’s, ti’s, and fi’s with integer coefficients. Thus we

finally reach an element which vanishes on all V ±
i by subtracting polynomials in

τi’s, ti’s, and fi’s with integer coefficients from h, and this proves the lemma. �

LEMMA 5.5

We have
∑2k

i=1(−1)ifi(f2k−i + e2k−i(t)) = 0 for k = 1, . . . , n.

Proof

Clearly we have ei(τ
2) = ei(t

2) for i= 1,2, . . . , n; namely,

(5.3)

n∏
i=1

(1− τ2i x
2) =

n∏
i=1

(1− t2ix
2).

Therefore

0 =
n∏

i=1

(1− τ2i x
2)−

n∏
i=1

(1− t2ix
2)

=
( n∑
i=0

(−1)iei(τ)x
i
)( n∑

j=0

ej(τ)x
j
)
−
( n∑
i=0

(−1)iei(t)x
i
)( n∑

j=0

ej(t)x
j
)

=
( n∑
i=0

(−1)i
(
2fi + ei(t)

)
xi
)( n∑

j=0

(
2fj + ej(t)

)
xj
)
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−
( n∑
i=0

(−1)iei(t)x
i
)( n∑

j=0

ej(t)x
j
)

= 4

n∑
i,j=1

(−1)ififjx
i+j + 2

n∑
i,j=0

(−1)i
(
fiej(t) + fjei(t)

)
xi+j

= 4

n∑
k=1

2k∑
i=1

(−1)ifif2k−ix
2k + 4

n∑
k=1

2k∑
i=1

(−1)ifie2k−i(t)x
2k,

where we used f0 = 0. This implies the lemma because the coefficient of x2k must

vanish. �

We abbreviate the polynomial ring Z[τ1, . . . , τn, t1, . . . , tn, f1, . . . , fn] as Z[τ, t, f ].

Since 2fi = ei(τ)− ei(t) by definition, it follows from Lemma 5.5 that the canon-

ical map Z[τ, t, f ]→H∗
T (Bn) induces a grade-preserving map

(5.4) Z[τ, t, f ]/I →H∗
T (Bn),

where I is the ideal in Theorem 5.2, and it is an epimorphism by Lemma 5.4.

Since H∗
T (Bn) is a submodule of a direct sum of some Z[t]’s, H∗

T (Bn) is free

over Z. In addition, its Hilbert series is given by 1
(1−s2)2n

∏n
i=1(1− s4i). This can

be shown by a computation similar to that in the proof of Lemma 3.3. To prove

that the epimorphism (5.4) is actually an isomorphism, it suffices to verify the

following Lemmas 5.6 and 5.7.

LEMMA 5.6

Z[τ, t, f ]/I is free over Z.

Proof

By Lemma 5.1 Z[τ, t, f ]/I ⊗ Z[ 12 ] = Z[τ, t]/I ⊗ Z[ 12 ] is isomorphic to H∗
T (Bn) ⊗

Z[ 12 ]. Since H
∗
T (Bn) is free over Z, this means that Z[τ, t, f ]/I has no odd torsion,

and hence it suffices to show that Z[τ, t, f ]/I has no 2-torsion. If Z[τ, t, f ]/I has

2-torsion, then

F
(
Z[τ, t, f ]/I ⊗Z/2, s

)
>F

(
H∗

T (Bn)⊗Z/2, s
)
,

so we will prove that

(5.5) F
(
Z[τ, t, f ]/I ⊗Z/2, s

)
≤ F

(
H∗

T (Bn)⊗Z/2, s
)
.

CLAIM

Z[τ, t, f ]/I ⊗ Z/2 is generated by elements
∏n

k=1 τ
ik
k

∏n
k=1 f

jk
k , with ik ≤ n − k

and jk ≤ 1, over Z/2[t].

We admit the claim for the moment and complete the proof of the lemma. If

the elements
∏n

k=1 τ
ik
k

∏n
k=1 f

jk
k are linearly independent over Z/2[t], then the
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Hilbert series of Z[τ, t, f ]/I ⊗Z/2 (over the field Z/2) is given by

1

(1− s2)n

∑
0≤ik≤n−k

∑
0≤jk≤1

s2(
∑n

k=1 ik+
∑n

k=1 kjk),

so we have

F
(
Z[τ, t, f ]/I ⊗Z/2, s

)
≤ 1

(1− s2)n

∑
0≤ik≤n−k

∑
0≤jk≤1

s2(
∑n

k=1 ik+
∑n

k=1 kjk)

=
1

(1− s2)n

( ∑
0≤ik≤n−k

n∏
k=1

s2ik
)( ∑

0≤jk≤1

n∏
k=1

s2kjk
)

=
1

(1− s2)2n
(1− s2)n

n−1∏
i=1

(
1 +

i∑
j=1

s2j
) n∏

i=1

(1 + s2i)(5.6)

=
1

(1− s2)2n

n∏
i=1

(1− s2i)

n∏
i=1

(1 + s2i)

=
1

(1− s2)2n

n∏
i=1

(1− s4i)

= F
(
H∗

T (Bn)⊗Z/2, s
)
.

This proves the desired inequality (5.5).

In the proof of Lemma 5.6 it remains to show the claim above and for that

it suffices to verify the following (I) and (II):

(I) Elements
∏n

k=1 τ
ik
k

∏n
k=1 f

jk
k , with ik ≤ n− k, generate Z[τ, t, f ]/I as a

Z[t]-module; in particular, they generate Z/2[τ, t, f ]/I as a Z/2[t]-module.

(II) Elements f
j′1
1 · · ·f j′n

n can be written as a linear combination of f j1
1 · · ·f jn

n

with jk ≤ 1 over Z/2[t].

Proof of (I). Clearly the elements
∏n

k=1 τ
ik
k

∏n
k=1 f

jk
k , with no restriction on

exponents, generate Z[τ, t, f ]/I as a Z[t]-module. We have an identity

p∏
i=1

1

1− τix

=

n∏
i=p+1

(1− τix)

n∏
i=1

(1 + τix)

n∏
i=1

1

1− t2ix
2

=
(n−p∑

i=0

(−1)iei(τp+1, . . . , τn)x
i
)( n∑

j=0

ej(τ1, . . . , τn)x
j
) ∞∑

k=0

hk(t
2)x2k

=
(n−p∑

i=0

(−1)iei(τp+1, . . . , τn)x
i
)( n∑

j=0

(
2fj + ej(t)

)
xj
) ∞∑

k=0

hk(t
2)x2k,

(5.7)

where the first equality in (5.7) follows from (5.3).
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Comparing coefficients of xn+1−p in (5.7), we have

hn+1−p(τ1, . . . , τp)

=
∑

i+j+2k=n+1−p,j+k>0

(−1)iei(τp+1, . . . , τn)
(
2fj + ej(t)

)
hk(t

2).
(5.8)

On the other hand, we have

i∑
j=0

ej(τ1, . . . , τp)ei−j(τp+1, . . . , τn) = ei(τ) = 2fi + ei(t) for any i;

that is,

ei(τp+1, . . . , τn)

= 2fi + ei(t)−
i∑

j=1

ej(τ1, . . . , τp)ei−j(τp+1, . . . , τn) for any i.
(5.9)

Then the same argument as in the latter part of the proof of Lemma 3.4 by

using (5.9) shows that ei(τp+1, . . . , τn) can be written as a linear combination of∏p
k=1 τ

ik
k

∏n
k=1 f

jk
k , with ik ≤ i, over Z[t]. This fact and (5.8) together with (3.15)

show that τn+1−p
p is a polynomial in τ1, . . . , τp, ti’s, and fi’s with the exponent

of τp less than or equal to n− p. Therefore the elements
∏n

k=1 τ
ik
k

∏n
k=1 f

jk
k with

ik ≤ n− k generate Z[τ, t, f ]/I as a Z[t]-module.

Proof of (II). It follows from Lemma 5.5 that

f2
k = (−1)k+1

(
2

k−1∑
i=1

(−1)ifif2k−i +

2k∑
i=1

(−1)ifie2k−i(t)
)

for k = 1, . . . , n.

In Z[τ, t, f ]/I ⊗Z/2, we can disregard 2
∑k−1

i=1 fif2k−1, so f2
k can be written as a

linear combination of fi’s over Z/2[t]. This proves (II) and completes the proof

of the claim. �

LEMMA 5.7

We have F (Z[τ, t, f ]/I, s) = 1
(1−s2)2n

∏n
i=1(1− s4i).

Proof

The epimorphism (5.4) means that

(5.10) F
(
H∗

T (Bn), s
)
≤ F

(
Z[τ, t, f ]/I, s

)
.

In addition, since Z[τ, t, f ]/I and H∗
T (Bn) are free over Z,

(5.11) F
(
H∗

T (Bn)⊗Z/2, s
)
= F

(
H∗

T (Bn), s
)

and

(5.12) F
(
Z[τ, t, f ]/I ⊗Z/2, s

)
= F

(
Z[τ, t, f ]/I, s

)
.
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It follows from (5.6), (5.10), (5.11), and (5.12) that

F
(
Z[τ, t, f ]/I, s

)
= F

(
H∗

T (Bn), s
)
=

1

(1− s2)2n

n∏
i=1

(1− s4i),

proving the lemma. �

Thus the proof of Theorem 5.2 has been completed.

6. Type Dn

In this section we will treat type Dn. The root system Φ(Dn) of type Dn is given

by

Φ(Dn) =
{
±(ti + tj),±(ti − tj)

∣∣ 1≤ i < j ≤ n
}

and its Weyl group is the index two subgroup S̃+
n of S̃n defined by

S̃+
n :=

{
w ∈ S̃n

∣∣ the number of i ∈ [n] with w(i)< 0 is even
}
.

THEOREM 6.1

Let Dn be the labeled graph associated with the root system Φ(Dn) of type Dn

above. Then

(6.1) H∗
T (Dn) = Z[τ1, . . . , τn, t1, . . . , tn, f1, . . . , fn−1]/I,

where I is the ideal generated by

2fi − ei(τ) + ei(t) (i= 1, . . . , n− 1),

2k∑
j=1

(−1)jfj
(
f2k−j + e2k−j(t)

)
(k = 1, . . . , n),

en(τ)− en(t),

where f� = 0 for �≥ n and e�(t) = 0 for � > n.

REMARK

(1) Similarly to Dn, one can define a labeled graph D−
n with S̃n\S̃+

n as the

vertex set on which S̃+
n acts. One sees that H∗

T (D−
n ) agrees with the right-hand

side of (6.1) with en(τ)− en(t) replaced by en(τ) + en(t).

(2) If we set t1 = · · · = tn = 0, then the right-hand side of the identity in

Theorem 6.1 reduces to

Z[τ1, . . . , τn, f1, . . . , fn−1]/J,

where J is the ideal generated by

2fi − ei(τ) (i= 1, . . . , n− 1),

2k−1∑
j=1

(−1)jfjf2k−j + f2k (k = 1, . . . , n), en(τ),
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where f� = 0 for �≥ n, and this agrees with the ordinary cohomology ring of the

flag manifold of type Dn (see [10, Corollary 2.2]).

Outline of proof

The proof is almost same as the case of type Bn but needs some modifications.

We shall list them.

(1) We have en(τ) = en(t) in the type Dn case since the number of i ∈ [n]

with w(i) < 0 is even for w ∈ S̃+
n . So fn = (en(τ) − en(t))/2 = 0 in the case of

type Dn.

(2) Let V ±
i and L±

i be defined similarly to the case of type Bn. Then

L+
i is naturally isomorphic to Dn−1, but L−

i is not because the number of

j ∈ [n]\{i} with w(j)< 0 is odd for w ∈ S̃+
n . Therefore the induction argument as

in Lemma 3.2 does not work. To overcome this, we need to apply the induction

argument to Dn and D−
n simultaneously because L−

i is isomorphic to D−
n−1. Note

that if we start with D−
n , then L+

i (for D−
n ) is isomorphic to D−

n−1 while L−
i (for

D−
n ) is isomorphic to Dn−1.

(3) If h ∈ H∗
T (Dn) vanishes on V +

i for i < q, then one can modify h so

that it vanishes on V +
i for i < q + 1 by subtracting from h a polynomial of the

form Gq
+

∏q−1
k=1(τk − tn) in τi’s and ti’s with integer coefficients. Therefore, we

may assume that h vanishes on all V +
i . Then h(w) for w ∈ V −

1 is divisible by∏n
k=2(tw(k) − tn) =

∏n
k=2(τk − tn)(w). (Note that w is connected to a vertex in

V +
i by an edge for i > 1, but not to any vertex in V +

1 . This is the reason why

i= 1 is missing in the product above.) However, since fn = 0 (i.e., en(τ) = en(t))

as mentioned in (1) above in the case of type Dn, it follows from (5.2) that

(6.2) P :=− 1

2tn

n∏
k=1

(τk − tn) =

n−1∑
k=1

(−1)n−1−kfit
n−1−k
n .

P is a polynomial in ti’s and fi’s with integer coefficients, vanishes on all V +
i ,

and takes the value
∏n

k=2(tw(k)− tn) on w ∈ V −
1 . Therefore, using the polynomial

P in (6.2), one can modify h so that it vanishes on all V +
i and V −

1 by subtracting

a polynomial in τi’s and ti’s with integer coefficients. If h vanishes on all V +
i and

V −
j for j < q with some q ≥ 2, then one can modify h so that it vanishes on all

V +
i and V −

j for j < q+1 by subtracting from h an integer coefficient polynomial

of the form Gq
−P

∏q−1
l=1 (τl + tn). Therefore we finally reach an element which

vanishes on all vertices of Dn. This shows that H
∗
T (Dn) is generated by τi’s, ti’s,

and fi’s as a ring. The same argument shows that H∗
T (D−

n ) is also generated by

τi’s, ti’s, and fi’s as a ring.

(4) An argument similar to the case of type Bn shows that the right-hand

side in (6.1) is torsion-free over Z and the Hilbert series of both sides in (6.1)

coincide; in fact, they are given by 1−s2n

(1−s2)2n

∏n−1
i=1 (1− s4i). The same is true for

H∗
T (D−

n ). �
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