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Abstract Westudy the twistedK -theoryandK -homologyof some infinitedimensional

spaces, like SU(∞), in the bivariant setting. Using a general procedure due to Cuntz we

construct a bivariant K -theory on the category of separable σ-C∗-algebras that gener-

alizes both the twistedK -theory andK -homology of (locally) compact spaces. We con-

struct a bivariant Chern–Connes-type character taking values in a bivariant local cyclic

homology.Weanalyze the structure of the dualChern–Connes character from (analytic)

K -homology to local cyclic cohomology under some reasonable hypotheses. We also

investigate the twisted periodic cyclic homology via locally convex algebras and the local

cyclic homology via C∗-algebras (in the compact case).

Introduction

Twisted K -theory and cohomology theories have attracted a lot of attention

lately due to their importance in string theory. The notion of twisted K -theory

can be traced back to a paper by Donovan and Karoubi [23] (see [37] for a recent

survey). The geometric twists of K -theory are parameterized by the third integral

cohomology group. The concept of twisted K -theory was limited to twists with

respect to a torsion class until Rosenberg showed how to deal with arbitrary

(possibly nontorsion) classes using continuous trace C∗-algebras (see [62]; see

also [3], [2]). One advantage of the operator-theoretic viewpoint of twisted K -

theory is that it enables us to use all the tools from noncommutative geometry

(see [14]), although there are various other elegant approaches: the homotopy

theory viewpoint (see [1], [26]), bundle gerbe viewpoint (see [8]), groupoid and

stack viewpoint (see [66], [22]), and so on. Twisted K -homology is an equally

important theory (see, for instance, [25], [49]), and the pairing between the two

theories has applications to topological T-duality (see [10], [44]).

The aim of this article is to provide a formalism for both twisted K -theory

and K -homology as a bivariant theory with composition product on a certain
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category of noncommutative spaces that are not necessarily compact (or even

locally compact). The appropriate function algebra for the noncommutative ana-

logue of a compactly generated and completely Hausdorff space is a pro C∗-

algebra (see [53], [54]). It turns out that there is a reasonable bivariant K -theory

on the category of pro C∗-algebras due to Weidner [69]. Unfortunately Weidner’s

bivariant K -theory lacks the desirable universal characterization that enables us

to construct interesting bivariant natural transformations into other theories very

easily. Therefore, we adopt a different strategy suggested by Cuntz [15] to con-

struct a bivariant K -theory, denoted by σ-kk-theory, on the category of separable

σ-C∗-algebras, which is a full subcategory of pro C∗-algebras. Using some results

of Bonkat [7] we eventually show that our σ-kk-theory agrees with Weidner’s

bivariant K -theory on the subcategory of separable and nuclear σ-C∗-algebras.

It remains an open question whether they agree on all separable σ-C∗-algebras.

Using the universal characterization of σ-kk-theory we also construct a bivari-

ant Chern–Connes-type character on the category of separable σ-C∗-algebras

taking values in bivariant local cyclic homology (see [58], [59]). In [48] Mathai

and Stevenson constructed a twisted Chern–Connes character from the twisted

K -theory to the twisted periodic cyclic homology using techniques from noncom-

mutative geometry. They further showed that this map agrees with the original

geometric construction of the twisted Chern character and becomes an isomor-

phism after tensoring with C. Their theory was restricted to compact spaces,

and it was subsequently extended to orbifolds in [65]. Our bivariant Chern–

Connes type character generalizes the twisted Chern–Connes character of [48],

but in general it does not become an isomorphism after tensoring with C. This

phenomenon can be explained by the infinite dimensionality of the underlying

spaces on which the theory is being considered. We mostly consider those infi-

nite dimensional spaces, whose underlying topological spaces are paracompact,

Hausdorff, and countably compactly generated, that is, countable direct limits of

compact spaces. Let us comment further on the level of generality of the infinite

dimensional spaces that can be studied via σ-C∗-algebras.

In many interesting applications of twisted K -theory to physics and topology

one encounters large spaces, for example, U(∞), SU(∞), and CP∞. The Bott

unitary group U(∞) is a classifying space for topological K 1-theory and hence an

interesting object in topology. In the Wess–Zumino–Witten models one typically

takes a Lie group, like SU(n), as the target space. It is plausible that allowing

the target space to be an infinite dimensional Lie group, like SU(∞), is also

interesting. Such objects appear in the large N -limit discussions in string theory.

Specifically, Gopakumar and Vafa advocate the study of SU(∞) gauge theories

in [28], and (infinite) matrix models were shown to be relevant to M -theory

(see [4]). The category of separable σ-C∗-algebras is sufficient to treat all the

above-mentioned examples; that is,

U(∞) = lim−→n
U(n), SU(∞) = lim−→n

SU(n), CP∞ = lim−→n
CP (n).
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Furthermore, for a compact Hausdorff topological group G, one may choose a

countably compactly generated and Hausdorff model for EG. We concentrate on

the example of SU(∞) throughout, which is an infinite dimensional Lie group,

known as the universal gauge group in the physics literature (see [30], [11]).

This group was quantized in the setting of σ-C∗-quantum groups, and its (rep-

resentable) K -theory was computed in [46]. Another important class of infinite

dimensional spaces is that of loop groups (see [57]; see also [31]). Although such

objects cannot be studied via σ-C∗-algebras, we argue in the first few sections of

the paper (see Sections 1, 2) that there is a completely satisfactory theory using

locally convex algebras (see [17]) if one is merely interested in twisted K -theory

and periodic cyclic homology computations (and not their full bivariant gener-

alizations). In a subsequent paper we are going to describe another bivariant

theory that is capable of handling all such infinite dimensional spaces.

We demonstrate within the text that twisted K -theory and K -homology are

fairly computable theories. Connes [13] originally constructed cyclic cohomology

(and its periodic version) as a receptacle for the K -homological Chern–Connes

character. It is anticipated that the bivariant Chern–Connes type character would

produce yet another computational aid modulo torsion. Thanks to the extensive

work on the homology theory of topological algebras (see, e.g., [32], [50]) there are

now several computational strategies available for cyclic homology theory (and

its various derivatives). The article is organized as follows.

In Section 1 we investigate bivariant K -theory in the context of locally con-

vex algebras. If X is a countably compactly generated and Hausdorff topological

space, then C(X) is a σ-C∗-algebra. From such a space and a twisting datum in

terms of a principal projective unitary bundle on it we show how to construct

a σ-C∗-algebra. Such algebras and their representable K -theory should provide

the natural extension of twisted K -theory to countably compactly generated

and Hausdorff spaces. However, with some foresight we subsume the discussion

in the context of bivariant K -theory for locally convex algebras developed by

Cuntz [17]. The reason is that we would also like to investigate the twisted peri-

odic cyclic homology of such spaces and the associated Chern–Connes character

map. Using Karoubi density type results one can extract a smooth dense locally

convex subalgebra of the aforementioned σ-C∗-algebra with the same K -theory.

This bivariant generalization will also be useful for future applications. We show

that for nontrivial twists the twisted K -theory groups of SU(∞) are trivial (see

Example 11); however, it is easy to see that there are examples of spaces for

which the twisted K -theory groups are nontrivial (see, e.g., Example 19). Let us

emphasize that the discussions in this section are all applicable to very general

spaces like quasitopological spaces in the sense of Spanier [64].

In Section 2 we study the twisted periodic cyclic homology theory via locally

convex algebras. In this context one also needs to keep track of a smooth struc-

ture. Therefore, we show how to construct smooth subalgebras of σ-C∗-algebras

(whenever it makes sense). We explain the general construction of the periodic
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cyclic homology groups of locally convex algebras by using the X -complex for-

malism. Although we mostly look at the periodic cyclic homology groups, it is

presumably a better idea to directly work with the X -complex. Once again we

point out that the discussions in this section are all applicable to quasitopological

spaces.

In Section 3 we first discuss the periodic cyclic homology valued Chern–

Connes character and give an example where the map does not become an iso-

morphism after tensoring with the complex numbers. As argued before, this is

one of the first instances where the infinite dimensional setting differs from the

finite dimensional compact setting. We also study the local cyclic homology val-

ued Chern–Connes character in the compact case. In order to do so we prove a

Karoubi density type result in local cyclic (co)homology (see Theorem 20). We

also show that the local cyclic homology valued Chern–Connes character becomes

an isomorphism after tensoring with the complex numbers (in the compact case).

Hence it can act as a replacement for the periodic cyclic homology as a target

for the K -theoretic Chern–Connes character.

The author is not aware of any Karoubi density-type result in analytic

K -homology. In fact, the bivariant K -theory discussed in Section 1 does not pro-

duce the correct K -homology; that is, it does not agree with Kasparov’s analytic

K -homology on the category of separable C∗-algebras. Therefore, in Section 4 we

use a different bivariant K -theory, denoted by σ-kk-theory (see Definition 29),

on the category of separable σ-C∗-algebras (see [15]). This theory agrees with

Kasparov’s bivariant K -theory, when restricted to the subcategory of separable

C∗-algebras. We also show that it agrees with the bivariant K -theory devel-

oped by Weidner [69] on the subcategory of nuclear and separable σ-C∗-algebras.

Using the established properties of Weidner’s bivariant K -theory, we prove some

useful results about the K -theory and K -homology of nuclear and separable

σ-C∗-algebras (see Corollary 38). The σ-C∗-algebras that arise as twisted non-

commutative spaces as described above fall in this category.

For the K -homological Chern character in commutative geometry we refer

the readers to [5]. Due to the lack of Karoubi density in K -homology, the nat-

ural codomain for the dual Chern–Connes character from the K -homology of

separable σ-C∗-algebras is local cyclic cohomology (see [58], [59]). In Section 5

we explain how the theory works for separable σ-C∗-algebras. In order to do

so we describe a functorial construction of an ind-Banach algebra from a σ-C∗-

algebra. There is an elegant treatment of local cyclic (co)homology on the cate-

gory of ind-Banach algebras due to Meyer [50]. The passage from σ-C∗-algebras

to ind-Banach algebras goes through the category of bornological algebras. There-

fore, we include a brief discussion of bornological algebras. If one wants to use

the X -complex formalism to define local cyclic (co)homology, which is what we

do here, then the bornological machinery is indispensable; indeed, there is a

bornological completion of the algebraic X -complex that produces the desired

result.
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In Section 6 we construct a natural bivariant Chern–Connes type character,

which is the main mathematical result of this paper, and then specialize to the

dual local cyclic cohomology valued Chern–Connes character from K -homology.

THEOREM 1 (SEE THEOREM 52)

There is a natural multiplicative bivariant Chern–Connes type character chbiv∗ :

σ-kk∗(A,B)∼= σ-kk∗(K ⊗̂A,K ⊗̂B)→HL∗(K ⊗̂A,K ⊗̂B) on the category of sep-

arable σ-C∗-algebras.

This multiplicative bivariant Chern–Connes type character is much more power-

ful as a tool than the disembodied univariant K -theoretic Chern–Connes char-

acter and the K -homological dual Chern–Connes character. On the category

of locally multiplicative bornological algebras an HL∗-valued bivariant Chern–

Connes character was constructed in [67]. However, the dissection functor on

the category of σ-C∗-algebras does not land inside the category of locally mul-

tiplicative bornological algebras, whence the results of [67] are not applicable to

σ-C∗-algebras. Under some mild hypotheses, we exhibit a factorization of the

dual Chern–Connes character (see Theorem 54). We end by discussing a general

class of examples (invoking Poincaré duality type isomorphisms), where some

simplifications occur.

Conventions
Throughout this article we work over a subcategory of C-algebras with C-algebra

homomorphisms (typically locally convex algebras or σ-C∗-algebras), although

many discussions make sense much more generally. Unless otherwise stated, all

spaces are assumed to be (completely) Hausdorff, and topological or bornological

vector spaces are assumed to be complete. Adding a separability condition on a

commutative C∗-algebra amounts to imposing a metrizability condition on the

corresponding space.

Terminology
The periodic cyclic homology valued K -theoretic Chern–Connes character is also

known as the Connes–Karoubi character in the literature due to Karoubi’s [36]

contribution to this topic. To avoid confusion, we stick to the original terminology

in the bivariant situation developed by Cuntz.

1. Twisted K-theory via locally convex algebras

1.1. Preliminaries on σ-C∗-algebras
Let T∗Alg denote the category of noncommutative topological ∗-algebras with

continuous ∗-homomorphisms (see [47]). Now we recall some basic facts about

inverse limit C∗-algebras or pro C∗-algebas following Phillips [53], [54]. A pro C∗-

algebra is an object of T∗Alg, which is complete Hausdorff and whose topology is

determined by it continuous C∗-seminorms; that is, a net {aλ} converges to zero

if and only if p(aλ) converges to zero in R for every C∗-seminorm p on A. Clearly
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the category of C∗-algebras, denoted AlgC∗ , with ∗-homomorphisms (automati-

cally continuous) is a full subcategory of T∗Alg. Let I be a small filtered index

category. A contravariant functor Iop −→ AlgC∗ (i �→ Ai) produces an inverse

system of C∗-algebras with ∗-homomorphisms. The inverse limit of this sys-

tem lim←−i∈I
Ai inside the category T∗Alg is a pro C∗-algebra. In fact, an object

A ∈ T∗Alg is a pro C∗-algebra if and only if it arises as a limit of an inverse

system of C∗-algebras as described above.

Let A be a pro C∗-algebra, and let S(A) denote the set of all continuous C∗-

seminorms on A. For any p ∈ S(A), set ker(p) = {a ∈A | p(a) = 0}. Then ker(p)

is a two-sided closed ∗-ideal in A and Ap = A/ker(p) is actually a C∗-algebra.

The set S(A) is directed by declaring p � q if and only if p(a) � q(a) for all a ∈A.

This converts {p �→ Ap} into an inverse system and, in fact, A ∼= lim←−p∈S(A)
Ap.

Clearly, the limit does not change by passing onto a cofinal subset of S(A). A pro

C∗-algebra A is called a σ-C∗-algebra if there is a countable (cofinal) subset

S′ ⊂ S(A), which determines that topology of A; in other words, A∼= lim←−p∈S′Ap.

A space X = lim−→n∈N
Xn is a countably compactly generated space if each Xn

is compact and Hausdorff, that is, X is a countable direct limit of compact

Hausdorff spaces in the category of topological spaces and continuous maps.

The direct limit topology on X is automatically Hausdorff. The category of

commutative and unital σ-C∗-algebras is (contravariantly) equivalent to the

category of countably compactly generated and Hausdorff spaces via the func-

tor X �→ C(X). It is also known that commutative and unital pro C∗-algebras

model all quasitopological and completely Hausdorff spaces. However, the tech-

nical aspects of pro C∗-algebras are rather cumbersome. For instance, a generic

algebraic ∗-homomorphism need not be continuous; even if it is continuous, it

need not have closed range. Fortunately, it is known that any ∗-homomorphism

between two σ-C∗-algebras is automatically continuous.

Given any σ-C∗-algebra A, one can find a confinal subset S′ ⊂ S(A), such

that S′ � N (as a linearly directed set). Therefore, one can explicitly write A

as a countable inverse limit of C∗-algebras, A ∼= lim←−n∈N
An. Furthermore, the

connecting ∗-homomorphisms of the inverse system {An → An−1}n∈N can be

arranged to be surjective without altering the inverse limit σ-C∗-algebra A ∼=
lim←−n

An. This is done by replacing each An by the intersection of all the images

of the homomorphisms Am →An, m � n. In the sequel, we shall freely use this

explicit presentation of a σ-C∗-algebra as an inverse limit of a countable inverse

system of C∗-algebras with surjective ∗-homomorphisms.

REMARK 2

The category AlgC∗ also contains all small inverse (filtered) limits. In general,

a pro C∗-algebra is not a C∗-algebra, since the limit is taken in the larger category

T∗Alg. For instance, let X = colimi∈NXi be a countably compactly generated

space with each Xi compact. Here X is endowed with the direct limit topology,

which is automatically Hausdorff. Then {C(Xi)} forms naturally a countable

inverse system of C∗-algebras with restriction ∗-homomorphisms. The limit of
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this system in T∗Alg is C(X), whereas the limit inside AlgC∗ is Cb(X), the

unital C∗-algebra of norm-bounded functions on X .

1.2. K-theory of locally convex algebras
Phillips [55] defined a K -theory for σ-C∗-algebras, which is called representable

K -theory and denoted by RK. The RK-theory agrees with the usual K -theory

of C∗-algebras if the input is a C∗-algebra, and many of the nice properties that

K -theory satisfies generalize to RK-theory. We are going to work with a more

general K -theory (for locally convex algebras) than RK-theory, which agrees with

the latter on the category of σ-C∗-algebras. Nevertheless, let us briefly recall from

[55] some of the basic facts about σ-C∗-algebras and RK-theory. If A= lim←−n
An is

a σ-C∗-algebra, then the stabilization A ⊗̂K is defined to be lim←−n
An ⊗̂K, where

K denotes the C∗-algebra of compact operators and ⊗̂ denotes the maximal

C∗-tensor product.

(1) For each i ∈N, RKi is a homotopy-invariant abelian group-valued functor

on the category of σ-C∗-algebras.

(2) Bott periodicity holds, so that RKi(A)∼=RKi+2(A).

(3) If A is a C∗-algebra, then there is a natural isomorphism RKi(A) ∼=
Ki(A).

(4) There is a natural isomorphism RKi(A)∼= RKi(A ⊗̂K), induced by the

corner embedding A→A ⊗̂K.

(5) Countable products are preserved; that is, there is a natural isomorphism

RKi

(∏
n

An

)
∼=

∏
n

RKi(An).

(6) If {An}n∈N is a countable inverse system of σ-C∗-algebras with surjective

homomorphisms (which can always be arranged), then the inverse limit exists as

a σ-C∗-algebra and there is a Milnor lim←−
1-sequence

0→ lim←−
1

n
RK1−i(An)→RKi(lim←−n

An)→ lim←−n
RKi(An)→ 0.

(7) If 0→A→B →C → 0 is an exact sequence of σ-C∗-algebras, then there

is a 6-term exact sequence

RK0(A) RK0(B) RK0(C)

RK1(C) RK1(B) RK1(A)

As stated earlier, for our purposes we need a more general K -theory devel-

oped by Cuntz [16], [17], which is defined on the larger category of locally convex

algebras with continuous homomorphisms. The category of locally convex alge-

bras is general enough to subsume almost all cases of interest in noncommutative

geometry (in the operator algebraic framework). In particular, it contains σ-C∗-

algebras, and the K -theory that we are going to describe is a generalization of
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the representable K -theory of σ-C∗-algebras. All the necessary details of the

contents of this section can be found in [16] and [17].

Let ⊗̂π be the completed projective tensor product between two complete

locally convex spaces (see [29]). By a locally convex algebra we mean a C-algebra

whose underlying linear space is a complete locally convex space, such that the

algebra multiplication is jointly continuous, that is, it extends to a continuous

linear map A⊗̂πA→ A. These are examples of pro algebra objects in the sym-

metric monoidal additive category of Banach spaces (monoidal structure given

by ⊗̂π). Let C[0,1] denote the algebra of C-valued C∞-functions on [0,1], all

of whose derivatives vanish at the endpoints {0,1}. Let C(0,1) be the subalge-

bra of C[0,1] which vanishes on {0,1}. For any locally convex algebra A, set

A[0,1]k = A⊗̂πC[0,1]
⊗̂πk and A(0,1)k = A⊗̂πC(0,1)

⊗̂πk. The crucial property

satisfied by K -theory for locally convex algebras is diffotopy invariance. Two

continuous homomorphisms α1, α2 : A→B between locally convex algebras are

said to be diffotopic if there is a continuous homomorphism φ :A→B[0,1], such

that α1 = ev0φ and α2 = ev1φ; that is, the following diagram consisting of con-

tinuous homomorphisms commutes:

B

A

α1

φ

α2

B[0,1]

ev0

ev1

B

where it should be noted that B[0,1] consists of smooth B-valued functions on

[0,1], all of whose derivatives vanish at the endpoints, whence the name diffotopy

(as opposed to homotopy).

Let V be a complete locally convex space. Let T algV =
⊕∞

n=1 V
⊗n denote

the free algebraic (nonunital) tensor algebra over V . There is a canonical linear

map σ : V → T algV , sending V to the first summand. Equip T algV with the

locally convex topology given by the family of all seminorms of the form p ◦ φ,
where φ is any homomorphism T algV → B (with B any locally convex algebra

and p a continuous seminorm on B), such that φ ◦ σ : V → B is a continuous

linear map. For any locally convex algebra A, let us denote the completed locally

convex tensor algebra by TA. Using the construction A �→ TA one can define a

K -theory, but it is not clear whether this theory agrees with the representable

K -theory of σ-C∗-algebras. To this end, one needs the m-algebra modification.

Following [16] let us call a locally convex algebra, which is an inverse limit of

Banach algebras, anm-algebra. There is a different free (nonunital) tensor algebra

construction, which is suitable in the category of m-algebras. Denote by T̂ V the

completion of T algV with respect to the family {p̂ | p continuous seminorm on V }
of submultiplicative seminorms, where p̂ =

⊕∞
n=1 p

⊗n. For any m-algebra A,
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the tensor algebra T̂A is also an m-algebra, and the canonical homomorphism

π : T algA→ A sending a1 ⊗ · · · ⊗ an �→ a1 · · ·an extends to a continuous homo-

morphism π : T̂A→ A, which is evidently surjective. Let ĴA denote the kernel

of π, so that

0→ ĴA→ T̂A
π→A→ 0

is an extension diagram of m-algebras. The constructions A �→ ĴA and A �→
T̂A are both functorial with respect to continuous homomorphisms between m-

algebras.

One needs to extend the construction of A �→ T̂A to arbitrary locally convex

algebras. For an arbitrary locally convex algebra A, the free (nonunital) tensor

algebra T̂A is uniquely (up to an isomorphism) characterized by the following

properties.

• If A is an m-algebra, then T̂A is the free tensor m-algebra described above.

• The construction A �→ T̂A is functorial with respect to continuous homo-

morphisms.

• For every m-algebra C, the natural map T (A⊗C)→ TA⊗̂πC extends to

a continuous map T̂ (A⊗̂πC)→ T̂A⊗̂πC.

We refer the readers to [17] for the explicit construction of T̂A for an arbitrary

locally convex algebra A. Define ĴA as before, and set Ĵ lA= Ĵ l−1(ĴA). Let K
denote the algebra of smooth compact operators (see [17, Section 2.2]), and let

〈·, ·〉 denote the set of diffotopy classes of continuous homomorphisms between

locally convex algebras. Then for each k ∈N, there is a canonical classifying map〈
ĴkA,K⊗̂πB(0,1)k

〉
→

〈
Ĵk+1A,K⊗̂πB(0,1)k+1

〉
,

mapping the diffotopy class of α : ĴkA→K⊗̂πB(0,1)k to that of α′ : Ĵk+1A→
K⊗̂πB(0,1)k+1. Here α′ is defined as the following classifying map of extensions:

0 Ĵk+1A

α′

T̂ ĴkA ĴkA

α

0

0 B′(0,1)k+1 B′(0,1)k[0,1) B′(0,1)k 0

where B′ = K⊗̂πB and the bottom sequence is the standard suspension-cone

extension of B′(0,1)k.

DEFINITION 3 (CUNTZ [17, DEFINITION 15.4])

Given any two locally convex algebras A,B one defines the bivariant K -theory

groups as

kkn(A,B) =

{
lim−→k

〈Ĵk(JnA),K⊗̂πB(0,1)k〉 if n ∈N,

lim−→k
〈Ĵk(A),K⊗̂πB(0,1)k−n〉 if n ∈ Z \N.

(1)
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Now we define the K -theory of a locally convex algebra A as Kn(A) = kkn(C,A).

These bivariant K -theory groups agree with those defined earlier in [16], when

restricted to the category of m-algebras.

REMARK 4

One can also define the dual K -homology theory by setting Kn(A) = kkn(A,C).

However, these K -homology groups will not agree with Kasparov’s (analytic)

K -homology groups when restricted to the category of separable C∗-algebras. We

rectify this problem in Section 4 by introducing a different version of bivariant

K -theory for separable σ-C∗-algebras.

For each n ∈N, the association A �→Kn(A) defines a covariant diffotopy-invariant

abelian group-valued functor on the category of locally convex algebras. Phillips

generalized the RK-theory for σ-C∗-algebras in [56] to a K -theory for all Fréchet

algebras, which can be written as a countable inverse limit of Banach algebras

(such that all the connecting homomorphisms and the canonical projections have

dense ranges). Let us denote this K -theory of Phillips by K P -theory.

LEMMA 5

Restricted to the category of σ-C∗-algebras, the functors K∗(−) satisfy all the

formal properties of RK-theory mentioned above in Section 1.2.

Proof

The assertion follows from [16, Theorem 20.2], which says that there is a natural

isomorphism KP
∗ (A)

∼=K∗(A) if A is a Fréchet algebra as described above. �

1.3. Twisted K-theory via continuous trace algebras
In the sequel we denote by PU the projective unitary group of a separable Hilbert

space. If X is a compact space and P is a principal PU -bundle on X , then one

can define a stable continuous trace C∗-algebra CT(X,P ), whose topological

K -theory is defined to be the twisted K -theory (see [62]). A good reference for the

general theory of continuous trace C∗-algebras is [60]. We are going to generalize

this construction to the case where X is a countably compactly generated and

paracompact space.

REMARK 6

It follows from Kuiper’s theorem that BPU has the homotopy type of K(Z,3),

so that H3(X,Z) = [X,BPU ]. We need the assumption of paracompactness on

X = lim−→n
Xn to assert that isomorphism classes of principal PU -bundles on X are

in bijection with homotopy classes of maps X →BPU . Every compact smooth

manifold is paracompact and so is a countable direct limit of such manifolds (see

[27, Proposition 3.6]).
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Consider a category whose objects are pairs (X,P ), where X is a countably

compactly generated and paracompact space and P is a fixed choice of principal

PU -bundle on X . A morphism (X,P )→ (X ′, P ′) in this category is a continuous

map f : X → X ′, such that there is a specified isomorphism f∗(P ′)
∼→ P . Let

CT(X,P ) denote the ∗-algebra of all continuous sections of the associated bundle

PK := P ×PU K→X , where K denotes the C∗-algebra of compact operators.

The direct limit does not change if one passes to a cofinal subsystem. There-

fore, by passing to a cofinal subsystem we may assume that X =
⋃

iXi, where

each Xi is compact and X0
ι0
↪→X1

ι1
↪→X2 · · · is a countable system of continuous

inclusions. One can restrict the principal PU -bundle P via the canonical con-

tinuous inclusions Xi →X , which we denote by Pi. Each CT(Xi, Pi) is a stable

continuous trace C∗-algebra, and, in fact, {(CT(Xi, Pi), ι
∗
i )} forms a countable

inverse system of C∗-algebras and ∗-homomorphisms. The canonical inclusions

Xi →X induce ∗-homomorphisms CT(X,P )→ CT(Xi, Pi), which assemble to

produce a ∗-homomorphism CT(X,P )
γ→ lim←−i

CT(Xi, Pi).

LEMMA 7

Let X be a countably compactly generated and paracompact space, and let P be

a principal PU -bundle on X. Then CT(X,P ) admits a topology making it a

σ-C∗-algebra.

Proof

It can be verified that the ∗-homomorphism γ constructed above is an iso-

morphism of ∗-algebras and lim←−i
CT(Xi, Pi) is by construction a σ-C∗-algebra.

We may now topologize CT(X,P ) via the isomorphism γ, making it a σ-C∗-

algebra. �

The association (X,P ) �→CT(X,P ) is functorial with respect to the morphisms

of pairs described above and takes values in the category of σ-C∗-algebras with

∗-homomorphisms. In the spirit of [62] we propose the following generalization

of twisted K -theory to countably compactly generated and paracompact spaces.

DEFINITION 8

Let X be a countably compactly generated space which is, in addition, para-

compact. If P is a principal PU -bundle on X , then we define the K -theory of

CT(X,P ) to be the twisted K -theory of the pair (X,P ).

REMARK 9

Note that the K -theory we defined above applies to a σ-C∗-algebra. Since the

twisted K -theory groups only depend on the cohomology class [P ] = η ∈H3(X,Z)

determined by P (up to isomorphism), one may (somewhat sloppily) refer to the

twisted K -theory groups of (X,P ) as those of (X,η).
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LEMMA 10

Twisted K-theory satisfies Bott periodicity, C∗-stability and Milnor lim←−
1-sequence

for an inverse limit of σ-C∗-algebras.

Proof

Since RK-theory of σ-C∗-algebras satisfies these properties, twisted K -theory

inherits them (see Lemma 5). �

The Milnor lim←−
1-sequence and property (3), that is, agreement with the topolog-

ical K -theory of C∗-algebras, give a procedure to compute twisted K -theory.

EXAMPLE 11

Let P be a principal PU -bundle on SU(∞), such that its cohomology class

is 
 ∈ H3(SU(∞),Z) � Z. The inclusion ιn : SU(n) ↪→ SU(∞) induces a homo-

morphism ι∗n : H3(SU(∞),Z) � Z → Z � H3(SU(n),Z), which is identity. From

the computations of Braun [9] and Douglas [24], it is known that the twisted

K -theory groups of the pair (SU(n), 
) are finite abelian groups for all n and 
.

More precisely, as an abelian group,

K•
(
CT

(
SU(n), ι∗n(P )

)) ∼=K•(SU(n), 

)
�

(
Z/c(n, 
)

)2n−1

,

where K• = K0 ⊕K1 and c(n, 
) = gcd{
(
�+i
i

)
− 1 : 1 ≤ i ≤ n− 1}. Now, by con-

struction, CT(SU(∞), P ) is the σ-C∗-algebra lim←−n
CT(SU(n), ι∗n(P )). One uses

the Milnor lim←−
1-sequence and the fact that an inverse system of finite abelian

groups satisfies the Mittag–Leffler condition; that is, the lim←−
1-term vanishes, to

deduce that

K•(SU(∞), 

) ∼= lim←−n

K•(SU(n), 
) � lim←−n

(
Z/c(n, 
)

)2n−1

.

This is an example of a profinite group, which is easily seen to be pure tor-

sion. Indeed, it is evident that c(n, 
) divides c(m,
) if n � m. Since for a

fixed 
, the number c(n, 
) decreases to zero as n increases, the profinite group

lim←−n
(Z/c(n, 
))2

n−1

is actually trivial.

REMARK 12

In the same vein one can construct CT(X,P ) as a locally convex algebra for any

(paracompact) compactly generated space X and study its twisted K -theory.

2. Twisted periodic cyclic homology via locally convex algebras

It is well known that cyclic homology theory is rather poorly behaved on the

category of C∗-algebras. In fact, they vanish on the category of stable C∗-algebras

(see [70]). Usually one defines cyclic homology theory with respect to a smooth

∗-subalgebra. For instance, if X is a compact smooth manifold, then Connes

computed the cyclic cohomology theory in terms of the Fréchet algebra C∞(X)

in the seminal paper [13]. The periodic cyclic homology of C∞(X) is naturally
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related to the de Rham cohomology of X in the following manner:

HP0

(
C∞(X)

) ∼=Hev
dR(X,C) and HP1

(
C∞(X)

) ∼=Hod
dR(X,C),(2)

where Hev =
⊕

nH
2n
dR and Hod =

⊕
nH

2n+1
dR . Let us recall some basic facts about

cyclic homology theory. We follow the X -complex formalism following [19] and

[20]. Some of the results stated in the generality of all locally convex algebras

can be found in [50, Chapter 4].

For any locally convex algebra A, let A+ denote the unitization of A, which

is again a locally convex algebra. Set Ω0(A) = A and Ωn(A) := A+⊗̂πA
⊗̂πn for

n � 1, which is the space of noncommutative n-forms. One defines Ωev(A) :=∏∞
n=0Ω

2n(A) and Ωod(A) :=
∏∞

n=0Ω
2n+1(A). The Fedosov product ◦ on Ω(A) :=∏∞

n=0Ω
n(A),

ω ◦ η = ωη− (−1)kl dω dη, for ω ∈Ωk(A), η ∈Ωl(A),

converts (Ω(A),◦) into an associative algebra and Ωev(A) into a subalgebra

thereof. Let the finite product Tn(A) :=
∏n

j=0Ω
2j(A) be the canonical quotient

algebra of Ωev(A) with the truncated Fedosov product; that is, ω ◦ η = 0 if

deg(ω) + deg(η) > 2n. Then T∞(A) := lim←−n
Tn(A) ∼= Ωev(A) as associative alge-

bras.

The X -complex of an algebra is a very simple complex, which is useful in

establishing various formal properties of periodic cyclic homology. For any algebra

A the Z/2-graded complex

A
δ
�
β
Ω1(A)/

[
A,Ω1(A)

]
(3)

is called the X -complex of A, denoted by X (A). Here δ = π ◦ d with π : Ω1(A)→
Ω1(A)/[A,Ω1(A)] the canonical quotient map, d :A→Ω1(A) the differential sat-

isfying d(a+ b) = da+db, d(ab) = adb+d(a)b, and β : Ω1(A)/[A,Ω1(A)]→A the

map induced by the linear map b : Ω1(A)→A sending adb �→ [a, b], db �→ 0, a �→ 0

for all a, b ∈A.

There is a canonical algebra homomorphism πA : T∞(A)→T0(A)∼=A given

by the projection onto the first summand. Setting J∞(A) = ker(πA) one obtains

an algebra extension 0→J∞(A)→T∞(A)
πA→ A→ 0, which admits a linear split-

ting σA :A→T∞(A) given by the inclusion of A onto the first summand. An alge-

bra A is called quasifree if this algebra extension actually splits. There are various

other equivalent definitions of a quasifree algebra. The Cuntz–Quillen formalism

says that for a quasifree algebra A the periodic cyclic homology can be computed

using X (A); that is, there is a natural isomorphism HP∗(A)∼=H∗(X (A)). Natu-

ral examples of quasifree algebras are not abundant; however, C and Mn(C) are

quasifree. Moreover, there is a functorial way to manufacture a quasifree algebra

from any algebra. For any locally convex algebra A, the algebra T∞(A) con-

structed above is always quasifree, whence HP∗(A)∼=H∗(X (T∞(A))). In view of

the above natural isomorphism, one can take the right-hand side as the definition

of periodic cyclic homology of a locally convex algebra.
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DEFINITION 13

Given any two locally convex algebras A,B one defines the bivariant periodic

cyclic homology groups as

HP∗(A,B) = H∗
(
Hom

(
X

(
T∞(A)

)
,X

(
T∞(B)

)))
.

In particular, the periodic cyclic homology (resp., cohomology) groups of A

are defined as

HP∗(A) = HP∗(C,A)
(
resp., HP∗(A) = HP∗(A,C)

)
.

Here Hom(X (−),X (?)) is the mapping Hom complex between Z/2-graded com-

plexes (see Section 5.3 below for some more details).

2.1. Periodic cyclic homology of countable inductive limit of smooth compact
manifolds

Let X = lim−→n
Xn be a countably compactly generated space. Then C(X) =

lim←−n
C(Xn) is a σ-C∗-algebra. Now suppose, in addition, that each Xn is a

smooth compact manifold and that the connecting maps fn : Xn → Xn+1 are

also smooth; then {C∞(Xn), f
∗
n} forms a countable inverse system of locally

multipicatively convex (Fréchet) algebras and continuous homomorphisms. Let

us set C∞
f (X) = lim←−n

C∞(Xn) as the algebra of formal smooth functions, where

the inverse limit is constructed in the category of locally convex algebras. Being

an inverse limit of complete locally multiplicatively convex algebras, C∞
f (X) is

also a complete locally multiplicatively convex algebra (see [47, p. 84]). We may

now define the (formal) periodic cyclic homology of X as HP∗(C
∞
f (X)), where

C∞
f (X) is viewed as a locally multipicatively convex algebra. Let {An, fn} be a

countable inverse system of topological algebras and continuous homomorphisms.

The inverse system is called reduced if the canonical maps lim←−n
An → Am have

dense range for all m ∈ N. The periodic cyclic homology of the inverse limit

A = lim←−n
An of a reduced countable inverse system of Fréchet algebras can be

computed from the following short exact sequence (see [43, Theorem 5.4]):

0→ lim←−
1

n
HP∗+1(An)→HP∗(A)→ lim←−n

HP∗(An)→ 0.(4)

LEMMA 14

Let X0
f0
↪→X1

f1
↪→ · · · be a countable sequence of (smooth) inclusions of compact

smooth manifolds. Then HP∗(C
∞
f (X))∼= lim←−n

HP∗(C
∞(Xn)).

Proof

It follows from [56, Lemma 1.4] that {C∞(Xn), f
∗
n} is a reduced countable inverse

system of Fréchet algebras. Applying (4) to the reduced countable inverse system

{C∞(Xn), f
∗
n}, we get

0→ lim←−
1

n
HP∗+1

(
C∞(Xn)

)
→HP∗

(
C∞

f (X)
)
→ lim←−n

HP∗
(
C∞(Xn)

)
→ 0.
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From (2) we conclude that {HP∗(C
∞(Xn)), f

∗
n} is a countable inverse system

of finite dimensional real vector spaces, whence the Mittag–Leffler condition is

satisfied. Consequently the lim←−
1-term vanishes and the result follows. �

Note that in the above discussion we did not claim that the inductive limit space

X admits a reasonable smooth manifold structure. The two specific examples

U(∞),SU(∞) are, of course, infinite dimensional Lie groups (regular in the sense

of Milnor) modeled on convenient topological vector spaces (see [42]). In these

examples each connecting map fn is actually a smooth inclusion of Lie groups.

In fact, it is known that if each Xn is a finite dimensional smooth manifold and

each fn is a smooth immersion, then the topological direct limit X = lim−→n
Xn

can be endowed with a smooth structure turning X into a (possibly infinite

dimensional) smooth manifold, such that X is the direct limit in the category

of smooth manifolds (modeled on topological vector spaces) and smooth maps

(see [27, Theorem 3.1]). Therefore, one can define the algebra C∞(X) of genuine

smooth functions on X .

REMARK 15

In the absence of a smooth structure onX , the algebra of formal smooth functions

C∞
f (X) (resp., its periodic cyclic homology HP∗(C

∞
f (X))) is potentially a good

replacement for the algebra of genuine smooth functions and the Z/2-periodic

version of the de Rham cohomology groups.

PROPOSITION 16

Let X0
f0
↪→X1

f1
↪→ · · · be a countable sequence of (smooth) inclusions of compact

smooth manifolds, such that the inductive limit X = lim−→n
Xn exists as a smooth

manifold. Then there is an algebra isomorphism C∞(X)∼=C∞
f (X).

Proof

The canonical inclusions in : Xn → X are smooth, and they produce algebra

homomorphisms i∗n : C∞(X)→ C∞(Xn), which actually assemble to produce a

map to the inverse system {C∞(Xn), f
∗
n}. Consequently there is an induced map

to the inverse limit, that is, i= lim←−n
in : C∞(X)→ lim←−n

C∞(Xn). It follows from

the fact that X is the inductive limit of {Xn, fn} in the category of smooth

manifolds with smooth maps that lim←−n
in is an isomorphism of algebras. �

Now we endow C∞(X) with the locally multiplicatively convex topology via the

above isomorphism, so that HP∗(C
∞(X))∼= lim←−n

HP∗(C
∞(Xn)).

EXAMPLE 17

Let H•
dR (resp., HP•) denote Hev

dR ⊕ Hod
dR (resp., HP0 ⊕ HP1). It is well known

that H•
dR(SU(n),C)� ΛC(x3, . . . , x2n−1) with x2i−1 ∈H2i−1

dR (SU(n),C). (Here ΛC

denotes the complex exterior algebra.) The canonical inclusion SU(n − 1) ↪→
SU(n) induces a homomorphism ΛC(x3, . . . , x2n−1) → ΛC(x3, . . . , x2n−3), which
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simply kills the generator x2n−1. Therefore,

HP•
(
C∞(

SU(∞)
)) ∼= lim←−n

HP•
(
C∞(

SU(n)
))

∼= lim←−n
H•

dR

(
SU(n),C

)
� lim←−n

ΛC(x3, . . . , x2n−1),

which agrees with the cohomology of SU(∞) with complex coefficients. The other

examples, U(∞) and CP∞, can be computed similarly.

2.2. Twisted periodic cyclic homology
Now we study the twisted version of periodic cyclic homology. The idea is to

produce a locally convex algebra from the given twisting data and define the

periodic cyclic homology of that algebra as the twisted periodic cyclic homology.

Here we only talk about the formal analogue of Section 2.1 and make no attempt

to produce a genuine noncommutative twisted smooth space.

Let H be a separable infinite dimensional Hilbert space, and let {vn}n∈N

be an orthonormal basis of H . Let B(H) denote the C∗-algebra of bounded

operators on H . One defines a semifinite trace on the positive elements in B(H)

as tr(x) =
∑∞

n=0(xvn, vn). This trace is independent of the choice of the basis

{vn} and satisfies tr(x∗x) = tr(xx∗). For p � 1, one defines the p-Schatten ideal

Lp ⊂ B(H) as Lp = {x ∈ B(H) | tr(
√
x∗x)p < ∞}. It is a Banach ∗-ideal with

respect to the norm ‖x‖p = (tr(
√
x∗x)p)1/p. For all p, Lp ⊂K. By definition L1

is the Banach ∗-ideal of trace class operators, since for this ideal the trace is finite

for all elements.

As we discussed before, C∗-algebras and σ-C∗-algebras are not the appro-

priate geometric objects for the study of cyclic homology theories. Therefore, we

need to modify the construction of the continuous trace σ-C∗-algebra CT(X,P )

that was used to define the twisted K -theory of the pair (X,P ). In [48], Mathai

and Stevenson provided a candidate roughly by replacing the algebra of compact

operators K by the Banach ∗-ideal of trace class operators L1 as described above.

Given a principal PU -bundle P on a compact smooth manifold X , one can form

a Banach algebra bundle L1(P ) = P ×PU L1 with the algebra of trace class oper-

ators L1 as the fiber associated to P via the adjoint action of PU on L1. The

algebra of (smooth) sections C∞(L1(P )) = C∞(X,L1(P )) can be endowed with

a Fréchet algebra structure. For the details we refer the readers to [48, p. 308].

Let X0 ↪→X1 ↪→ · · · be a countable directed system of compact smooth man-

ifolds and smooth immersions, such that the inductive limit is also a smooth

and paracompact manifold, (e.g., SU(∞)). Let P be a principal PU -bundle on

X , whose isomorphism class determines an element in H3(X,Z). As before,

by passing to a cofinal subsystem, we write X =
⋃

nXn with each Xn−1 ⊂
Xn being a smooth inclusion of smooth compact manifolds. We denote the

restricted bundle P |Xn on each Xn by Pn. One constructs the Fréchet alge-

bras C∞(L1(Pn)) = C∞(Xn,L1(Pn)) as described above, and there are canonical

restriction homomorphisms C∞(L1(Pn))→C∞(L1(Pn−1)). Once again it follows

from [56, Lemma 1.4] that {C∞(L1(Pn))} is a reduced inverse system of Fréchet
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algebras. Let us define the twisted smooth algebra of (X,P ) as

C∞(
X,L1(P )

)
=C∞(

L1(P )
)
= lim←−n

C∞(
L1(Pn)

)
.

Being an inverse limit of locally convex (Fréchet) algebras, it is itself a locally

convex algebra and can be regarded as a genuinely noncommutative smooth space.

Now we may define the twisted periodic cyclic homology of (X,P ) as

HP∗
(
C∞(

L1(P )
))

=H∗
(
X

(
T∞

(
C∞(

L1(P )
))))

.

We shall refer to the X -complex C∞(L1(P )) as the twisted X -complex.

EXAMPLE 18

It is well known that if A is a C∗-algebra and A ⊂ A is a dense subalgebra,

which is closed under the holomorphic functional calculus, then the inclusion

A ↪→ A induces an isomorphism K∗(A) ∼= K∗(A) (see [13]; see also [56, Corol-

lary 7.9]). Let X = lim−→n
Xn, and let P be as above. It is shown in [48, Sec-

tion 4.2] that C∞(L1(Pn)) is a dense subalgebra of the continuous trace C∗-

algebra CT(Xn, Pn), which is closed under the holomorphic functional calculus,

whence their K -theory groups agree.

Let X = SU(∞), and let P be a principal PU -bundle on it. Set Bn =

C∞(L1(Pn)). It is known that the twisted Chern–Connes character map ch∗(Bn) :

K∗(Bn)→ HP∗(Bn) becomes an isomorphism after tensoring with the complex

numbers (see [48, Proposition 6.1]). Since the twisted K -theory groups are all

torsion (see Example 11 above), we conclude that the twisted periodic cyclic

homology groups vanish, that is, HP∗(Bn) = {0} for all n. Using the Milnor lim←−
1-

exact sequence in periodic cyclic homology (see (4)), we immediately deduce that

the twisted periodic cyclic homology groups of (SU(∞), P ) vanish as well.

3. Twisted Chern–Connes character

Restricted to the category of m-algebras, the bivariant K -theory for locally con-

vex algebras described above has a universal characterization. Using this univer-

sal characterization the author constructed (see [16, Theorem 21.2]) a multiplica-

tive bivariant Chern–Connes character

chbiv∗ : kk∗ −→HP∗.

Setting the first variable to C, we get the univariant Chern–Connes character

from K -theory to periodic cyclic homology ch∗(A) :K∗(A)→HP∗(A) for any m-

algebra A. We exhibit an example below, where this HP∗-valued Chern–Connes

character is not an isomorphism after tensoring with the complex numbers. The

problem is that the groups involved are themselves not isomorphic; the complex-

ified the twisted K -theory is nontrivial, whereas the periodic cyclic homology is

trivial.

EXAMPLE 19

We have seen that the twisted K -theory of (SU(∞), P ), where P is a principal
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PU -bundle on SU(∞), is the trivial group (see Example 11). Therefore, it is also

trivial after tensoring with C, and so is periodic cyclic homology.

Consider the pair (S3, Pm), where S3 denotes the 3-sphere and Pm is a

principal PU -bundle on S3, whose cohomology class is m ∈ H3(S3,Z) � Z. Let

(X,P ) be the pair, where X =
∐

nXn is a countable disjoint union space with

Xn = S3 for all n and P restricts to the principal PU -bundle Pn on each Xn.

The associated σ-C∗-algebra is
∏

nCT(Xn, Pn). It is known (see [61], [62]) that

the K -theory of the continuous trace C∗-algebra CT(Xn, P
n) is

K∗
(
CT(Xn, P

n)
)
=

{
0 if ∗= 0,

Z/n if ∗= 1.

After tensoring with C it becomes isomorphic to the twisted periodic cyclic

homology of (Xn, P
n) via the twisted Chern–Connes character map. There-

fore, twisted HP-theory vanishes for each (Xn, P
n), and since it commutes with

countable products, it vanishes for (X,P ). However, from property (5) of (rep-

resentable) K -theory we conclude that the twisted K -theory of the pair (X,P )

is

K∗
(
CT(X,P )

)
=

{
0 if ∗= 0,∏

nZ/n if ∗= 1,

where clearly the twisted K1-group does not vanish after tensoring with C.

Indeed,
∏

nZ/n⊃ Ẑ, the ring of profinite integers, which gives rise to Af after

tensoring with Q. Here Af denotes the ring of finite adeles, which is a well-known

object in number theory. Therefore, the HP∗-valued Chern–Connes character

cannot be an isomorphism after tensoring with the complex numbers.

3.1. HL∗-valued Chern–Connes character in the compact case
The main advantage of local cyclic homology HL-theory (see [58], [59]) is that

it gives a satisfactory answer for C∗-algebras in the following sense. If M is a

smooth compact manifold, then the natural inclusion C∞(M) ↪→ C(M) induces

an HL-isomorphism. In order to define the HP-valued Chern–Connes character

one needed to extract a suitable dense smooth subalgebra of a C∗-algebra or a

σ-C∗-algebra with the same K -theory and then define the map. If one is inter-

ested in the HL-valued Chern–Connes character, then one can directly work with

C∗-algebras.

We can exploit the X -complex formalism for local cyclic homology as well.

For a Banach algebra A one constructs an analytic tensor algebra Tan(A) similar

to T∞(A) as in Section 2 but completed with respect to a bornology. Then one

defines the local homology of the Z/2-periodic X -complex X (Tan(A)) to be the

local cyclic homology groups of A (see also Definition 49 below). Since the con-

struction of the more general bivariant local cyclic homology groups are discussed

in Section 5, we do not explain the details here. Let X be a compact space, and

let P be a principal PU -bundle on X . One constructs the continuous trace C∗-

algebra CT(X,P ) as before and defines the twisted local cyclic homology groups
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of (X,P ) as HL∗(CT(X,P )). Now we show that if X is, in addition, a smooth

manifold, then the above definition of the twisted local cyclic homology groups

will agree with those of the smooth modification in terms of C∞(X,L1(P )).

THEOREM 20

Let X be a compact smooth manifold (possibly with boundary), and let P be

a principal PU -bundle on X. Then the canonical homomorphism C∞(L1(P ))→
CT(X,P ) induces isomorphisms HL∗(C

∞(L1(P ))) ∼= HL∗(CT(X,P )) and

HL∗(C∞(L1(P )))∼=HL∗(CT(X,P )).

Proof

Let us first prove the isomorphism in local cyclic homology. If X is contractible,

then P is trivializable, whence C∞(L1(P )) ∼= C∞(X)⊗̂πL1 and CT(X,P ) ∼=
C(X) ⊗̂K. Consider the commutative diagram

C∞(X) C∞(X)⊗̂πL1

C(X) C(X) ⊗̂K

(5)

where the left vertical arrow induces an HL-isomorphism. Since local cyclic

homology is L1-stable (see [50, Theorem 5.65]) and C∗-stable when restricted

to the category of C∗-algebras (see [50, Theorem 6.25]), it follows that the top

and the bottom horizontal arrows are HL-isomorphisms as well. As a consequence

the right vertical arrow C∞(X)⊗̂πL1 →C(X) ⊗̂K is an HL-isomorphism.

We claim that HL∗ is a homology theory on the category of C∗-algebras.

Indeed, thanks to excision in HL-theory, the functors HL∗ are split exact on the

category of C∗-algebras. Any C∗-stable and split exact functor on the category

of C∗-algebras is automatically homotopy invariant (see [34]), whence HL∗ is

homotopy invariant. Therefore, using [6, Theorem 21.2.2] one concludes that

the Mayer–Vietoris property holds for HL-theory. Since X is a compact smooth

manifold one can choose a finite cover consisting of geodesically convex open balls

{Bα} with Bα ⊂X compact and geodesically convex (hence contractible). The

proof goes by induction on the number of subsets in the cover. The base case

of induction is covered by the previous paragraph. Using the fact that a finite

nonempty intersection of geodesically convex subsets is again geodesically convex,

one may invoke the Mayer–Vietoris sequence and the 5-Lemma to conclude the

general result.

The proof for the isomorphism in local cyclic cohomology is similar and hence

omitted. �

Puschnigg constructed a bivariant Chern–Connes character chP : KK∗(A,B)→
HL∗(A,B), where A and B are separable C∗-algebras. It is known that HL-

theory has a composition product, so that one can define an additive HL-category,
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denoted by HLC∗ , with the bivariant HL0-groups as morphisms. The existence of

the bivariant Chern–Connes character in degree zero follows from the charac-

terization of Kasparov’s bivariant KK-category, denoted by KKC∗ , as the uni-

versal C∗-stable and split exact functor (see [33]). Let SepC∗ denote the cate-

gory of separable C∗-algebras with canonical functors KK : SepC∗ −→ KKC∗ and

HL : SepC∗ −→ HLC∗ .

THEOREM 21 (PUSCHNIGG [58, THEOREM 6.3])

The bivariant Chern–Connes character is uniquely characterized by the following

two properties:

• If f : A → B is a ∗-homomorphism of C∗-algebras, then chP (KK(f)) =

HL(f).

• Let [ε] ∈KK1(A,B) be represented by an extension diagram 0→B ⊗̂K→
C → A → 0, admitting a completely positive contractive linear section A → C.

Since HL-theory satisfies excision with respect to such extensions, one obtains a

class [δ] ∈HL1(A,B ⊗̂K)∼=HL1(A,B). Then chP ([ε]) = [δ].

Setting A=C in the bivariant Chern–Connes character one obtains the univari-

ant Chern–Connes character ch∗(A) :K∗(A)→HL∗(A).

PROPOSITION 22

Let X and P be as above. Then the twisted Chern–Connes character map

ch∗(CT(X,P )) : K∗(CT(X,P ))→HL∗(CT(X,P )) becomes an isomorphism after

tensoring with C.

Proof

The assertion follows from [50, Theorem 7.7] since the C∗-algebra CT(X,P )

belongs to the bootstrap category, which can be defined as the category of sep-

arable C∗-algebras satisfying the universal coefficient theorem (UCT). Indeed,

CT(X,P ) is a type I C∗-algebra (see, for instance, [52, Theorem 6.1.11]) and

such algebras satisfy UCT (see [63]). �

COROLLARY 23

The twisted cohomology (with complex coefficients) of the pair (X,P ) is isomor-

phic to HL∗(CT(X,P )).

Proof

There is a chain of isomorphisms

HL∗
(
CT(X,P )

)∼=K∗
(
CT(X,P )

)
⊗C

∼=K∗
(
C∞(

L1(P )
))

⊗C∼=HP∗
(
C∞(

L1(P )
))
,
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where the last identification was shown in [48, Proposition 6.1]. Moreover,

HP∗(C
∞(L1(P ))) was identified with the twisted cohomology of (X,P ) in [48,

Proposition 6.3]. �

4. Twisted K-homology via separable σ-C∗-algebras

Atiyah–Hirzebruch complex K -theory has a dual theory, which is intimately con-

nected to index theory. It is called K -homology theory, and in noncommutative

geometry its analytic version is seen as a special case of Kasparov’s [39], [38]

bivariant K -theory: for any separable C∗-algebra A the analytic K -homology

is defined to be K∗(A) = KK∗(A,C). It is a σ-additive cohomology theory on

the category of separable and nuclear C∗-algebras (see [40], [63]). The class of

separable C∗-algebras is not too restrictive; separability imposes a metrizability

condition on the spectrum of a commutative C∗-algebra.

We need an extension of Kasparov’s bivariant K -theory to the category

of sepable σ-C∗-algebras. The bivariant K -theory for locally convex algebras,

described in Section 1.2, does not agree with Kasparov’s theory, when restricted

to the category of separable C∗-algebras. The problem arises in the K -homology

part. In keeping with the exposition so far, we present a modified bivariant

K -theory for separable σ-C∗-algebras, suggested by Cuntz [15], which is a gen-

eralization of Kasparov’s bivariant K -theory.

Let U be a full subcategory of locally convex ∗-algebras, which satisfies the

following set of axioms.

(1) (kh) For each A ∈ U there is a functorial cylinder algebra A[0,1] ∈ U
with two natural continuous evaluation homomorphisms A[0,1] → A (ev0 and

ev1). One can formulate the notion of a homotopy between two morphisms in U
as follows. Two morphisms f, g : A→ B in U are said to be homotopic if there

exists a morphism h :A→B[0,1] in U , such that f = ev0 ◦ h and g = ev1 ◦ h.
(2) (ks) For each A ∈ U there is a functorial stabilized algebra K(A) contain-

ing M∞(A) and a corner embedding ι :A→K(A) such that the canonical map

K(ι) :K(A)→K(K(A)) is homotopic to a specific isomorphism K(A)∼=K(K(A)).

Note that a homotopy between two morphisms is defined using the previous

axiom (kh).

(3) (new) There is fixed choice L of a subclass of all continuous linear mor-

phisms between the objects of U , which contains all the morphisms of U , such
that for any A ∈ U there is a fixed map s :A→ TA in L with the property that

given any other map α :A→B belonging to L, there exists a unique morphism

β : TA→B in U satisfying α= β ◦ s.
(4) (ke) There is a distinguished class C of extensions in U , which are split

by a map in L. We only require the existence of such a splitting; the choice of a

splitting is not a part of the data. Now for each A ∈ U the following extensions

must be in C:
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• a functorial cone-suspension extension: 0 → A(0,1) → A(0,1] → A → 0.

Here the suspension A(0,1) and the cone A(0,1] have the obvious definitions

in terms of ev0, ev1 and the cylinder A[0,1],

• a functorial (reduced) Toeplitz extension: 0→K(A)→ T(A)→A(0,1)→ 0;

• a (homotopy) universal extension: The map A
id→ A produces a surjective

algebra homomorphism TA→A in U by (new). We require the extension

0→ JA→ TA→A→ 0

to be in C, where JA := ker(TA→ A), with its canonical splitting s : A→ TA

in L. Given any extension 0→ I → E →A→ 0 in C, there is a (not necessarily

unique) morphism of extensions

0 JA

εA

TA A

id

0

0 I E A 0

which is obtained by choosing a splitting A→E in L. The morphism εA is called

a classifying map of the extension 0→ I →E →A→ 0, and it is required to be

unique up to a homotopy.

(5) (kt) There is an associative tensor product ⊗ on U , such that tensoring

with any object in U preserves the extensions in C.

REMARK 24

Our set of axioms is a bit more restrictive than that of Cuntz in [15]. For instance,

the axiom (new) does not appear in [15]. It produces a stronger version of the

(homotopy) universal extension 0→ JA→ TA→A→ 0, which will be functorial

in A. The axiom (ks), which is needed to make sense of stability, has also been

strengthened. However, in the example that we are going to consider, this stronger

set of axioms will be satisfied. We have left out a predictable “subdivision of the

unit interval condition” that is needed to ensure that homotopy is an equivalence

relation.

The choice of the class of extensions C in the axiom (ke) determines the behavior

of the bivariant theory, particularly its excisive properties. Splicing the cone-

suspension extension with the (reduced) Toeplitz extension one gets a 2-step

extension diagram

0→K(A)→ T(A)→A(0,1]→A→ 0.

Using the property of the universal extension (twice) one gets a classifying

map εA : J2(A) → K(A) of the 2-step extension. Let [A,B] denote the homo-

topy classes of homomorphisms between A and B. Then εA defines a map S :

[Jk(A),K(B)]→ [Jk+2(A),K(B)], which takes any homotopy class [α] ∈ [Jk(A),
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K(B)] to the homotopy class of the map

Jk+2(A) = J2
(
Jk(A)

) ε
Jk(A)−→ K

(
Jk(A)

) K(α)−→ K
(
K(B)

) ∼=K(B).

For i= 0,1, one now defines the bivariant K -theory groups as

kki(A,B) = lim−→n

[
J2n+i(A),K(B)

]
,(6)

where [−,−] denotes the homotopy classes of morphisms and the direct limit

is taken over the maps S described above. There is a natural abelian group

structure on kki(A,B), which is contravariantly functorial in A and covariantly

functorial in B. Furthermore, there is an associative bilinear composition product

kki(A,B)× kkj(B,C)→ kki+j(A,C), which enables us to construct an additive

category kk(U) whose objects are those of U and morphisms spaces are the

kk0-groups. For all the technical details concerning these assertions we refer the

readers to the original articles of Cuntz [15], [16]. We only recall the universal

characterization of this bivariant K -theory that will be needed in the sequel.

THEOREM 25 (CUNTZ [15, PROPOSITION 1.2])

There is canonical functor kk0 : U −→ kk(U), which is the identity on objects,

satisfying the following properties:

(E1) the evaluation homomorphisms evi :A[0,1]→A are mapped to isomor-

phisms; that is, kk0(evi) is an isomorphism for i= 0 and 1;

(E2) the corner embedding ι :A→K(A) is mapped to an isomorphism; that

is, kk0(ι) is an isomorphism;

(E3) for any extension 0→ I → A→B → 0 in C, and any D ∈ U , there is

a six-term exact sequence

kk0(D,I) kk0(D,A) kk0(D,B)

kk0
(
D,B(0,1)

)
kk0

(
D,A(0,1)

)
kk0

(
D,I(0,1)

)
and, similarly, a six-term exact sequence for the functor kk0(−,D) with the

arrows reversed. Furthermore, it is the universal functor in the following sense.

Let F : U → C be any covariant additive category valued functor, so that F (f ◦g) =
F (f) · F (g), and such that for all D ∈ U the functors HomC(F (−), F (D)) and

HomC(F (D), F (−)) satisfy the properties (E1), (E2), and (E3). Then there is a

unique covariant functor F ′ : kk(U)−→C, such that F = F ′ ◦ kk0.

REMARK 26

One actually needs to also assume that F (HomU (T(A),T(A))) = {0} for all A ∈ U
in the above assertion; this will be automatically satisfied in our applications

below.
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REMARK 27

If U is the category of (separable) C∗-algebras (resp., σ-C∗-algebras) and C

consists of all (separable) C∗-algebra (resp., σ-C∗-algebra) extensions, admitting

a completely positive contractive linear section, then the property (E3) above

can be relaxed to

(E3′) for any extension 0 → I → A → B → 0 in C, and any D ∈ U , the

sequences F (D,I)→ F (D,A)→ F (D,B) and F (B,D)→ F (A,D)→ F (I,D) are

exact.

This is because standard arguments from the theory of operator algebras, which

also works for σ-C∗-algebras (see, e.g., [55, Corollary 2.5]), enable us to extend

the short exact sequence F (D,I)→ F (D,A)→ F (D,B) to a long exact sequence

(using (E1))

· · · → F
(
D,B(0,1)2

)
→ F

(
D,I(0,1)

)
→ F

(
D,A(0,1)

)
→

→ F
(
D,B(0,1)

)
→ F (D,I)→ F (D,A)→ F (D,B),

and Cuntz’s proof of Bott periodicity in the presence of axioms (E1), (E2), and

(E3′) applies, whence one gets the desired six-term exact sequence of property

(E3). Exactly similar arguments hold for the contravariant functor F (−,D). This

equivalent formulation of property (E3) will be useful for us later.

A σ-C∗-algebra A∼= lim←−n∈N
An is called separable if each An is a separable C∗-

algebra. For our purposes we are going to set U to be the category of separable

σ-C∗-algebras Sepσ-C∗ . Let A∼= lim←−n
An and B ∼= lim←−m

Bm be two σ-C∗-algebras.

Then the maximal tensor product is defined as A ⊗̂maxB = lim←−n
An ⊗̂maxBn.

Henceforth, we only consider the maximal tensor product and, for brevity, write

simply ⊗̂ instead of ⊗̂max. In particular, if A is a σ-C∗-algebra, then the cylinder,

the cone, the suspension, and the stabilization have predictable choices: A[0,1] =

C([0,1]) ⊗̂A, A(0,1] = C0((0,1]) ⊗̂A, A(0,1) = C0((0,1)) ⊗̂A, andK(A) =K ⊗̂A,

respectively. If A is a σ-C∗-algebra and I is a closed two-sided ∗-ideal, then A/I is

automatically a σ-C∗-algebra and any ∗-homomorphism A→C of σ-C∗-algebras

that vanishes on I factors through A/I , that is, A/I is a categorical quotient.

If A were a pro C∗-algebra, then A/I might fail to exist as a pro C∗-algebra. A

sequence of σ-C∗-algebras and ∗-homomorphisms 0→ I →A→B → 0 is called

exact if it is algebraically exact, the map I → A has a closed range and is a

homeomorphism onto its image, and the induced map A/I →B is also a homeo-

morphism. It turns out that the topological conditions are redundant and such a

sequence is exact if and only if it is algebraically exact (see [53, Corollary 5.5]).

It is known that

0→ lim←−n
In ∼= I → lim←−n

En
∼=E → lim←−n

An
∼=A→ 0

is a σ-C∗-algebra extension if and only if {0→ In →En →An → 0} is an inverse

system of C∗-algebra extensions (see [53, Proposition 5.3(2)]).
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Now let U be the category of separable σ-C∗-algebras. One observes at once

that there is an immediate candidate for the object A[0,1] (resp., K(A)), namely,

C([0,1]) ⊗̂A (resp., K ⊗̂A) with the obvious evaluation homomorphisms (resp.,

corner embedding). These constructions are clearly functorial, and hence U sat-

isfies axioms (kh) and (ks). We choose the distinguished class of extensions C

to be all extensions 0→ I →E →A→ 0 in U , that is, exact sequences of σ-C∗-

algebras, admitting a completely positive contractive linear section. That is, L is

the subclass of all completely positive contractive linear maps. For the extension-

preserving tensor product, that is required in the axiom (kt), we choose the

maximal tensor product ⊗̂. The cone-suspension extension and the (reduced)

Toeplitz extension clearly belong to C. For any σ-C∗-algebra A, the (reduced)

Toeplitz extension is obtained by applying the functor −⊗̂A t o the extension

0→K→ T0 →C0(S
1 \ {1})∼=C0((0,1))→ 0, that is, T(A) = T0 ⊗̂A. Let us now

construct a universal extension and verify (new).

PROPOSITION 28

For any A ∈ U there is a map A→ TA in L as demanded in (new) and there is

a universal extension 0→ J(A)→ T (A)→ A→ 0 satisfying the requirements of

axiom (ke).

Proof

Let us first suppose that A is a separable C∗-algebra. Let cpc(A) denote a

category whose objects are completely positive contractive linear maps A →
B, where B is a separable C∗-algebra. A morphism (A → B) → (A → C) is a

∗-homomorphism B →C such that the following diagram commutes:

A B

C

This category is nonempty as A
id→A belongs to it. It also has an initial object,

whose construction is explained after [18, Definition 8.25]. We call this initial

object s : A→ T (A). Note that in [18, Definition 8.25] it is constructed in the

category of all C∗-algebras and it is denoted by σA : A→ TcpcA. However, if A

is separable, then so is T (A).

Now let A be any separable σ-C∗-algebra, and, as usual, write A∼= lim←−n
An

with surjective connecting homomorphisms θn : An → An−1. For each separa-

ble C∗-algebra An there is a universal extension 0→ J(An)→ T (An)→An → 0,

with a canonical completely positive contractive linear splitting sn :An → T (An).

The completely positive contractive linear map sn−1 ◦θn :An → T (An−1) induces

a ∗-homomorphism τn : T (An)→ T (An−1) such that the following diagram com-

mutes:
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T (An)

τn

πn
An

θn

sn

T (An−1)
πn−1

An−1

sn−1

which gives rise to a morphism of extensions

0 J(An) T (An)

τn

An

θn

0

0 J(An−1) T (An−1) An−1 0

The inverse limit of these extensions produces an extension

0→ J(A) = lim←−n
J(An)→ T (A) = lim←−n

T (An)→A→ 0,

which we claim is a universal extension. The completely positive contractive

linear splitting is given by the map s = lim←−n
sn : A ∼= lim←−n

An → lim←−n
T (An) =

T (A). Let α : A → B ∼= lim←−n
Bn be any completely positive contractive linear

map between separable σ-C∗-algebras. Using [7, Satz 5.3.6] we write α as a

morphism of inverse systems {αn : An → Bn}, where each αn is a completely

positive contractive linear map between separable C∗-algebras. They induce a

morphism of inverse systems {T (αn) : T (An)→Bn}, which produces the unique

∗-homomorphism T (A)∼= lim←−n
T (An)→ lim←−n

Bn
∼=B with the desired properties.

This verifies (new).

Given any extension 0 → I → E → A → 0 of σ-C∗-algebras, admitting a

completely positive contractive linear splitting, we write it as an inverse limit

of extensions of C∗-algebras 0 → In → En → An → 0 admitting a completely

positive linear splitting for each n. Note that if there is a completely positive

linear splitting of a surjective ∗-homomorphism between separable C∗-algebras,

then there is also a completely positive and contractive linear splitting (see [21,

Remark 2.5]). Since, for each n, 0 → J(An) → T (An) → An → 0 is a universal

extension of An there is a morphism of extensions

0 J(An) T (An) An

id

0

0 In En An 0

which gives rise to a morphism of inverse systems of extensions. Consequently,

there is a morphism between their inverse limits
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0 J(A)

εA

T (A) A

id

0

0 I E A 0

The classifying map is uniquely determined by the choice of a completely positive

contractive linear map s : A → E. If s, s′ are two such linear maps, then the

linear homotopy ts+ (1− t)s′ induces a homotopy between their corresponding

classifying maps, making the classifying map unique up to a homotopy. �

DEFINITION 29

We define the bivariant K -theory groups on the category of separable σ-C∗-

algebras as in (6), that is, σ-kk∗(A,B) := kk∗(A,B), where U is the category of

separable σ-C∗-algebras and C consists of all separable C∗-algebra extensions,

admitting a completely positive linear splitting.

REMARK 30

Restricted to the category of separable C∗-algebras, these groups agree with Kas-

parov’s KK-groups. By construction, this theory enjoys the universal property

that is described in Theorem 25.

REMARK 31

The bivariant σ-kk-theory for separable σ-C∗-algebras could have also been con-

structed by the general machinery of localization in triangulated categories. How-

ever, such a construction would result in a rather complicated description of the

elements of the σ-kk-groups, whereas, in the above approach they are represented

as ∗-homomorphisms between certain σ-C∗-algebras.

A σ-C∗-algebra A ∼= lim←−n∈N
An is called nuclear if each An is a nuclear C∗-

algebra. Obviously, a commutative σ-C∗-algebra is nuclear.

EXAMPLE 32

Let X = lim−→n
Xn be a countably compactly generated space, and let P be a

principal PU -bundle on X . Then the σ-C∗-algebra CT(X,P )∼= lim←−n
CT(Xn, Pn)

constructed in Section 1.3 is nuclear. Indeed, each C∗-algebra CT(Xn, Pn) is type

I and hence nuclear by a well-known theorem of Takesaki [66, Theorem 3]. They

are also clearly separable.

LEMMA 33

Let 0→ I →A→B → 0 be an exact sequence of σ-C∗-algebras. Then A is nuclear

if and only if both I and B are nuclear. In other words, the category of nuclear

σ-C∗-algebras is closed under the passage to closed two-sided ideals, quotients

(by such ideals), and extensions.
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Proof

The result follows easily from the corresponding result about C∗-algebras (see

[12] and [53, Proposition 5.3(2)]). �

DEFINITION 34

For any separable σ-C∗-algebra A, we define the (analytic) K -homology of A as

K∗(A) = σ-kk∗(A,C).

REMARK 35

Bonkat [7] introduced a bivariant K -theory, which we denote by BKK theory,

for inverse systems of C∗-algebras, which is also applicable to σ-C∗-algebras.

There is yet another bivariant K -theory for pro C∗-algebras defined by Weidner

[69]. It follows from [7, Satz 5.3.11] that the two bivariant theories are naturally

isomorphic on the category of separable and nuclear σ-C∗-algebras.

PROPOSITION 36

The bivariant K-theory groups σ-kk described above are naturally isomorphic to

the bivariant K-theory groups BKK defined by Bonkat on the category of separable

σ-C∗-algebras.

Proof

The assertion follows from [7, Satz 5.3.10], which characterizes BKK on the

category of separable σ-C∗-algebras as the universal additive category valued

functor with the properties (E1), (E2), and (E3′) as in Theorem 25 and the

remark thereafter. �

COROLLARY 37

On the category of separable and nuclear σ-C∗-algebras both σ-kk-theory and

BKK-theory agree naturally with Weidner’s bivariant K-theory.

This enables us to deduce some properties which are very useful for computa-

tion.

COROLLARY 38

Let A = lim←−n
An be any nuclear and separable σ-C∗-algebra. Then the functor

K∗(A) = σ-kk∗(A,C) satisfies the following properties:

(1) K∗(A(0,1)2)∼=K∗(A) [Bott periodicity];

(2) K∗(A)∼= lim−→n
K∗(An) [contravariant continuity];

(3) let {An} be a countable family of nuclear and separable C∗-algebras.

Then

K∗
(∏

n

An

)
∼=

⊕
n

K∗(An).
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Proof

In view of the above corollary, all the assertions follow from the corresponding

results in Weidner’s [69] bivariant K -theory. �

REMARK 39

For any separable σ-C∗-algebra A, one can also define a new K -theory as

Knew
∗ (A) = σ-kk∗(C,A). However, this K

new-theory will be naturally isomorphic

to RK-theory or the K -theory of locally convex algebras defined above (when

restricted to separable σ-C∗-algebras).

EXAMPLE 40

Let P be a principal PU -bundle on SU(∞), such that its cohomology class is


 ∈H3(SU(∞),Z)� Z as in Example 11. We know that the twisted K -homology

groups of the pair (SU(n), 
) are described by

K•(CT(
SU(n), ι∗n(P )

)) ∼=K•
(
SU(n), 


)
�

(
Z/c(n, 
)

)2n−1

,

where K• = K0 ⊕K1 and c(n, 
) = gcd{
(
�+i
i

)
− 1 : 1 ≤ i ≤ n− 1}. By the above

corollary, one deduces that

K•
(
SU(∞), 


) ∼= lim−→n
K•

(
SU(n), 


)
� lim−→n

(
Z/c(n, 
)

)2n−1

.

This is again the trivial group.

5. Twisted local cyclic homology via separable σ-C∗-algebras

The natural target for a Chern–Connes character type map from K -homology

is some version of cyclic cohomology. However, neither periodic nor entire cyclic

cohomology produces satisfactory results for C∗-algebras. For a separable and

nuclear C∗-algebra A, the entire and the periodic cyclic cohomologies agree (see

[41]), and one finds HP0(A) ∼= HH0(A), HP1(A) ∼= {0}. This result in not very

satisfactory from the geometric viewpoint. Therefore, in this section we extend

the theory of bivariant local cyclic homology to separable σ-C∗-algebras so that

we can construct a bivariant Chern–Connes type character taking values in it.

Local cyclic (co)homology theory was developed by Puschnigg [58], [59], and in

its general setup it works on a nice category of “ind-Banach algebras.” To apply

this theory we spend some time in constructing such an ind-Banach algebra from

a σ-C∗-algebra in a functorial manner. Construction actually “factors through

the world of bornological algebras.” We get a streamlined approach toward local

cyclic (co)homology by using Meyer’s presentation of the topic in the language of

bornological and ind-Banach algebras. In some categorical aspects bornological

vector spaces behave somewhat better than topological vector spaces, but we

do not dwell on this point here. Since the theory of bornological algebras may

not be a part of the standard toolkit of an operator algebraist or a geometer,

we include a brief review of some of its salient features here. There are a few

contemporary textbooks explaining the theory more comprehensively (e.g., [50],

[18]). We also refer the readers to the survey by Waelbroeck [68], who has done



626 Snigdhayan Mahanta

extensive work in developing the theory, and the book by Hogbe-Nlend [35]. In

what follows all bornological vector spaces and algebras are tacitly assumed to

be complete, which simplifies the discussion.

5.1. From a σ-C∗-algebra to an ind-Banach algebra
Intuitively, a bornological algebra is an algebra with a prescribed collection of

bounded subsets (as opposed to open subsets, which would make it a topological

algebra). More specifically, one calls a subset B ⊂ V , where V is a C-linear space,

a disk if it satisfies the following:

• tx+ (1− t)y ∈B for all x, y ∈B and t ∈ [0,1],

• λB = {λb | b ∈B} ⊂B for all λ ∈C with |λ| � 1,

• B =
⋂

ε>0{(1 + ε)b | b ∈B}.

If B ⊂ V is a disk, then the span VB = R+B = {rb | r ∈ R+, b ∈ B} becomes a

seminormed C-linear space via the seminorm νB(v) = inf{r ∈R+ | v ∈ rB}. If VB

is actually a Banach space, then B is said to be complete.

DEFINITION 41

A (complete convex) bornological C-vector space is a C-linear space V endowed

with a family S of subsets of V satisfying the following axioms:

(1) if S1 ∈ S and S2 ⊂ S1, then S2 ∈ S ;
(2) if S1, S2 ∈ S , then S1 ∪ S2 ∈ S ;
(3) {v} ∈ S for all v ∈ V ;

(4) if S ∈ S and c ∈R+, then cS ∈ S ;
(5) any S ∈ S is contained in some B ∈ S , where B is a complete disk.

The family S is called a bornology on V , and the subsets in S are called the

bounded subsets of V .

REMARK 42

More general definitions of bornologies exist in the literature. What we have

defined above is a complete convex bornology. The axiom (5) in Definition 41

above imposes these conditions. Since we are not going to discuss more general

bornologies, we drop the adjectives altogether.

EXAMPLE 43

Let V be a Fréchet space, that is, a complete, metrizable, locally convex space.

The family S = {W ⊂ V |W is compact} defines a bornology on V . It is called

the precompact bornology on V , and its subsets are called precompact subsets.

For any Fréchet space V , we denote the bornological vector space V , endowed

with the precompact bornology by Cpt(V ).

A C-linear map f : (V1,S1)→ (V2,S2) between bornological vector spaces is called

bounded if S ∈ S1 implies f(S) ∈ S2. For any two bornological vector spaces
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V1, V2, one defines the product bornological vector space as the C-linear space

V1×V2 equipped with the coarsest bornology making both projection maps V1×
V2 → Vi with i= 1,2 bounded. The bornological vector space V1×V2 is complete

if both V1 and V2 are complete.

The canonical inclusion of the category of all complete bornological vector

spaces inside that of all (not necessarily complete) bornological vector spaces

admits a left adjoint, which is called the completion functor. Being a left adjoint

it commutes with all inductive limits. Since all our bornological vector spaces

are assumed to be complete, one needs to apply this functor tacitly whenever

one runs into an incomplete one. The complete bornological tensor product ⊗̂b

between two bornological vector spaces V,W is defined by the universal property:

there is a canonical bounded bilinear map π : V ×W → V ⊗̂bW , such that given

any bounded bilinear map θ : V ×W → Z into a bornological vector space Z,

there is a unique bounded bilinear map θ′ : V ⊗̂bW → Z satisfying θ = θ′ ◦ π. We

are going to describe the explicit construction of the completed tensor product

after introducing the dissection functor (see (7)).

A bornological algebra A is a bornological vector space endowed with an

associative, bilinear, and bounded multiplication map. Hence the multiplication

map induces a bounded linear map A⊗̂bA→ A. Now we establish a connection

between Fréchet algebras and bornological algebras.

LEMMA 44

The association V �→ Cpt(V ), which is identity on morphisms, defines a fully

faithful functor from the category of Fréchet spaces with continuous linear maps

to that of bornological vector spaces and bounded linear maps.

Proof

One needs to observe that any continuous homomorphism is also bounded, that

is, it preserves precompact subsets. This says that the functor is faithful. That

it is full follows from [50, Theorem 1.29]. �

COROLLARY 45

If A is Fréchet algebra, then Cpt(A) is a bornological algebra and the association

is functorial.

Proof

This follows from the fact Cpt(V )⊗̂bCpt(W ) ∼= Cpt(V ⊗̂πW ), where V,W are

Fréchet spaces (see [50, Theorem 1.87]). �

The procedure of dissection enables us to move from the bornological world to the

topological world. Let V be a bornological vector space, and let Sc(V ) be the set

of complete bounded disks in V . It is a directed set under the relation B1 ≤B2 if

there exists a c ∈ R+ such that B1 ⊂ cB2. Any B ∈ Sc(V ) determines a Banach

subspace VB ⊂ V , and if B1 ≤B2, then there is an injective bounded linear map
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VB1 → VB2 . This procedure produces an inductive (directed) system of Banach

spaces indexed by Sc(V ). For any bornological vector space V the inductive

system of Banach spaces indexed by Sc(V ) thus obtained are denoted by diss(V ).

This construction is actually functorial with respect to bounded linear maps; that

is, any bounded linear map between bornological vector spaces V →W induces a

morphism of inductive systems of Banach spaces diss(V )→ diss(W ). The functor

from bornological vector spaces to inductive systems of Banach spaces admits a

left adjoint, which is seplim−→. The bornological tensor product, which was defined

by its universal property above, can be described in terms of these functor as

V ⊗̂bW ∼= seplim−→(B,B′)
VB⊗̂πWB′ , B ∈ Sc(V ),B′ ∈ Sc(W ),(7)

where ⊗̂π denotes Grothendieck’s projective tensor product between Banach

spaces.

Given any category C, one can construct its ind-category
→
C . We do not

belabor the concept of ind-categories. Let us simply mention that its objects

are formal diagrams FI : I → C, where I is a small filtering category and, by

definition,

Hom→
C
(FI , F

′
J) = lim←−i

lim−→j
HomC

(
FI(i), F

′
J(j)

)
, i ∈ I, j ∈ J.

Let Ban denote the symmetric monoidal category of Banach spaces with ⊗̂π giv-

ing the symmetric monoidal structure. Then
−→
Ban denotes the symmetric monoidal

category of inductive systems of Banach spaces with the monoidal structure given

by ⊗̂π (extended naturally to inductive systems AI⊗̂πBJ := {Ai⊗̂πBj}(i,j)∈I×J ).

For simplicity we continue to denote the monoidal structure on
−→
Ban by ⊗̂π . The

constant system C is the unit object of
−→
Ban. Given any symmetric monoidal

category, one can talk about a monoid object in that category. The ind-Banach

algebras are precisely the monoid objects in
−→
Ban. It should be noted that an

ind-Banach algebra is not necessarily an inductive system of Banach algebras;

the ones that are inductive systems of Banach algebras are called locally multi-

plicative.

REMARK 46

Observe that a bornological algebra can be viewed as a monoid object in the

symmetric monoidal category of bornological vector spaces equipped with ⊗̂b.

The dissection functor diss is unfortunately not symmetric monoidal in gen-

eral; that is, diss(V ⊗̂bW ) � diss(V )⊗̂πdiss(W ). However, if V,W are Fréchet

spaces, then there is a natural isomorphism diss ◦ Cpt(V )⊗̂πdiss ◦ Cpt(W ) ∼=
diss◦Cpt(V ⊗̂πW ) (see [50, Theorem 1.166]). Therefore, the functor diss◦Cpt(−)

preserves monoid objects between Fréchet spaces and ind-Banach spaces; that is,

it sends a Fréchet algebra to an ind-Banach algebra.

Given any Fréchet algebra A (in particular, a σ-C∗-algebra), by applying the

composite functor P (A) := diss◦Cpt(A), we obtain an ind-Banach algebra which
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establishes the functorial passage from Fréchet algebras (in particular, σ-C∗-

algebras) to ind-Banach algebras alluded to above. Thus Meyer’s technology may

be deployed to define the (bivariant) local cyclic homology of P (A).

REMARK 47

Note that while a σ-C∗-algebra A is defined as a countable inverse limit of C∗-

algebras, the associated ind-Banach algebra P (A) is merely expressed as a monoid

object in the category of inductive systems of Banach spaces. These algebras are

not locally multiplicative in the sense of [50, Section 3.2.2] in general.

5.2. Local cyclic homology via the analytic tensor algebra
Recall that the periodic cyclic homology was defined in Section 2 by using the X -

complex of a quasifree (tensor) algebra. We adopt a similar approach for defining

local cyclic (co)homology. For any ind-Banach algebra A, construct the algebra

of differential forms (resp., even differential forms) with the Fedosov product

(Ωalg(A),◦) (resp., (Ωev
alg(A),◦)) purely algebraically, that is, construct it formally

in the symmetric monoidal category (
−→
Ban, ⊗̂π) using the fact that it is a monoid

object. Write A∼= {Ai}i∈I , with I directed and each Ai a Banach space. Equip

each Ai with a closed unit ball Bi, and define Bi,n = nBi for all (i, n) ∈ I ×N.

Set

〈〈Bi,n〉〉=Bi,n ∪Bi,n(dBi,n)
∞ ∪ (dBi,n)

∞,

where d is the formal differential in Ωalg(A) and (dBi,n)
∞ =

⋃∞
k=1(dBi,n)

k. Let

〈〈Bi,n〉〉 denote the minimal complete bounded disk in Ai containing 〈〈Bi,n〉〉.
We denote the completion of Ωalg(Ai) (resp., Ω

ev
alg(Ai)) with respect to the norm

defined by 〈〈Bi,n〉〉 by Ωan(Ai,n) (resp., Ω
ev
an(Ai,n)). Letting I ×N be directed in

the obvious manner, we get an inductive system of Banach spaces {Ωan(Ai,n)}I×N.

The Fedosov product and the differential extend to this inductive system, making

it an ind-Banach algebra. The ind-Banach subalgebra {(Ωev
an(Ai,n)} is by defini-

tion the analytic tensor algebra Tan(A). One can now construct the X -complex

of Tan(A). We omit the details of this construction, which is very similar to the

one described in Section 2. The interested readers can also find the details in [50,

Section 5.2].

REMARK 48

The functor A �→ P (A) converts a Fréchet algebra A into an ind-Banach algebra.

We simplify notation by dropping P . It is tacitly assumed that the machinery

discussed below is applied to a Fréchet algebra after converting it to an ind-

Banach algebra by applying the functor P .

5.3. Local homotopy category of (Z/2)-graded complexes
Let C denote an additive category. One can form the triangulated homotopy

category of (Z/2)-graded chain complexes in C with the mapping cone triangles

as the prototypical exact triangles. We denote this category by HoC•. Recall that
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a (Z/2)-graded complex is one of the form

· · · d0→C1
d1→C0

d0→C1
d1→C0

d0→ · · ·

and the morphisms in the homotopy category are the homotopy classes of chain

maps. In general, for any two chain complexes X•, Y•, there is a mapping chain

complex Hom(X•, Y•), whose n-cycles are maps X•[n]→ Y• of graded objects,

with the differential being the graded commutator d(f) = f dY − (−1)|f | dXf . It

follows that the morphisms between X• and Y• in the homotopy category HoC•
are given by H0(Hom(X•, Y•)).

Now set C =
−→
Ban to be the additive category of inductive systems of Banach

spaces. For any X•, Y• ∈ HoC• one can define the functorial mapping complex

Hom(X•, Y•). The local homology groups of a specific mapping complex will even-

tually compute the bivariant local cyclic homology of a pair of ind-Banach alge-

bras. As the name suggests, the local homology of an object in HoC• is not the

same as its näıve homology. It is obtained by passing to a localization of the tri-

angulated category HoC• and then taking its homology. Any Banach space can

be viewed as an inductive system of Banach spaces via the constant system. Sim-

ilarly, any chain complex of Banach spaces can be viewed as a finitely presented

object of HoC•. We call a chain complex Y• in HoC• locally contractible if for any

chain complex of Banach spaces X•, one has H∗(Hom(X•, Y•)) = {0}. A chain

map f : Y• → Y ′
• is called a local homotopy equivalence if and only if the map-

ping cone of f is locally contractible. An exact functor from HoC• to any other

triangulated category is called local if it sends a local homotopy equivalence to

an isomorphism. The local homotopy category of (Z/2)-graded chain complexes,

denoted by HoCloc
• , is by definition the codomain of the universal local functor

loc : HoC• → HoCloc
• . The formal localization theory of triangulated categories

ensures its existence. For any X•, Y• ∈HoC•, we define the bivariant local homol-

ogy as Hloc
n (X•, Y•) = HomHoCloc

•
(X•, Y•[n]). For any ind-Banach algebra A, it

is clear that the X -complex X (Tan(A)) ∈ HoC•. It turns out that the analytic

tensor algebra (Ωev
an(A),◦) constructed above is actually analytically quasifree,

so that one may define the (bivariant) local cyclic homology groups by using the

X -complex (see [50, Theorem 5.38]).

DEFINITION 49

Given any two ind-Banach algebras A,B, one defines the bivariant local cyclic

homology groups as HL∗(A,B) = Hloc
∗ (X (Tan(A)),X (Tan(B))).

In particular, HL0(A,B) = HomHoCloc
•

(X (Tan(A)),X (Tan(B))), where C =
−→
Ban, and the local cyclic homology (resp., cohomology) groups of A are defined

as

HL∗(A) = HL∗(C,A)
(
resp., HL∗(A) = HL∗(A,C)

)
.

If A,B are Fréchet algebras, then by definition HL∗(A,B) = HL∗(P (A),

P (B)).
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6. The bivariant Chern–Connes type character

Now we construct a bivariant Chern–Connes type character from the bivariant

K -theory to the bivariant local cyclic homology for separable σ-C∗-algebras and

then specialize to the dual Chern–Connes character from (analytic) K -homology

to local cyclic cohomology.

LEMMA 50

If a functor F from the category of separable σ-C∗-algebras is homotopy invari-

ant, then F (K ⊗̂−) is C∗-stable.

Proof

Since the corner embedding ι :K→K ⊗̂K is homotopic to an isomorphism (say,

α), there is commutative diagram of ∗-homomorphisms

K ⊗̂K

K

ι

h

α

K ⊗̂K ⊗̂C
(
[0,1]

)
ev0

ev1

K ⊗̂K

Now applying −⊗̂A to the above diagram one obtains the homotopy between the

corner embedding ι ⊗̂ id :K ⊗̂A→K ⊗̂K ⊗̂A and an isomorphism α ⊗̂ id. Finally,

by the homotopy invariance of F , one concludes that F (ι ⊗̂ id) = F (α ⊗̂ id) is an

isomorphism. �

The composition of morphisms in HoCloc
• induces a natural associative composi-

tion product

HL∗(A,B)⊗HL∗(B,C)→HL∗(A,C)

for any three ind-Banach algebras (see [59, Proposition 5.8]). This enables us

to define an additive category whose objects are σ-C∗-algebras and morphisms

are HL0-groups with the composition of morphisms given by the above product.

Of course, one needs to apply the functor P (−) to convert a σ-C∗-algebra into

an ind-Banach algebra but, as mentioned before, we suppress the application of

P (−) from our notation below. We denote the category, whose objects are sepa-

rable σ-C∗-algebras and morphisms are the bivariant local cyclic homology HL0-

groups, by HLσ-C∗ . Any ∗-homomorphism A→B between σ-C∗-algebras induces

a map of X -complexes X (Tan(A))→X (Tan(B)), which eventually induces a mor-

phism in HoCloc
• giving rise to an element in HL0(A,B). The composition of
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∗-homomorphisms is compatible with the above-mentioned product in bivari-

ant local cyclic homology, whence there is a canonical functor Sepσ-C∗ → HLσ-C∗

that applies P (−) to the objects. Recall that Sepσ-C∗ denotes the category of

separable σ-C∗-algebras with ∗-homomorphisms.

PROPOSITION 51

The covariant functor Sepσ-C∗ −→ HLσ-C∗ , sending A �→ K ⊗̂A, has the prop-

erty that the associated functors HomHLσ-C∗ (K ⊗̂A,K ⊗̂−) and HomHLσ-C∗ (K ⊗̂−,

K ⊗̂A) satisfy the properties (E1), (E2), and (E3) for all A ∈ Sepσ-C∗ as in The-

orem 25.

Proof

Recall that HomHLσ-C∗ (A,−) = HL0(A,−) and HomHLσ-C∗ (−,A) = HL0(−,A).

The property (E1) follows from [45, Corollary 7]. The functor P (K ⊗̂−) sends a

semisplit extension of σ-C∗-algebras to such an extension of ind-Banach algebras.

It follows from the excision results of local cyclic (co)homology with respect to

such extensions (see [59, Theorem 5.13], [50, Theorem 5.77]) that property (E3′)

as in Remark 27 is satisfied, which is sufficient for our purposes. The functor

HL∗(K ⊗̂−,D) is C∗-stable by Lemma 50, since the functor HL∗(K ⊗̂−,D) is

homotopy invariant for any fixed separable σ-C∗-algebra D. A similar argument

shows that HL∗(D,K ⊗̂−) is also C∗-stable, thus verifying (E2). �

THEOREM 52

There is a natural multiplicative bivariant Chern–Connes type character chbiv∗ :

σ-kk∗(A,B)∼= σ-kk∗(K ⊗̂A,K ⊗̂B)→HL∗(K ⊗̂A,K ⊗̂B).

Proof

The assertion follows immediately from the Theorem 25, Remark 30, the above

Proposition 51, and standard arguments following [16]. �

REMARK 53

The bivariant Chern–Connes type character chbiv∗ constructed above obviously

differs from the one described in Section 3 (also denoted by chbiv∗ ), which was

HP∗-valued on the category of m-algebras. Restricted to the category of separa-

ble C∗-algebras, our character chbiv∗ agrees with Puschnigg’s chP∗ up to a natural

isomorphism, which we encountered in Section 3.1. This follows from the unique

characterization of the bivariant Chern–Connes character on the category of sep-

arable C∗-algebras (see Theorem 21) and the C∗-stability of bivariant HL∗ on

the category of separable C∗-algebras (see [59, Theorem 5.14(c)]), which pro-

vides the natural identification HL∗(K ⊗̂A,K ⊗̂B) ∼= HL∗(A,B). The following

commutative diagram illustrates the situation:
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HL∗(K ⊗̂A,K ⊗̂B)

∼=

KK∗(A,B)∼= kk∗(A,B)

chbiv
∗

chP
∗

HL∗(A,K ⊗̂B)

HL∗(A,B)

∼=

THEOREM 54

Let A∼= lim←−n
An be a separable and nuclear σ-C∗-algebra. Then there is a natural

dual Chern–Connes character homomorphism ch∗(A) := chbiv∗ (A,C) : K∗(A) →
HL∗(K ⊗̂A), which factorizes as

K∗(A)
ch∗(A)

HL∗(K ⊗̂A)

lim−→n
HL∗(An)

(8)

Proof

Putting B = C in the above Theorem 52, we get a natural homomorphism

ch∗(A) : K∗(A)→ HL∗(K ⊗̂A,K). Since the corner embedding A→K ⊗̂A is an

HL-equivalence for any C∗-algebra A (see [50, Theorem 6.25]), there is a natural

isomorphism HL∗(K ⊗̂A,K) ∼= HL∗(K ⊗̂A,C) = HL∗(K ⊗̂A), giving rise to the

natural homomorphism ch∗(A) :K∗(A)→HL∗(K ⊗̂A), which is the dual Chern–

Connes character.

Using the projection homomorphisms pn : A → An, one obtains directed

systems of abelian groups {K∗(An), p
∗
n} and {HL∗(K ⊗̂An), p

∗
n} with canoni-

cal homomorphisms lim−→n
K∗(An)→K∗(A) and lim−→n

HL∗(K ⊗̂An)→HL∗(K ⊗̂A).

The naturality of the map ch∗ produces the following commutative diagram:

K∗(A)
ch∗(A)

HL∗(K ⊗̂A)

lim−→n
K∗(An)

lim−→n
ch∗(An)

lim−→n
HL∗(K ⊗̂An)

Now the desired factorization is obtained by observing that lim−→n
HL∗(K ⊗̂An)∼=

lim−→n
HL∗(An) and that the left vertical arrow is an isomorphism, since A is a

nuclear and separable σ-C∗-algebra (see Corollary 38). �

REMARK 55

If, in addition, A is stable, that is, A∼= K ⊗̂A, then obviously one can identify
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HL∗(K ⊗̂A)∼=HL∗(A) in the above diagram (8). All the twisted continuous trace

σ-C∗-algebras CT(X,P ) that we encountered before are stable.

PROPOSITION 56

Let A ∼= lim←−n
An be a separable and nuclear σ-C∗-algebra, such that for all n

the dual Chern–Connes character K∗(An)→HL∗(K ⊗̂An)∼=HL∗(An) is an iso-

morphism after tensoring with the complex numbers. Then the map induced by

ch∗(A) (see (8)),

K∗(A)∼= lim−→n
K∗(An)→ lim−→n

HL∗(K ⊗̂An)∼= lim−→n
HL∗(An),

is an isomorphism after tensoring with the complex numbers.

Proof

One simply needs to observe that tensoring with the complex numbers commutes

with inductive limits in abelian groups. �

REMARK 57

For σ-C∗-algebras of the form CT(X,P ) = lim←−n
CT(Xn, Pn), which we have seen

before, the Chern–Connes character from K -theory to local cyclic homology

K∗
(
CT(Xn, Pn)

)
→HL∗

(
CT(Xn, Pn)

)
becomes an isomorphism after tensoring with the complex numbers for all n (see

Theorem 20). However, it does not automatically induce an isomorphism between

their inverse limits as tensoring with the complex numbers does not commute

with inverse limits.

In the rest of the paper we discuss a rather general case, where the hypotheses

of the above Proposition 56 are satisfied.

EXAMPLE 58

Recall that there is an associative cup–cap product in Kasparov’s KK-theory [40]

given by

KK0(A1,B1 ⊗̂D)⊗D KK0(D ⊗̂A2,B2)→KK0(A1 ⊗̂A2,B1 ⊗̂B2),

which is functorial in each variable. Connes suggested a notion of Poincaré duality

in noncommutative geometry by using the above product (see [14]). If A,B are

two separable C∗-algebras, then (A,B) is called a Poincaré dual pair (PD pair)

if there are elements α ∈KK0(A ⊗̂B,C), β ∈KK0(C,A ⊗̂B), such that

β ⊗A α= 1B ∈KK0(B,B) and β ⊗B α= 1A ∈KK0(A,A).

They induce isomorphisms between the K -theory of A and the K -homology of

B, and vice versa as follows:

K∗(A)∼=KK∗(C,A) → KK∗(B,C)∼=K∗(B),

x �→ x⊗A α,
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whose inverse is given by the map

K∗(B)∼=KK∗(B,C) → KK∗(C,A)∼=K∗(A),

y �→ β ⊗B y.

Thanks to the multiplicativity of the bivariant Chern–Connes character, the ele-

ment chbiv∗ (α), chbiv∗ (β) induces similar isomorphisms between the HL∗(A) and

HL∗(B), and vice versa. If (A,B) is a PD pair, then Puschnigg’s bivariant Chern–

Connes character induces a commutative diagram

K∗(A)
∼=

ch∗

K∗(B)

ch∗

HL∗(A)
∼=

HL∗(B)

where the horizontal arrows are the Poincaré duality isomorphisms as described

above. For some examples of physical PD pairs we refer the readers to [51],

[10]. Therefore, if A ∼= lim←−n
An, B ∼= lim←−n

Bn are separable and nuclear σ-C∗-

algebras such that each (An,Bn) is a PD pair and ch∗(Bn) :K∗(Bn)→HL∗(Bn)

is an isomorphism after tensoring with the complex numbers for all n, then the

hypotheses of Proposition 56 are satisfied. We know that if each Bn belongs to

the UCT class, then ch∗(Bn) is an isomorphism after tensoring with the complex

numbers (see [50, Theorem 7.7]).

REMARK 59

The task of constructing a bivariant Chern–Connes type character on the cate-

gory of pro C∗-algebras is a bit tricky. One can construct a bivariant K -theory

with the desired properties, but the extension of bivariant local cyclic homology

to pro C∗-algebras is somewhat problematic. Even if one could define it using the

X -complex formalism, it may not satisfy continuous homotopy invariance. One

possibility is to localize the triangulated category Ho(Cloc
• ) (see Section 5.3) fur-

ther along the evaluation maps A[0,1]→A for every pro C∗-algebra A in order

to enforce continuous homotopy invariance.
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