
On the eigenfunctions of the complex
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Abstract Starting from the 1-dimensional complex-valued Ornstein–Uhlenbeck

process, we present two natural ways to obtain the associated eigenfunctions of the 2-

dimensional normal Ornstein–Uhlenbeck operator in the complex Hilbert space L2
C
(μ).

We call the eigenfunctions Hermite–Laguerre–Itô polynomials. In addition, the Mehler

summation formula for the complex process is shown.

1. Introduction

There is abundant literature in stochastic analysis concerning the Hermite poly-

nomials and the 1-dimensional real-valued Ornstein–Uhlenbeck process (see [11],

[15], [20], and references therein),

dXt =−bXt dt+
√
2σ2 dBt.

If the processes Xt, Bt, and the coefficient b are all complex valued, what new

findings can we get? Or, say, what is the meaning of the 1-dimensional complex-

valued Ornstein–Uhlenbeck process

(1.1) dZt =−αZt dt+
√
2σ2 dζt,

where Zt =X1(t)+iX2(t), α= aeiθ = r+iΩ, and ζt =B1(t)+iB2(t) is a complex

Brownian motion?

First, it is clear that this complex-valued process can be represented by the

2-dimensional nonsymmetric Ornstein–Uhlenbeck process[
dX1(t)

dX2(t)

]
=

[
−a cosθ a sinθ

−a sinθ −a cosθ

][
X1(t)

X2(t)

]
dt+

√
2σ2

[
dB1(t)

dB2(t)

]
(1.2)

=

[
−r Ω

−Ω −r

][
X1(t)

X2(t)

]
dt+

√
2σ2

[
dB1(t)

dB2(t)

]
.

From the perspective of physics, (1.2) describes the motion of a charged test par-

ticle in the presence of a constant magnetic field and is also called the A-Langevin
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equation in [1, pp. 181–186]. For the process (1.2), its generator is

(1.3) A= (−rx+Ωy)
∂

∂x
+ (−Ωx− ry)

∂

∂y
+ σ2

( ∂2

∂x2
+

∂2

∂y2

)
,

and its stationary distribution is

(1.4) dμ=
r

2πσ2
exp

{
−r(x2 + y2)

2σ2

}
dxdy.

In the Hilbert space L2(μ), the adjoint of the operator A is

(1.5) A∗ = (−rx−Ωy)
∂

∂x
− (−Ωx+ ry)

∂

∂y
+ σ2

( ∂2

∂x2
+

∂2

∂y2

)
.

Thus, A is a nonsymmetric operator, and it satisfies A∗A=AA∗ formally (e.g.,

it is valid for any polynomial), and in fact, one can show that A is a normal

operator (see [4]).

Now we address the first question, what are the spectrum and the associated

eigenfunctions of the operator A?

The spectrum and the associated eigenfunctions of the symmetric Ornstein–

Uhlenbeck operator (i.e., Hermite polynomials) are well known (see [11]). With-

out the restriction of symmetry, the spectrum of any finite-dimensional Ornstein–

Uhlenbeck operator in Lp(μ) for 1< p<∞ is shown explicitly in [16]. In detail,

let L =
∑N

i,j=1 qij
∂2

∂xi ∂xj
+

∑N
i,j=1 bijxj

∂
∂xi

be a possibly degenerate Ornstein–

Uhlenbeck operator, and assume that the associated Markov semigroup has an

invariant measure μ; then the spectrum of L is

(1.6) σ(L) =
{
γ =

r∑
j=1

njλj : nj ∈N

}
,

where λ1, . . . , λr are the distinct eigenvalues of the matrix (bij) (see [16, Theo-

rem 3.1]). This conclusion has been extended to the infinite-dimensional case in

some papers such as [3], [10], [17], and [23]. The spectrum of a hyperbounded

Markovian semigroup whose generator is a normal operator on L2-space is dis-

cussed in [12]. However, for the nonsymmetric Ornstein–Uhlenbeck operator, the

associated eigenfunctions are still unknown up until now.

It follows from (1.6) that the spectrum set of the operator A in (1.3) in

Hilbert space L2(μ) is

(1.7) σ(A) =
{
−(m+ n)r+ i(m− n)Ω, m,n= 0,1,2, . . .

}
.

In the present paper, we will show that eigenfunctions of the operator A are

expressed by the Hermite–Laguerre–Itô polynomials (see Definition 2.4 and Theo-

rem 2.2), which are called the Hermite polynomials of complex variables by Itô [8].

Itô used these polynomials to characterize the complex multiple Itô–Wiener inte-

gral; that is, his aim was to show a relation similar to the well-known one between

the real multiple Itô–Wiener integral and the Hermite polynomials (see [7], [11]).

His basic idea was that the Hermite polynomials of complex variables are the coef-

ficients in the expansion of the generating function exp(−tt+ tz + tz) (see [8]).



Eigenfunctions of complex Ornstein–Uhlenbeck operators 579

This is the complex-valued version of Hermite polynomials as the coefficients in

the expansion of the generating function exp(−t2 + 2xt).

The main purposes of this paper are presenting two different ways to obtain

the Hermite–Laguerre–Itô polynomials as eigenfunctions of the operator A. One

way is that we use the direct and elementary computation by means of the nor-

mality of A in L2(μ). The other way is that by defining the complex variable

creation operator and annihilation operator in the complex Hilbert space L2
C
(μ),

we verify that Hermite–Laguerre–Itô polynomials can be generated iteratively by

the complex creation operator acting on the constant 1 (see Definition 2.4). Those

approaches give us some deeper and richer understanding of the 1-dimensional

complex-valued Ornstein–Uhlenbeck processes, the Wick product of the symmet-

ric complex Gaussian variable (see Remark 1), and the nonsymmetric stochastic

analysis (see [2], [12], [22]). The concrete calculations are given in Section 2.

In Section 3, as applications of the above computations, we obtain the Mehler

transform formula and the Mehler summation formula for the complex process

(1.1) (or the process (1.2)). In Section 4, by means of a decomposition to the

summation of series of up to the 2-dimensional Ornstein–Uhlenbeck operator,

we show how to calculate the eigenfunctions of a type of high-dimensional non-

symmetric Ornstein–Uhlenbeck operator. Finally, some tedious computations are

listed in the Appendix.

2. The Hermite–Laguerre–Itô polynomials on C (or, say, R2)

In this section, we present two ways to imply the Hermite–Laguerre–Itô polyno-

mials on C. One is by means of the normality of the operator, and the other is

by means of the creation operator and annihilation operator (see [15]).

2.1. From the perspective of the normal operator
Let ρ= 2σ2

r and i =
√
−1. Denote by Hn(x,ρ) the Hermite polynomials. Let

(2.1) As :=
1

2
(A+A∗), J :=

1

2i
(A−A∗).

Then we have

(2.2) As =
(
σ2 ∂2

∂x2
− rx

∂

∂x

)
+
(
σ2 ∂2

∂y2
− ry

∂

∂y

)
, J =−iΩ

(
y
∂

∂x
−x

∂

∂y

)
.

It is well known that {Hk(x,
ρ
2 )Hm+n−k(y,

ρ
2 ),0≤ k ≤m+ n} is an orthogo-

nal basis of Sm+n, the characteristic subspace associated with the eigenvalue

−(m + n)r of As. Note that AA∗ = A∗A is valid for any polynomial. Thus

AsJ = JAs. By restriction of As and J to the finite-dimensional space Sm+n,

the self-adjoint operators As and J have common eigenfunctions which make

up an orthogonal basis of Sm+n. It follows that each common eigenfunction is a

linear combination of Hk(x,
ρ
2 )Hm+n−k(y,

ρ
2 ), 0≤ k ≤m+ n. Then we have the

following.
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PROPOSITION 2.1

Let l = m + n with m,n ∈ N and �β = (β0, β1, β2, . . . , βl)
′, where βk ∈ C. If the

function Jm,n(x, y) =
∑l

k=0 βkHk(x,
ρ
2 )Hl−k(y,

ρ
2 ) satisfies

(2.3) J Jm,n(x, y) =−iλΩJm,n(x, y),

then the linear equation

(2.4) M(λ)�β = 0

holds, where M(λ) is an ((l+ 1)× (l+ 1)) tridiagonal matrix

(2.5) M(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−λ 1 0 0 . . . 0 0 0

−l −λ 2 0 . . . 0 0 0

0 1− l −λ 3 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . −2 −λ l

0 0 0 0 . . . 0 −1 −λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

When λ=−(m− n)i, (2.4) has a nonzero solution, and the solution �β satisfies

(2.6)
l∑

k=0

βk cos
k θ sinl−k θ = ei(m−n)θc,

where c is a constant.

THEOREM 2.2

The eigenfunction associated with the eigenvalue −r(m+ n)− i(m− n)Ω of the

OU operator A is

Jm,n(x, y) =

{
(−1)nn!(x+ iy)m−nLm−n

n (x2 + y2, ρ), m≥ n,

(−1)mm!(x− iy)n−mLn−m
m (x2 + y2, ρ), m < n,

where Lα
n(x,ρ) is the Laguerre polynomial (see Definition A.4 or [5], [11], [13],

[24]).

Proofs of Proposition 2.1 and Theorem 2.2 are presented in Section A.2.

2.2. From the perspective of the creation operator and annihilation operator
An elegant method to deduce the Hermite polynomials is given by means of

the creation operator and annihilation operator (see [15]). Let x ∈ R and dγ =
1√
2πσ

e−x2/2σ dx. The operator ∂ is the operator of differentiation (or, say, the

annihilation operator):

∂ϕ(x) = ϕ′(x), ϕ(x) ∈C1(R).

Its adjoint operator in the Hilbert space L2(γ) is

∂∗ϕ(x) =−ϕ′(x) +
x

σ
ϕ(x).
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Then the Hermite polynomials are defined as the sequence†

H0(x) = 1,

Hn(x) = σ ∂∗Hn−1(x) = σn(∂∗)n1.

Let z = x+ iy and dμ= 1
πρe

− x2+y2

ρ dxdy. We consider the complex Hilbert

space L2
C
(μ) associated to the inner product

〈f, g〉=
∫
R2

f ḡμ(dxdy).

Set C1
0 (R

2) as the collection of C1-functions with compact support. We denote by

∂, ∂̄ the operators of differentiation (or, say, the complex annihilation operator)

(∂φ)(z) =
∂

∂z
φ(z) =

1

2

( ∂

∂x
− i

∂

∂y

)
φ(x, y),

(∂̄φ)(z) =
∂

∂z̄
φ(z) =

1

2

( ∂

∂x
+ i

∂

∂y

)
φ(x, y).

By [15, Lemma 2.1], the direct calculation yields the adjoint of the operators ∂, ∂̄

as follows.

LEMMA 2.3 (COMPLEX CREATION OPERATOR)

Denote by ∂∗, ∂̄∗ the operator defined, for φ ∈C1
0 (R

2), by

(∂∗φ)(z) =− ∂

∂z̄
φ(z) +

z

ρ
φ(z), (∂̄∗φ)(z) =− ∂

∂z
φ(z) +

z̄

ρ
φ(z).

Then if ∂φ,∂∗ψ, ∂̄φ, and ∂̄∗ψ ∈ L2
C
(μ) we have

(2.7) 〈∂φ,ψ〉= 〈φ,∂∗ψ〉, 〈∂̄φ,ψ〉= 〈φ, ∂̄∗ψ〉.

Clearly, ∂ commutes with ∂̄ and ∂∗ with ∂̄∗.

DEFINITION 2.4 (DEFINITION OF THE HERMITE–LAGUERRE–ITÔ POLYNOMIALS)

Let m,n ∈N. We define the sequence on C (or, say, R2):

J0,0(z, ρ) = 1,
(2.8)

Jm,n(z, ρ) = ρm+n(∂∗)m(∂̄∗)n1.

We call it the Hermite–Laguerre–Itô polynomials in the present paper.

By induction on m,n, we see that Jm,n is a polynomial of degree m+ n and its

term of highest degree is zmz̄n. The first few Hermite–Laguerre–Itô polynomials

are

Jm,0 = zm, J0,n = z̄n,

J1,1 = |z|2 − ρ, J2,1 = z
(
|z|2 − 2ρ

)
, J3,1 = z2

(
|z|2 − 3ρ

)
, . . .

† In [15], the variance is σ = 1.
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J1,2 = z̄
(
|z|2 − 2ρ

)
, J2,2 = |z|4 − 4ρ|z|2 + 2ρ2,

J3,2 = z
(
|z|4 − 6ρ|z|2 + 6ρ2

)
, . . .

. . .

In general, the following holds.

THEOREM 2.5

The Hermite–Laguerre–Itô polynomials satisfy

(2.9) Jm,n(z, ρ) =
m∧n∑
r=0

(−1)rr!

(
m

r

)(
n

r

)
zm−r z̄n−rρr.

The proof of Theorem 2.5 is presented in Section A.3.

REMARK 1

If ρ= 1, then Jm,n(z,1) is called the Hermite polynomial of complex variables by

Itô, who has shown that a close relation exists between the polynomials and the

complex multiple Itô–Wiener integral (see [8]); the reader can also refer to Sec-

tion A.4. If ζ is a symmetric complex Gaussian variable, by calculating Feynman

diagrams (see [9, p. 131]), the Wick product is represented by

: ζmζ̄n := Jm,n

(
ζ,E|ζ|2

)
.

From the above power series expression, we get that

Jm,n(z, ρ) =

{
zm−n

∑n
r=0(−1)rr!

(
m
r

)(
n
r

)
|z|2(n−r)ρr, m≥ n,

z̄n−m
∑m

r=0(−1)rr!
(
m
r

)(
n
r

)
|z|2(m−r)ρr, m < n,

(2.10)

=

{
zm−n(−1)nn!Lm−n

n (|z|2, ρ), m≥ n,

z̄n−m(−1)mm!Ln−m
m (|z|2, ρ), m < n.

Thus, we name Jm,n(z, ρ) as the Hermite–Laguerre–Itô polynomial in the present

paper.

THEOREM 2.6

The Hermite–Laguerre–Itô polynomials satisfy the following.

(1) Orthonormal basis: {(m!n!ρm+n)−
1
2 Jm,n(z, ρ) :m,n ∈N} is an orthonor-

mal basis of L2
C
(μ).

(2) Eigenfunctions: Let c ∈R; then[
(1 + ic)z

∂

∂z
+ (1− ic)z̄

∂

∂z̄
− 2ρ

∂2

∂z ∂z̄

]
Jm,n(z, ρ)

(2.11)
=

[
m+ n+ i(m− n)c

]
Jm,n(z, ρ).



Eigenfunctions of complex Ornstein–Uhlenbeck operators 583

(3) Generating function: Let λ ∈C; then

(2.12) exp
{
λz̄ + λ̄z − ρ|λ|2

}
=

∞∑
m=0

∞∑
n=0

λ̄mλn

m!n!
Jm,n(z, ρ).

The proof of Theorem 2.6 is presented in Section A.3.

Let ρ = 2σ2

r , c = Ω
r . It is well known that ∂

∂z = 1
2 (

∂
∂x − i ∂

∂y ),
∂
∂z̄ = 1

2 (
∂
∂x +

i ∂
∂y ),4

∂2

∂z ∂z̄ = ∂2

∂x2 + ∂2

∂y2 ; thus

A = (−rx+Ωy)
∂

∂x
+ (−Ωx− ry)

∂

∂y
+ σ2

( ∂2

∂x2
+

∂2

∂y2

)
(2.13)

= −r
[
(1 + ic)z

∂

∂z
+ (1− ic)z̄

∂

∂z̄
− 2ρ

∂2

∂z ∂z̄

]
.

Then it follows from Theorem 2.6 that we have the following theorem.

THEOREM 2.7

Let ρ= 2σ2

r . The Hermite–Laguerre–Itô polynomials Jm,n(z, ρ) are the eigenfunc-

tions of 2-dimensional normal Ornstein–Uhlenbeck operators A on L2
C
(μ) with

respect to the eigenvalue −(m+ n)r − i(m− n)Ω, m,n≥ 0. And the operator A

on the Hilbert space L2
C
(μ) has a pure point spectrum.†

These eigenfunctions Jm,n(z, ρ) can be employed for, say, orthogonal decompo-

sition like the Hermite polynomials.

COROLLARY 2.8

Every function f in L2
C
(μ) has a unique series expression

f(x, y) =

∞∑
m=0

∞∑
n=0

am,n
Jm,n(z, ρ)

m!n!ρm+n
,

where the coefficients am,n are given by am,n = 〈f,Jm,n〉. Moreover, we have

‖f‖2 =
∞∑

m=0

∞∑
n=0

|am,n|2
m!n!ρm+n

.

The following are two examples:

zmz̄n =

m∧n∑
k=0

(
m

k

)(
n

k

)
k!ρkJm−k,n−k(z, ρ),(2.14)

Hk

(
x,

ρ

2

)
Hl−k

(
y,

ρ

2

)
=

il−k

2l

l∑
m=0

∑
u+v=m

(
k

u

)(
l− k

v

)
(−1)vJm,l−m(z, ρ).

† The conclusion of pure point spectrum has been shown in [16] in a different way.



584 Yong Chen and Yong Liu

Clearly, the last equation displayed is equivalent to

Jm,l−m(z, ρ) =
l∑

k=0

il−k
∑

u+v=k

(
m

u

)(
l−m

v

)
(−1)l−m−vHk

(
x,

ρ

2

)
Hl−k

(
y,

ρ

2

)
,

which is exactly the expression of Jm,n given in Proposition 2.1.

3. The normal Ornstein–Uhlenbeck semigroup and its Mehler summation
formula

As an application to Section 2, we will show the Mehler summation formula for

the 2-dimensional normal Ornstein–Uhlenbeck semigroup in this section. This

is an analogue of the Mehler summation formula for the real 1-dimensional

Ornstein–Uhlenbeck process (see [9, p. 51]); that is, if γ(dy) = 1√
2πρ

e−
y2

2ρ dy, we

have

Muϕ(x) =

∫
R

ϕ(y)
1√

1− u2
exp

{
−u2y2 + u2x2 − 2uxy

2ρ(1− u2)

}
γ(dy),

∞∑
n=0

un

n!ρn
Hn(x,ρ)Hn(y, ρ) =

1√
1− u2

exp
{
−u2y2 + u2x2 − 2uxy

2ρ(1− u2)

}
,

where the sum converges pointwise and in L2(γ)⊗ L2(γ), and Mu is known as

the Mehler transform.

Now let x, y, z ∈R
2. A is the same as in (2.2). The operator Pt = etA, t≥ 0,

forms an operator semigroup known as the Ornstein–Uhlenbeck semigroup. It is

well known that the semigroup Pt has the following explicit representation (see

[16]), due to Kolmogorov:

(3.1) Ptϕ(x) =
1

πρ(1− e−2rt)

∫
R2

e
− 1

ρ(1−e−2rt)
|y|2

ϕ(etBx− y)dy,

where B =
[ −r Ω
−Ω −r

]
. Clearly, etB = e−rt

[
cosΩt sinΩt
− sinΩt cosΩt

]
:= e−rtB0(t). Thus,

a change of variable yields that the normal Mehler formula is

Ptϕ(x) =

∫
R2

ϕ
(
e−rtB0(t)x+

√
1− e−2rtz

)
μ(dz)

=

∫
R2

ϕ
(
B0(t)x cosθ+ z sinθ

)
μ(dz) = P s

t ϕ
(
B0(t)x

)
,

where μ is as in (1.4), cosθ = e−rt with θ ∈ (0, π2 ), and P s
t is the 2-dimensional

symmetric Ornstein–Uhlenbeck semigroup associated with the generator As. The

above equation presents a relation between the symmetric and nonsymmetric

(normal) Ornstein–Uhlenbeck semigroups.

Denote u= e−rt, B̃0(u) =B0(−1
r logu). A change of variables in (3.1) yields

Muϕ(x) = Ptϕ(x)
(3.2)

=

∫
R2

ϕ(y)
1

1− u2
exp

{
−u2|y|2 + u2|x|2 − 2u(B̃0(u)x, y)

ρ(1− u2)

}
μ(dy),

where (x, y) = x′y.
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Equations (2.11) and (2.13) imply that the Mehler transform is characterized

by

MuJm,n = um+n+i(m−n)cJm,n.

Since the collection {Jm,n} is an orthogonal basis in L2
C
(μ) with ‖Jm,n‖2 =

m!n!ρm+n, this means that we also have

Muϕ(x) =

∫
R2

∞∑
m=0

∞∑
n=0

um+n+i(m−n)c

m!n!ρm+n
Jm,n(x)Jn,m(y)ϕ(y)μ(dy),

(3.3)
ϕ ∈ L2

C(μ),

with the sum
∑∑

um+n+i(m−n)c

m!n!ρm+n Jm,n(x)Jn,m(y) converging in L2
C
(μ)⊗L2

C
(μ) by

the Riesz–Fischer theorem. Since the kernels in (3.2) and (3.3) have to coincide,

we have the following.

THEOREM 3.1 (MEHLER SUMMATION FORMULA)

We have
∞∑

m=0

∞∑
n=0

um+n+i(m−n)c

m!n!ρm+n
Jm,n(x)Jn,m(y)

=
1

1− u2
exp

{
−u2|y|2 + u2|x|2 − 2u(B̃0(u)x, y)

ρ(1− u2)

}
,

where the sum converges pointwise and in L2
C
(μ)⊗L2

C
(μ).

The pointwise convergence can be showed by the same argument as in the proof

of (2.12).

4. The processes are decomposed into some 1-dimensional complex-valued
processes

In this section, suppose that C is a normal n-by-n matrix and the Ornstein–

Uhlenbeck processes satisfy

d �X(t) = C �X(t)dt+
√
2σ2 d �B(t).

Its generator is

(4.1) A= σ2Δ�x + (C�x) · ∇�x.

Clearly, it is an n-dimensional normal Ornstein–Uhlenbeck operator.

As in [14] and [16], we do a linear transform according to the canonical form

of the normal matrix C. Since C is normal, there is a real orthogonal matrix Q

such that

Q′CQ= diag{A1,A2, . . . ,Al},
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where each Aj is either a real 1-by-1 matrix or a real 2-by-2 matrix of the form

Aj =

[
αj βj

−βj αj

]
,

where αj ± iβj , βj �= 0, is a pair of conjugate complex eigenvalues of C (see [6,

p. 105]). That is to say, its canonical form is a block diagonal matrix. If C is not

symmetric, then there is at least one Aj which is a 2-by-2 matrix. Let �Y (t) =

Q′ �Xt, �y =Q′�x; then �Y (t) satisfies

d�Y (t) = diag{A1,A2, . . . ,Al}�Y (t)dt+
√
2σ2 d �B(t).

Its generator is

Ã= σ2Δ�y +
(
diag{A1,A2, . . . ,Al}�y

)
· ∇�y.

The eigenfunctions of the 2-dimensional normal operator (1.3) yield the

eigenfunctions of the operator Ã (see [19, p. 51]). Note that the eigenfunctions

of the operators A and Ã are the same up to an orthogonal transform (i.e.,

Af(�x) = Ãg(�y) when f(�x) = g(Q′�x)); thus we can get the eigenfunctions of the

operator A. That is to say, we have found a way to calculate all the eigen-

functions of the normal Ornstein–Uhlenbeck operator (4.1). The following is a

concrete example.

EXAMPLE 1

The following equation describes the coupling diffusion on the lattice of the circle:

d �X(t) = C �X(t)dt− r �X(t)dt+
√
2σ2 d �B(t),

where C is an n-by-n (n≥ 3) tridiagonal matrix

C=

⎡
⎢⎢⎢⎢⎢⎣

−(a+ b) a 0 · · · b

b −(a+ b) a · · · 0
...

...
...

...
...

0 0 · · · −(a+ b) a

a 0 · · · b −(a+ b)

⎤
⎥⎥⎥⎥⎥⎦ .

Denote by ωj = exp(i 2jπn ) the jth unit root of 1, and ω∗
j is the complex conjugate

of ωj . Clearly, the eigenvectors of C are

�ϕj =
1√
n
(1, ωj , ω

2
j , . . . , ω

n−1
j )′, j = 0,1,2, . . . , n− 1,

and C is a normal matrix. Let Lk = span{Re(�ϕk), Im(�ϕk)}, k = 0,1,2, . . . , [n2 ], and

denote by PLk
the project operator. Then there is a resolution of the identity

Id =
∑[n2 ]

k=0PLk
. Thus

�X(t) =

[n2 ]∑
k=0

PLk
�X(t) =

[n2 ]∑
k=0

(
Yk(t)Re(�ϕk) +Zk(t) Im(�ϕk)

)
,
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where (Yk(t),Zk(t)) satisfies the equation[
dYk(t)

dZk(t)

]
=Ak

[
Yk(t)

Zk(t)

]
dt+

√
2σ2

[
dB1(t)

dB2(t)

]

with

Ak =

[
−r+ (a+ b)(cos 2kπ

n − 1) (a− b) sin 2kπ
n

(b− a) sin 2kπ
n −r+ (a+ b)(cos 2kπ

n − 1)

]
.

Appendix

A.1 Hermite polynomials and Laguerre polynomials
To be self-contained, we list the well-known results of the Hermite polynomials

and the Laguerre polynomials, for which the reader can refer to the references

(see [5], [11], [13], [21], [24]).

DEFINITION A.1

The Hermite polynomials are defined by the formula

Hn(x,ρ) = (−ρ)nex
2/2ρ dn

dxn
e−x2/2ρ, n= 1,2, . . . .

Clearly, it has power series expression,

Hn(x,ρ) =

[n/2]∑
k=0

(
n

2k

)
(2k− 1)!!xn−k(−ρ)k.

PROPOSITION A.2

The Hermite polynomials Hn(x,ρ) satisfy

(1) partial derivatives: d
dxHn(x,ρ) = nHn−1(x,ρ),

(2) recursion formula: Hn+1(x,ρ) = xHn(x,ρ)− nρHn−1(x,ρ),

(3) orthogonality: 1√
2πρ

∫ +∞
−∞ e−

x2

2ρ Hn(x,ρ)Hm(x,ρ)dx= n!ρnδnm,

(4) integral representation:

(A.2) Hn(x,ρ) =
(−i)n√
2πρ

∫ ∞

−∞
tne−

1
2ρ (t−ix)2 dt, n= 0,1,2, . . . .

DEFINITION A.3 (BESSEL’S INTEGRALS)

The definition of the Bessel function of the first kind, for integer values of n, is

possible using an integral representation

Jn(x) =
1

2π

∫ π

−π

e−i(nτ−x sin τ) dτ.

By the periodicity of the triangle function, we have that ∀α ∈R,

(A.3) Jn(x) =
e−inα

2π

∫ π

−π

ei[x sin(α−θ)+nθ] dθ.
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DEFINITION A.4

The Laguerre polynomials Lα
n(x,ρ) are defined by the formula (see [13, p. 76])

(A.4) Lα
n(x,ρ) =

ρn

n!
x−αe

x
ρ
dn

dxn
(e−

x
ρ xn+α), n= 1,2, . . . ,

for arbitrary real α >−1. Clearly, it has power series expression

(A.5) Lα
n(x,ρ) =

(−1)n

n!

n∑
r=0

(−1)rr!

(
n+ α

r

)(
n

r

)
xn−rρr.

PROPOSITION A.5

The Laguerre polynomials Lα
n(x,ρ) satisfy

(1) partial derivatives: ∂
∂xL

α
n(x,ρ) =−Lα+1

n−1(x,ρ);

(2) recursion formula:

Lα
n(x,ρ) = Lα+1

n (x,ρ)− ρLα+1
n−1(x,ρ),(A.6)

x
∂

∂x
Lα
n(x,ρ) = nLα

n(x,ρ)− (n+ α)ρLα
n−1(x,ρ);(A.7)

(3) orthogonality:
∫ +∞
0

xαe−
x
ρ Lα

m(x,ρ)Lα
n(x,ρ)dx = ρm+n+α+1 Γ(α+n+1)

n! ×
δnm;

(4) integral representation:

Lα
n(x,ρ) =

e
x
ρ x−α/2

n!ρ

∫ ∞

0

tn+
1
2αJα

(2
ρ

√
xt
)
e−

t
ρ dt,

(A.8)
α >−1, n= 0,1,2, . . . ,

where Jv(x) is the Bessel function of order v.

A.2 Proof of Theorem 2.2
For simplicity, we denote Hn(x,

ρ
2 ) by Hn(x) in this subsection.

Proof of Proposition 2.1

It follows from the recursion relation of Hermite polynomials (see Proposi-

tion A.2) that

i

Ω
J
[
Hk(x)Hl−k(y)

]
= yHl−k(y)

d

dx
Hk(x)− xHk(x)

d

dy
Hl−k(y)

= yHl−k(y)kHk−1(x)− xHk(x)(l− k)Hl−k−1(y)

= kHk−1(x)Hl−k+1(y)− (l− k)Hk+1(x)Hl−k−1(y).

Since i
ΩJ Jm,n(x, y) = λJm,n(x, y) and Jm,n(x, y) =

∑l
k=0 βkHk(x)Hl−k(y), we

obtain
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i

Ω
J
[ l∑
k=0

βkHk(x)Hl−k(y)
]

=

l∑
k=0

βk

[
kHk−1(x)Hl−k+1(y)− (l− k)Hk+1(x)Hl−k−1(y)

]

= λ

l∑
k=0

βkHk(x)Hl−k(y).

Let β−1 = βl+1 = 0. Since Hk(x)Hl−k(y) are orthogonal, we have

(A.9) −
(
l− (k− 1)

)
βk−1 − λβk + (k+ 1)βk+1 = 0.

It is exactly the linear equation (2.4).

It follows from [18, Problems 373, 399] that

det
{
M(λ)

}
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ i 0 0 . . . 0 0 0

li −λ 2i 0 . . . 0 0 0

0 (l− 1)i −λ 3i . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 2i −λ li

0 0 0 0 . . . 0 i −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

= il+1

∣∣∣∣∣∣∣∣∣∣∣∣∣

λi 1 0 0 . . . 0 0 0

l λi 2 0 . . . 0 0 0

0 l− 1 λi 3 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 2 λi l

0 0 0 0 . . . 0 1 λi

∣∣∣∣∣∣∣∣∣∣∣∣∣
= il+1

l∏
m=0

(λi + l− 2m)

= (−1)l+1
l∏

m=0

(
λ+ (2m− l)i

)
= (−1)l+1

l∏
m=0

(
λ+ (m− n)i

)
.

Thus when λ=−(m− n)i, (2.4) has a nonzero solution.†

Set I(θ) =
∑l

k=0 βk cos
k θ sinl−k θ. Differentiating I(θ) yields

I ′(θ) =
l∑

k=0

βk

[
−k cosk−1 θ sinl−k+1 θ+ (l− k) cosk+1 θ sinl−k−1 θ

]

= −
l∑

k=0

[
(k+ 1)βk+1 −

(
l− (k− 1)

)
βk−1

]
cosk θ sinl−k θ

= −λ

l∑
k=0

βk cos
k θ sinl−k θ (by (A.9))

= (m− n)iI(θ).

† In fact, we present an alternative way to get (1.7), that is, the spectrum of the operator A.
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Then we have that

(A.10)

l∑
k=0

βk cos
k θ sinl−k θ = ei(m−n)θc,

where c is a constant. �

Proof of Theorem 2.2

Without loss of generality, we choose c= 1 in (A.10). We need only to show the

case m≥ n:

Jm,n(x, y)

=

l∑
k=0

βkHk

(
x,

ρ

2

)
Hl−k

(
y,

ρ

2

)

=
l∑

k=0

βk

[ (−i)l

πρ

∫ ∫
R2

tksl−ke−
1
ρ (t−ix)2e−

1
ρ (s−iy)2 dtds

]
(by (A.2))

=
(−i)l

πρ
e

1
ρ (x

2+y2)

×
∫ ∞

0

e−
1
ρ r

2

rl+1 dr

∫ π

−π

[ l∑
k=0

βk cos
k θ sinl−k θ

]
e

2ir
ρ (x cosθ+y sin θ) dθ

(by polar coordinate transformation of t, s)

=
(−i)l

πρ
e

1
ρ (x

2+y2)

×
∫ ∞

0

e−
1
ρ r

2

rl+1 dr

∫ π

−π

e
2ir
ρ (x cosθ+y sin θ)+i(m−n)θ dθ (by (A.10))

=
(−i)l

πρ
e

1
ρ (x

2+y2)

∫ ∞

0

e−
1
ρ r

2

rl+1 dr

∫ π

−π

ei[
2r
ρ

√
x2+y2 sin(α−θ)+(m−n)θ] dθ

(by polar coordinate transformation of −y,x, i.e., −y+ ix=
√
x2 + y2eiα)

=
(−i)l

ρ
ei(m−n)α+ 1

ρ (x
2+y2)

×
∫ ∞

0

rlJm−n

(2r
ρ

√
(x2 + y2)

)
e−

1
ρ r

2

2r dr (by (A.3))

=
(−i)l

ρ
ei(m−n)α+ 1

ρ (x
2+y2)

×
∫ ∞

0

γn+m−n
2 Jm−n

(2
ρ

√
(x2 + y2)γ

)
e−

γ
ρ dγ (let γ = r2)

= (−i)lei(m−n)αn!(x2 + y2)
m−n

2 Lm−n
n (x2 + y2, ρ) (by (A.8))
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= (−1)nn!(x+ iy)m−nLm−n
n (x2 + y2, ρ)

(by polar coordinate transformation). �

A.3 Proof of Theorem 2.6

PROPOSITION A.6

We have

(A.11) ∂Jm,n =mJm−1,n, ∂̄Jm,n = nJm,n−1.

Proof

Since ∂φ= ∂̄φ̄, we have Jm,n(z, ρ) = Jn,m(z, ρ). Thus we need only to prove that

(A.12) ∂Jm,n =mJm−1,n.

When m = 0, both sides of (A.12) equal 0. We proceed by induction on m.

Assume that (A.12) is true for m < k. Then it follows from the commutation

relation ∂ ∂∗ − ∂∗ ∂ = 1
ρ that

∂Jk,n = ∂(ρ∂∗Jk−1,n) = ρ
[
∂∗ ∂Jk−1,n +

1

ρ
Jk−1,n

]
= ρ∂∗(k− 1)Jk−2,n + Jk−1,n

= (k− 1)Jk−1,n + Jk−1,n

= kJk−1,n. �

Proof of Theorem 2.5

We need only prove that

(A.13) Jm,n(z, ρ) = zm−n(−1)nn!Lm−n
n

(
|z|2, ρ

)
, m≥ n.

The case 0 = n≤m is obvious. We proceed by induction on m, n. Assume that

(A.13) is true for n≤ l, m≤ k.

Since ∂∗ commutes with ∂̄∗, by the definition (2.8), we have

Jm,l+1(z, ρ) = ρ ∂̄∗Jm,l(z, ρ) = z̄Jm,l(z, ρ)− ρ∂Jm,l(z, ρ)

= z̄Jm,l(z, ρ)−mρJm−1,l(z, ρ) (by (A.11))

= (−1)ll!zm−l−1
(
|z|2Lm−l

l

(
|z|2, ρ

)
−mρLm−l−1

l

(
|z|2, ρ

))
= (−1)l+1(l+ 1)!zm−l−1Lm−l−1

l+1

(
|z|2, ρ

)
(by (A.7)),

Jk+1,n(z, ρ) = ρ∂∗Jk,n(z, ρ) = zJk,n(z, ρ)− ρ ∂̄Jk,n(z, ρ)

= zJk,n(z, ρ)− nρJk,n−1(z, ρ) (by (A.11))

= (−1)nn!zk+1−n
(
Lk−n
n

(
|z|2, ρ

)
− ρLk−n+1

n−1

(
|z|2, ρ

))
= (−1)nn!zk+1−nLk+1−n

n

(
|z|2, ρ

)
(by (A.6)). �
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Proof of Theorem 2.6

Denote by 〈f, g〉 the inner product in the complex Hilbert space L2
C
(μ).

(1) If m− n≥ k− l≥ 0, then

〈Jm,n, Jk,l〉

= (−1)n+ln!l!

πρ

∫ ∫
R2

zm−nz̄k−lLm−n
n

(
|z|2, ρ

)
Lk−l
l

(
|z|2, ρ

)
e−

x2+y2

ρ dxdy

(let x= r cosθ, y = r sinθ and s= r2 = x2 + y2)

= (−1)n+l n!l!

2πρ

∫ 2π

0

ei[m−n−k+l]θ dθ

∫ ∞

0

s
m−n+k−l

2 e−
s
ρLm−n

n (s, ρ)Lk−l
l (s, ρ)ds

= (−1)n+ln!l!

ρ
δm−n,k−l

∫ ∞

0

sm−ne−
s
ρLm−n

n (s, ρ)Lm−n
l (s, ρ)ds

=m!n!ρm+nδnlδm−n,k−l (by Proposition A.5(3)).

The other cases are similar.

This proves that the collection {(m!n!ρm+n)−
1
2 Jm,n(z, ρ)} is an orthonomal

system. Therefore {Jm,n} are linearly independent. It follows from (2.14) that

they generate by linear combination the complex vector space of polynomials in

terms of z, z̄ (equal to in terms of x, y ∈R). It follows from [15, Lemma 2.4, p. 6]

that the polynomials in the coordinate functions are dense in L2
C
(μ). (Note that

the lemma is still valid for the complex polynomials and the complex Hilbert

space.) This proves that the orthonomal system is complete.

(2) Let α=m− n,u= |z|2. It follows from (A.11) that

(A.14)
∂2

∂z ∂z̄
Jm,n(z, ρ) =mnJm−1,n−1,

and if m>n, then[
(1 + ic)z

∂

∂z
+ (1− ic)z̄

∂

∂z̄
− 2ρ

∂2

∂z ∂z̄

]
Jm,n(z, ρ)

= (−1)nn!zm−n
[
(1 + ic)mLα−1

n − (1− ic)uLα+1
n−1 + 2ρmLα

n−1

]
(A.15)

= (−1)nn!zm−n

×
[(

2mρLα
n−1 +mLα−1

n + u
∂

∂u
Lα
n

)
+ i

(
mLα−1

n − u
∂

∂u
Lα
n

)
c
]
.

Note that

mLα−1
n − u

∂

∂u
Lα
n =mLα−1

n − nLα
n +mρLα

n−1

=m(Lα−1
n + ρLα

n−1)− nLα
n = (m− n)Lα

n,

and

2mρLα
n−1 +mLα−1

n + u
∂

∂u
Lα
n = 2mρLα

n−1 +mLα−1
n + nLα

n −mρLα
n−1

=m(ρLα
n−1 +Lα−1

n ) + nLα
n = (m+ n)Lα

n.
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Substituting the above two equations into (A.15) yields (2.11).†

(3) For the fixed λ ∈C, obviously the function w(z) = exp{λz̄+ λ̄z−ρ|λ|2} ∈
L2
C
(μ). Thus w(z) has a unique series expression

(A.16) w(z) =

∞∑
m=0

∞∑
n=0

am,n
Jm,n(z, ρ)

m!n!ρm+n
,

where the coefficients am,n are given by

am,n = 〈w,Jm,n〉= ρm+n
〈
w, (∂∗)m(∂̄∗)n1

〉
= ρm+n〈∂m ∂̄nw,1〉= λ̄mλnρm+n〈w,1〉

= λ̄mλnρm+n.

Substituting it into (A.16) yields (2.12). In addition, by the well-known classical

global uniform estimates given by Szegö [21], |Lα
n(x)| ≤

(α+1)n
n! e

x
2 , α,x ≥ 0, one

can show that the convergence is absolute and uniform on compact sets in (λ, z).

Thus the convergence is also pointwise, and the equality holds everywhere.†† �

A.4 Itô’s complex multiple Wiener integral
For the reader’s convenience, we summarize Itô’s work on the complex multiple

Wiener integral (see [8]). By analogy with the relation between the real multiple

Itô–Wiener integral and Hermite polynomials (see [7], [11])

(A.17) Hn(ξt) =

∫ t

0

∫ t

0

· · ·
∫ t

0

dξt1 · · · dξtn ,

where Hn denotes the nth Hermite polynomial with leading coefficient 1. K. Itô

obtained the relation between Hermite–Laguerre–Itô polynomials and the com-

plex multiple Itô–Wiener integral.

If (B1,B2) denotes 2-dimensional Brownian motion, we put ζt := B1(t) +

iB2(t) with i =
√
−1; ζt is called complex Brownian motion. Let ζ̄t be the complex

conjugate of ζt.

NOTATION 1

For m,n ∈N, denote Fm,n(ζt) =
(−1)
m!n!Jm,n(ζt,E|ζt|2).

By the formula for integration by parts (stochastic product rule) and Itô’s for-

mula, we have the following.

PROPOSITION A.7

Fm,n(ζt),m,n ∈N satisfy

(A.18) dFm,n(ζt) = Fm−1,n(ζt)dζt + Fm,n−1(ζt)dζ̄t.

† There is a direct way to prove (2.11) by using [8, Theorem 12(E)]. To be self-contained, here

we use the equalities of Laguerre polynomials.
†† K. Itô showed (2.12) by means of power series expansion (see [8]).
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By iteration, we have the following.

COROLLARY A.8

Fm,n(ζt) can be decomposed into the iterated Itô integrals of complex Brownian

motion as

(A.19) Fm,n(ζt) =
∑∫ t

0

∫ tm+n

0

· · ·
∫ t2

0

dCt1 dCt2 · · · dCtm+n ,

where 0 < t1 < t2 < · · · < tm+n < t, Ct = ζt or Ct = ζ̄t, and the sum is over all

the n-combinations of {1,2, . . . ,m+ n} such that Ct = ζ̄t.

Using the approximation by off-diagonal step functions (i.e., the analogue of the

multiple Itô–Wiener integral [11, Definition 9.6.5]),∫ t

0

∫ t

0

· · ·
∫ t

0

dζt1 · · · dζtm dζ̄tm+1 · · · dζ̄tm+n

=m!n!
∑∫ t

0

∫ tm+n

0

· · ·
∫ t2

0

dCt1 dCt2 · · · dCtm+n ,

which can be seen as a generalization of [11, Theorem 9.6.7] to complex Brownian

motion. Thus, we have the following.

COROLLARY A.9

Jm,n(ζt,E|ζt|2) is related to the complex multiple Itô–Wiener integral,

Jm,n

(
ζt,E|ζt|2

)
=

∫ t

0

∫ t

0

· · ·
∫ t

0

dζt1 · · · dζtm dζ̄tm+1 · · · dζ̄tm+n .
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[7] K. Itô, Multiple Wiener integral, J. Math. Soc. Japan 3 (1951), 157–169.

MR 0044064.

[8] , Complex multiple Wiener integral, Japan J. Math. 22 (1953), 63–86.

MR 0063609.

[9] S. Janson, Gaussian Hilbert Spaces, Cambridge Tracts Math. 129, Cambridge

Univ. Press, Cambridge, 2008. MR 1474726. DOI 10.1017/CBO9780511526169.

[10] R. V. Kozhan, L1-spectrum of Banach space valued Ornstein–Uhlenbeck

operators, Semigroup Forum 78 (2009), 547–553. MR 2511784.

DOI 10.1007/s00233-008-9088-y.

[11] H.-H. Kuo, Introduction to Stochastic Integration, Universitext, Springer, New

York, 2006. MR 2180429.

[12] S. Kusuoka and I. Shigekawa, Exponential convergence of Markovian

semigroups and their spectra on Lp-spaces, preprint, 2012.

[13] N. N. Lebedev, Special Functions and Their Applications, rev. ed., Dover, New

York, 1972. MR 0350075.

[14] A. Lunardi, On the Ornstein–Uhlenbeck operator in L2 spaces with respect to

invariant measures, Trans. Amer. Math. Soc. 349 (1997), no. 1, 155–169.

MR 1389786. DOI 10.1090/S0002-9947-97-01802-3.

[15] P. Malliavin, Stochasitc Analysis, Grund. Math. Wiss. 313, Springer, Berlin,

1997. MR 1450093.

[16] G. Metafune and D. Pallara, Spectrum of Ornstein–Uhlenbeck operators in Lp

spaces with respect to invariant measures, J. Funct. Anal. 196 (2002), 40–60.

MR 1941990. DOI 10.1006/jfan.2002.3978.
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