
Banach J. Math. Anal. 10 (2016), no. 2, 415–429

http://dx.doi.org/10.1215/17358787-3589331

ISSN: 1735-8787 (electronic)

http://projecteuclid.org/bjma

ON THE EXISTENCE OF UNIVERSAL SERIES BY THE
GENERALIZED WALSH SYSTEM

SERGO A. EPISKOPOSIAN

Communicated by J. A. Ball

Abstract. In this paper, we prove the following: let ω(t) be a continuous
function with ω(+0) = 0 and increasing in [0,∞). Then there exists a series of
the form

∞∑
k=1

ckψk(x) with

∞∑
k=1

c2kω
(
|ck|

)
<∞

with the following property: for each ε > 0 a weight function µ(x), 0 < µ(x) ≤
1, |{x ∈ [0, 1) : µ(x) 6= 1}| < ε can be constructed so that the series is uni-
versal in the weighted space L1

µ[0, 1) both with respect to rearrangements and
subseries.

1. Introduction and preliminaries

The first case of a universality was observed by Fekete [7] in 1914. He showed
that there exists a (formal) real power series

∞∑
n=1

anx
n, x ∈ [−1, 1],

that not only diverges at every point x 6= 0 but does so in the worst possible way.
Indeed, to every continuous function g(x) on [−1, 1] with g(0) = 0 there exists an
increasing sequence {nk} of positive integers such that Snk

(x) converges to g(x)
uniformly as k → ∞.

Fekete’s example of a universal power (or Taylor) series exhibits two aspects
of universality that are generally present. Apart from the first aspect of maximal

Copyright 2016 by the Tusi Mathematical Research Group.
Received Mar. 12, 2015; Accepted Jul. 22, 2015.
2010 Mathematics Subject Classification. Primary 42A65; Secondary 42A20, 42C10.
Keywords. generalized Walsh system, weighted space, universal series.

415

http://dx.doi.org/10.1215/17358787-3589331
http://projecteuclid.org/bjma


416 S. A. EPISKOPOSIAN

divergence, we have as a second aspect the existence of a single object, which, via
a usually countable process, allows us to approximate a maximal class of objects.
This suggested the name of universality.

Next, we need some definitions.

Definition 1.1. A functional series
∞∑
k=1

fk(x), fk(x) ∈ L1
µ[0, 1) (1.1)

is said to be universal in weighted spaces L1
µ[0, 1) with respect to rearrangements

if for any function f(x) ∈ L1
µ[0, 1) the members of (1.1) can be rearranged so that

the obtained series
∑∞

k=1 fσ(k)(x) converges to the function f(x) in the metric
L1
µ[0, 1); that is,

lim
n→∞

∫ 1

0

∣∣∣ n∑
k=1

fσ(k)(x)− f(x)
∣∣∣ · µ(x) dx = 0.

Definition 1.2. The series (1.1) is said to be universal in weighted spaces L1
µ[0, 1)

in the usual sense if for any function f(x) ∈ L1
µ[0, 1) there exists a growing

sequence of natural numbers nk such that the sequence of partial sums of order
nk of the series (1.1) converges to the function f(x) in the metric L1

µ[0, 1).

Definition 1.3. The series (1.1) is said to be universal in weighted spaces L1
µ[0, 1)

concerning subseries if for any function f(x) ∈ L1
µ[0, 1) it is possible to choose a

partial series
∑∞

k=1 fnk
(x) from (1.1) which converges to the f(x) in the metric

L1
µ[0, 1).

The aforementioned definitions are given not in the most general form and only
in the generality in which they will be applied in the present paper.

Here, we consider a question on existence of series by the trigonometric sys-
tem universal in weighted L1

µ[0, 1) spaces with respect to rearrangements and
subseries.

Note that many papers are devoted to the question on existence of various
types of universal series in the sense of convergence almost everywhere and on
a measure (see [2], [3], [6], [7], [9], [11]–[13], [15]–[17]). Here we will give those
results that are directly related to the theorems proved in this paper.

The first usual universal in the sense of convergence almost everywhere trigono-
metric series was constructed by D. E. Menshov [12] and V. Ya. Kozlov [11]. They
constructed the series of the form

1

2
+

∞∑
k=1

ak cos kx+ bk sin kx (1.2)

such that for any measurable on [0, 2π] function f(x) there exists an increasing
sequence of natural numbers nk such that the series (1.2) having the sequence of
partial sums of order nk converges to f(x) almost everywhere on [0, 2π]. Note here
that, in this result, when f(x) ∈ L1[0, 2π], it is impossible to replace convergence
almost everywhere by convergence in the metric L1[0, 2π].
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This result was extended by A. A. Talalyan [15] to arbitrary orthonormal com-
plete systems. He also established that if {φn(x)}∞n=1—the normalized basis of
space Lp[0, 1], p > 1—then there exists a series of the form

∞∑
k=1

akφk(x), ak → 0, (1.3)

which has the following property: for any measurable function f(x) the members
of series (1.3) can be rearranged so that the rearranged series converges on a
measure on [0, 1] to f(x) (see [16]).

W. Orlicz [13] observed the fact that there exist functional series that are
universal with respect to rearrangements in the sense of almost everywhere con-
vergence in the class of almost everywhere finite measurable functions.

It is also useful to note that even Riemann proved that every convergent nu-
merical series which is not absolutely convergent is universal with respect to
rearrangements in the class of all real numbers.

Let µ(x) be measurable on a [0, 2π] function with 0 < µ(x) ≤ 1, x ∈ [0, 2π],
and let L1

µ[0, 2π] be a space of measurable functions f(x), x ∈ [0, 2π] with∫ 2π

0

∣∣f(x)∣∣µ(x) dx <∞.

M. G. Grigorian [9] constructed a series of the form

∞∑
k=−∞

Cke
ikx with

∞∑
k=−∞

|Ck|q <∞,∀q > 2,

which is universal in L1
µ[0, 2π] concerning partial series for some weight function

µ(x), 0 < µ(x) ≤ 1, x ∈ [0, 2π].
In [6] it is proved that, for any given sequence of natural numbers {λm}∞m=1

with λm ↗∞, there exists a series by a trigonometric system of the form

∞∑
k=1

Cke
ikx, C−k = Ck, (1.4)

with ∣∣∣ m∑
k=1

Cke
ikx

∣∣∣ ≤ λm, x ∈ [0, 2π],m = 1, 2, . . . ,

so that, for each ε > 0, a weight function µ(x),

0 < µ(x) ≤ 1,
∣∣{x ∈ [0, 2π] : µ(x) 6= 1

}∣∣ < ε,

can be constructed so that the series (1.4) is universal in the weighted space
L1
µ[0, 2π] with respect simultaneously to rearrangements, as well as to subseries.
Let us denote the generalized Walsh system of order a by Ψa (see Definition 2.2

below).
In this paper, we prove the following results.



418 S. A. EPISKOPOSIAN

Theorem 1.4. Let ω(t) be a continuous function with ω(+0) = 0 and increasing
in [0,∞). Then there exists a series of the form

∞∑
k=1

ckψk(x) with
∞∑
k=1

c2kω
(
|ck|

)
<∞ (1.5)

with the following property: for each ε > 0 a weight function µ(x), 0 < µ(x) ≤
1, |{x ∈ [0, 1) : µ(x) 6= 1}| < ε can be constructed so that the series (1.5) is
universal in the weighted space L1

µ[0, 1) with respect to both rearrangements and
subseries.

Remark 1.5. Theorem 1.4 for trigonometric and classical Walsh systems was
proved in [2] and [3].

2. Basic lemmas

Now, we present the definitions of generalized Rademacher and Walsh systems.
Let a denote a fixed integer, a ≥ 2, and put ωa = e

2πi
a . Now we will give the

definitions of generalized Rademacher and Walsh systems [1].

Definition 2.1. The Rademacher system of order a is defined by

ϕ0(x) = ωk
a if x ∈

[k
a
,
k + 1

a

)
, k = 0, 1, . . . , a− 1, x ∈ [0, 1),

and, for n ≥ 0,

ϕn(x+ 1) = ϕn(x) = ϕ0(a
nx).

Definition 2.2. The generalized Walsh system of order a is defined by

ψ0(x) = 1,

and if n = α1a
n1 + · · ·+ αsa

ns where n1 > · · · > ns, then

ψn(x) = ϕα1
n1
(x) · . . . · ϕαs

ns
(x).

Let us denote the generalized Walsh system of order a by Ψa. Note that Ψ2 is
the classical Walsh system. The basic properties of the generalized Walsh system
of order a were obtained by H. E. Chrestenson, R. Paley, J. Fine, W. Young,
C. Watari, N. Vilenkin, and others (see [1], [8], [14], [18]–[20]). Next, we present
some properties of the Ψa system.

Property 1. Each nth Rademacher function has period 1
an

and

ϕn(x) = const ∈ Ωa = {1, ωa, ω
2
a, . . . , ω

a−1
a } (2.1)

if x ∈ ∆
(k)
n+1 = [ k

an+1 ,
k+1
an+1 ), k = 0, . . . , an+1 − 1, n = 1, 2, . . . .

It is also easily verified that(
ϕn(x)

)k
=

(
ϕn(x)

)m
, ∀n, k ∈ N ,where m = k (mod a). (2.2)

Property 2. It is clear that, for any integer n, the Walsh function ψn(x) consists
of a finite product of Rademacher functions and accepts values from Ωa.
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Property 3. Let ωa = e
2πi
a . Then for any natural number m we have

a−1∑
k=0

ωk·m
a =

{
a, if m ≡ 0 (mod a),

0, if m 6= 0 (mod a).
(2.3)

Property 4. The generalized Walsh system Ψa, a ≥ 2, is a complete orthonormal
system in L2[0, 1) and a basis in Lp[0, 1), p > 1 (see [14]).

Property 5. From Definition 2.2 we have

ψi(x) · ψj(a
sx) = ψj·as+i(x), where 0 ≤ i, j < as, (2.4)

and, particularly,

ψak+j(x) = ϕk(x) · ψj(x), if 0 ≤ j ≤ ak − 1. (2.5)

Now, for any m = 1, 2, . . . and 1 ≤ k ≤ am, we put ∆
(k)
m = [k−1

am
, k
am

) and
consider the following function,

I(k)m (x) =

{
1, if x ∈ [0, 1) \∆(k)

m ,

1− am, if x ∈ ∆
(k)
m ,

(2.6)

and we periodically extend these functions on R1 with period 1.
By χE(x) we denote the characteristic function of the set E; that is,

χE(x) =

{
1, if x ∈ E,

0, if x /∈ E.
(2.7)

Then, clearly,

I(k)m (x) = ψ0(x)− am · χ
∆

(k)
m
(x), (2.8)

and for the natural numbers m ≥ 1 and 1 ≤ i ≤ am,

ai(χ∆
(k)
m
) =

∫ 1

0

χ
∆

(k)
m
(x) · ψi(x) dx = A · 1

am
, 0 ≤ i < am, (2.9)

bi(I
(k)
m ) =

∫ 1

0

I(k)m (x)ψi(x) dx =

{
0, if i = 0 and i ≥ ak,

−A, if 1 ≤ i < ak,
(2.10)

where A = const ∈ Ωa and |A| = 1.
Hence,

χ
∆

(k)
m
(x) =

ak−1∑
i=0

ai(χ∆
(k)
m
)ψi(x), (2.11)

I(k)m (x) =
ak−1∑
i=1

bi(I
(k)
m )ψi(x). (2.12)
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Lemma 2.3. For any numbers γ 6= 0, N0 > 1, ε ∈ (0, 1), and any interval of

order a ∆ = ∆
(k)
m = [k−1

am
, k
am

), i = 1, . . . , am, there exist a measurable set E ⊂ ∆
and a polynomial P (x) in the Ψa system of the form

P (x) =
N∑

k=N0

ckψk(x)

which satisfy the following conditions:

(1) |E| > (1− ε) · |∆|;

(2) P (x) =

{
γ, if x ∈ E,

0, if x /∈ ∆;

(3)
[ N∑
k=N0

c2k

] 1
2
< a · |γ| ·

√
|∆|
ε
.

Proof. We choose natural numbers ν0 and s so that

ν0 =
[
loga

1

ε

]
+ 1; s = [logaN0] +m. (2.13)

Define the coefficients cn, ai, bj, and the function P (x) in the following way:

P (x) = γ · χ
∆

(k)
m
(x) · I(1)ν0

(asx), x ∈ [0, 1], (2.14)

cn = cn(P ) =

∫ 1

0

P (x)ψn(x) dx, ∀n ≥ 0, (2.15)

ai = ai(χ∆
(k)
m
), 0 ≤ i < am, bj = bj(I

(1)
ν0

), 1 ≤ j < aν0 . (2.16)

Taking into account (2.1)–(2.3), (2.5)–(2.7), and (2.9)–(2.12) for P (x), we obtain

P (x) = γ ·
am−1∑
i=0

aiψi(x) ·
aν0−1∑
j=1

bjψj(a
sx)

= γ ·
aν0−1∑
j=1

bj ·
am−1∑
i=0

aiψj·as+i(x) =
N∑

k=N0

ckψk(x), (2.17)

where

ck = ck(P ) =

{
−K · γ

am
or 0, if k ∈ [N0, N ],

0, if k /∈ [N0, N ],
(2.18)

K ∈ Ωa, |K| = 1, N = as+ν0 + am − as − 1. (2.19)

Set

E =
{
x ∈ ∆ : P (x) = γ

}
.
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By (2.7), (2.8), and (2.14), we have

|E| = a−m(1− a−ν0) > (1− ε)|∆|,

P (x) =


γ, if x ∈ E,

γ(1− aν0), if x ∈ ∆ \ E,
0, if x /∈ ∆.

From relations (2.13), (2.18), and (2.19) we obtain

max
N0≤m≤N

∫ 1

0

∣∣∣ m∑
k=N0

ckψk(x)
∣∣∣ dx < [∫ 1

0

∣∣P (x)∣∣2 dx] 1
2 ≤

[ N∑
k=N0

|ck|2
] 1

2

= |γ| · |∆| ·
√
aν0+s + am = |γ| ·

√
|∆| ·

√
aν0 + 1

< |γ| ·
√

|∆| ·
√
a

ε
< a · |γ| ·

√
|∆|
ε
. �

Lemma 2.4. Let ω(t) be a continuous function increasing in [0,∞) and
ω(+0) = 0. Then, for any given numbers 0 < ε < 1

2
, N0 > 2, and a step function

f(x) =

q∑
s=1

γs · χ∆s(x), (2.20)

where each ∆s is an interval of the form ∆
(i)
m = [ i−1

2m
, i
2m

], 1 ≤ i ≤ 2m, there exist
a measurable set E ⊂ [0, 1) and a polynomial P (x) of the form

P (x) =
N∑

k=N0

ckψk(x),

which satisfy the following conditions:

(1) |E| > 1− ε,

(2) P (x) = f(x), for x ∈ E,

(3)
N∑

k=N0

|ck|2 · ω
(
|ck|

)
< ε,

(4) max
N0≤M≤N

∫
e

∣∣∣ M∑
k=N0

ckψk(x)
∣∣∣ dx < ε+

∫
e

∣∣f(x)∣∣ dx
for every measurable subset e of E.

Proof. Let 0 < ε < 1 be an arbitrary number. For any positive number η with

η <
ε2

a2
·
[∫ 1

0

f 2(x) dx
]−1

, (2.21)
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by definition of function ω(t), there exists a positive number δ < ε so that, for
any t, 0 < t < δ, we have

ω(t) < ω(δ) < η. (2.22)

Without restriction of generality, we assume that

0 < a · |γs| ·
√

|∆s|
ε

< δ, s = 1, 2, . . . , q. (2.23)

Applying Lemma 2.3 consecutively, we can find a sequence of sets Es ⊂ ∆s and
polynomials

Ps(x) =
Ns−1∑

k=Ns−1

c
(s)
k ψk(x), s = 1, 2, . . . , q, (2.24)

which, for all 1 ≤ s ≤ q, satisfy the following conditions:

|Es| > (1− ε) · |∆s|, (2.25)

Ps(x) =

{
γs, if x ∈ Es

0, if x /∈ ∆s,
(2.26)

[ Ns−1∑
k=Ns−1

|c(s)k |2
] 1

2
< a · |γs| ·

√
|∆s|
ε
. (2.27)

We define a set E and a polynomial P (x) as follows:

E =

q⋃
s=1

Es, (2.28)

P (x) =

q∑
k=1

ckψk(x) =

q∑
s=1

[ Ns−1∑
k=Ns−1

c
(s)
k ψk(x)

]
, (2.29)

where

ck = c
(s)
k , for Ns−1 ≤ k < Ns, s = 1, 2, . . . , q, N = Nq − 1. (2.30)

From (2.20), (2.25), (2.26), (2.28), and (2.29) we get

|E| > 1− ε,

P (x) = f(x), if x ∈ E.

Taking relations (2.23), (2.27), and (2.30), for any k ∈ [N0, N ] we have

|ck| ≤ max
1≤s≤q

[
a · |γs| ·

√
|∆s|
ε

]
< δ. (2.31)

Hence, and from (2.22), it follows that

ω
(
|ck|

)
< ω(δ) < η, ∀k ∈ [N0, N ].
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Consequently, from (2.21) and (2.27) we get

N∑
k=N0

|ck|2 · ω
(
|ck|

)
< η ·

q∑
s=1

[ Ns−1∑
k=Ns−1

|c(s)k |2
]

< η · a
2

ε
·
[∫ 1

0

f 2(x) dx
]
< ε.

That is, statements (1)–(3) of Lemma 2.4 are satisfied. Now we will check the
fulfillment of statement (4).

For any number M , N0 ≤ M < N , we can find s0, 1 ≤ s0 ≤ q such that
Ns0 < M < Ns0+1. Then, from (2.29) and (2.30) we have

M∑
k=N0

ckψk(x) =

s0∑
s=1

Ps(x) +
M∑

k=Ns0

ckψk(x). (2.32)

Given the choice of δ and that P (x) = f(x) for x ∈ E, we then obtain, from
relations (2.23), (2.27), (2.29), and (2.32) for any measurable set e ⊂ E∫

e

∣∣∣ M∑
k=N0

ckψk(x)
∣∣∣ dx

≤
∫
e

∣∣∣ s0∑
s=1

Ps(x)
∣∣∣ dx+ ∫ 1

0

∣∣∣ M∑
k=Ns0

ckψk(x)
∣∣∣ dx

<

∫
e

∣∣P (x)∣∣ dx+ |γs0+1| · a ·
√

|∆s0+1|
ε

<

∫
e

∣∣f(x)∣∣ dx+ ε. �

3. Proof of main results

Proof. Let ω(t) be a continuous function, increasing in [0,∞) and ω(+0) = 0,
and let {

fn(x)
}∞
n=1

(3.1)

be a sequence of all step functions with rational values and rational jump points.
Applying Lemma 2.4 consecutively, we can find a sequence of sets {Es}∞s=1 and a
sequence of polynomials

Ps(x) =
Ns−1∑

k=Ns−1

c
(s)
k ψk(x), (3.2)

where 1 = N0 < N1 < · · · < Ns < · · · , s = 1, 2, . . . , which satisfy the following
conditions:

|Es| > 1− 2−2(s+1), Es ⊂ [0, 1], (3.3)

Ps(x) = fs(x), x ∈ Es, (3.4)
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Ns−1∑
k=Ns−1

|c(s)k | · ω
(
|c(s)k |

)
< 2−2s, (3.5)

max
Ns−1≤p<Ns

[∫
e

∣∣∣ p∑
k=Ns−1

c
(s)
k ψk(x)

∣∣∣ dx] < 2−2(s+1) +

∫
e

∣∣fs(x)∣∣ dx (3.6)

for any measurable set e ⊂ E.
Denote

∞∑
k=1

ckψk(x) =
∞∑
s=1

[ Ns−1∑
k=Ns−1

c
(s)
k ψk(x)

]
, (3.7)

where ck = c
(s)
k , for Ns−1 ≤ k < Ns, s = 1, 2, . . . .

Let ε be an arbitrary positive number, and setting
Ωn =

⋂∞
s=nEs, n = 1, 2, . . . ;

E = Ωn0 =
⋂∞

s=n0
Es, n0 = [log1/2 ε] + 1;

B =
⋃∞

n=n0
Ωn = Ωn0 ∪ (

⋃∞
n=n0+1 Ωn \ Ωn−1).

(3.8)

It is clear that |B| = 1 and |E| > 1− ε (see (3.3)).
We define a function µ(x) in the following way:

µ(x) =

{
1, for x ∈ E ∪ ([0, 1) \B);

µn, for x ∈ Ωn \ Ωn−1, n ≥ n0 + 1,
(3.9)

where {
µn = [22n ·

∏n
s=1 hs]

−1,

hs = ‖fs(x)‖C +maxNs−1≤p<Ns ‖
∑p

k=Ns−1
c
(s)
k ψk(x)‖C + 1,

(3.10)

where ‖g(x)‖C = maxx∈[0,1) |g(x)|, g(x) is a bounded function on [0, 1).
From (3.5) and (3.8)–(3.10) we obtain the following:
(A) µ(x) is a measurable function and

0 < µ(x) ≤ 1,
∣∣{x ∈ [0, 1) : µ(x) 6= 1

}∣∣ < ε.

(B)
∑∞

k=1 |ck|2 · ω(|ck|) <∞.
Hence, we obviously have

lim
k→∞

ck = 0. (3.11)

It follows from (3.8)–(3.10) that, for all s ≥ n0 and p ∈ [Ns−1, Ns),∫
[0,1)\Ωs

∣∣∣ p∑
k=Ns−1

c
(s)
k ψk(x)

∣∣∣µ(x) dx
=

∞∑
n=s+1

[∫
Ωn\Ωn−1

∣∣∣ p∑
k=Ns−1

c
(s)
k ψk(x)

∣∣∣µn dx
]

≤
∞∑

n=s+1

2−2n
[∫ 1

0

∣∣∣ p∑
k=Ns−1

c
(s)
k ψk(x)

∣∣∣h−1
s dx

]
<

1

3
2−2s. (3.12)
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By (3.4) and (3.8)–(3.10), for all s ≥ n0 we have∫ 1

0

∣∣Ps(x)− fs(x)
∣∣µ(x) dx

=

∫
Ωs

∣∣Ps(x)− fs(x)
∣∣µ(x) dx

+

∫
[0,1)\Ωs

∣∣Ps(x)− fs(x)
∣∣µ(x) dx

=
∞∑

n=s+1

[∫
Ωn\Ωn−1

∣∣Ps(x)− fs(x)
∣∣µn dx

]
≤

∞∑
n=s+1

2−2s
[∫ 1

0

(∣∣fs(x)∣∣+ ∣∣∣ Ns−1∑
k=Ns−1

c
(s)
k ψk(x)

∣∣∣)h−1
s dx

]
<

1

3
2−2s < 2−2s. (3.13)

Taking relations (A), (3.6), and (3.8)–(3.10) into account, for all p ∈ [Ns−1, Ns)
and s ≥ n0 + 1, we obtain∫ 1

0

∣∣∣ p∑
k=Ns−1

c
(s)
k ψk(x)

∣∣∣µ(x) dx
=

∫
Ωs

∣∣∣ p∑
k=Ns−1

c
(s)
k ψk(x)

∣∣∣µ(x) dx
+

∫
[0,1)\Ωs

∣∣∣ p∑
k=Ns−1

c
(s)
k ψk(x)

∣∣∣µ(x) dx
<

s∑
n=n0+1

[∫
Ωn\Ωn−1

∣∣∣ p∑
k=Ns−1

c
(s)
k ψk(x)

∣∣∣ dx] · µn +
1

3
2−2s

<

s∑
n=n0+1

(
2−2(s+1) +

∫
Ωn\Ωn−1

∣∣fs(x)∣∣ dx)µn +
1

3
2−2s

= 2−2(s+1) ·
s∑

n=n0+1

µn +

∫
Ωs

∣∣fs(x)∣∣µ(x) dx+ 1

3
2−2s

<

∫ 1

0

∣∣fs(x)∣∣µ(x) dx+ 2−2s. (3.14)

Let f(x) ∈ L1
µ[0, 1) be any function; that is,

∫ 1

0
|f(x)|µ(x) dx <∞.

It is easy to see that we can choose a function fν1(x) from the sequence (3.1)
such that ∫ 1

0

∣∣f(x)− fν1(x)
∣∣µ(x) dx < 2−2, ν1 > n0 + 1. (3.15)
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Hence, we have ∫ 1

0

∣∣fν1(x)∣∣µ(x) dx < 2−2 +

∫ 1

0

∣∣f(x)∣∣µ(x) dx. (3.16)

From Definition 2.2 and from relations (A), (3.13), and (3.15) we obtain, with
m1 = 1, ∫ 1

0

∣∣f(x)− [
Pν1(x) + cm1ψm1(x)

]∣∣µ(x) dx
≤

∫ 1

0

∣∣f(x)− fν1(x)
∣∣µ(x) dx+ ∫ 1

0

∣∣fν1(x)− Pν1(x)
∣∣µ(x) dx

+

∫ 1

0

∣∣cm1ψm1(x)
∣∣µ(x) dx < 2 · 2−2 + |cm1|. (3.17)

Assume that numbers ν1 < ν2 < · · · < νq−1, m1 < m2 < · · · < mq−1 are chosen
in such a way that the following condition is satisfied:∫ 1

0

∣∣∣f(x)− j∑
s=1

[
Pνs(x) + cmsψms(x)

]∣∣∣µ(x) dx
< 2 · 2−2j + |cmj

|, 1 ≤ j ≤ q − 1. (3.18)

Now, we choose a function fνq(x) from the sequence (3.1) such that∫ 1

0

∣∣∣(f(x)− q−1∑
s=1

[
Pνs(x) + cmsψms(x)

])
− fnq(x)

∣∣∣µ(x) dx < 2−2q, (3.19)

where νq > νq−1, νq > mq−1.
This, with (3.18), implies∫ 1

0

∣∣fνq(x)∣∣µ(x) dx < 2−2q + 2 · 2−2(q−1) + |cmq−1|

= 9 · 2−2q + |cmq−1|. (3.20)

From (3.13), (3.14), and (3.20) we have∫ 1

0

∣∣fνq(x)− Pνq(x)
∣∣µ(x) dx < 2−2νq , (3.21)

Pνq(x) =

Nνq−1∑
k=Nνq−1

c
(νq)
k ψk(x),

max
Nνq−1≤p<Nνq

∫ 1

0

∣∣∣ p∑
k=Nνq−1

c
(νq)
k ψk(x)

∣∣∣µ(x) dx < 10 · 2−2q + |cmq−1|. (3.22)

Denote

mq = min
{
n ∈ N : n /∈

{{
{k}Nνs−1

k=Nνs−1

}q

s=1
∪ {ms}q−1

s=1

}}
. (3.23)
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Taking into account the relations (A), (3.19), and (3.21), we get∫ 1

0

∣∣∣f(x)− q∑
s=1

[
Pνs(x) + cmsψms(x)

]∣∣∣µ(x) dx
≤

∫ 1

0

∣∣∣(f(x)− q−1∑
s=1

[
Pνs(x) + cmsψms(x)

])
− fνq(x)

∣∣∣µ(x) dx
+

∫ 1

0

∣∣fνq(x)− Pνq(x)
∣∣µ(x) dx

+

∫ 1

0

∣∣cmqψmq(x)
∣∣µ(x) dx < 2 · 2−2q + |cmq |. (3.24)

Thus, by induction, we can choose from series (3.7) a sequence of members

cmqψmq(x), q = 1, 2, . . . ,

and a sequence of polynomials

Pνq(x) =

Nνq−1∑
k=Nνq−1

c
(νq)
k ψk(x), Nnq−1 > Nnq−1 , q = 1, 2, . . . , (3.25)

such that conditions (3.22)–(3.24) are satisfied for all q ≥ 1.
Taking into account the choice of Pνq(x) and cmqψmq(x) (see (3.22) and (3.25)),

we conclude that the series

∞∑
q=1

[ Nνq−1∑
k=Nνq−1

c
(νq)
k ψk(x) + cmqψq(x)

]
is obtained from the series (3.7) by rearrangement of members.

It follows from (3.11), (3.21), and (3.24) that this series converges to the func-
tion f(x) in the metric L1

µ[0, 1); that is, the series (3.7) is universal with respect
to rearrangements (see Definition 1.1).

On the other hand, it is easy to see that, for any function f(x) ∈ L1
µ[0, 1), from

the sequence (3.2) one can choose polynomials

Prs(x) =

Nrs−1∑
k=Nrs−1

c
(rs)
k ψk(x), rs−1 < rs, s = 1, 2, . . . ,

so that the following conditions are satisfied:∫ 1

0

∣∣∣f(x)− N∑
s=1

Prs(x)
∣∣∣µ(x) dx < 2−N , N = 1, 2, . . . ,

max
Nrs−1≤m<Nrs

∫ 1

0

∣∣∣ p∑
k=Nrs−1

c
(rs)
k ψk(x)

∣∣∣µ(x) dx < 2−N , N = 1, 2, . . . .
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Hence, it follows that the subseries

∞∑
s=1

[ Nrs−1∑
k=Nrs−1

c
(rs)
k ψk(x)

]
of series (3.7) converges to f(x) in the metric of L1

µ[0, 1). This means that series

(3.7) is universal in L1
µ[0, 1) by subseries (see Definition 1.3). �
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